51
|
Yu X, Chen TY, Ye YS, Bao X. Spin crossover in mononuclear Fe(II) complexes based on a tetradentate ligand. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:174001. [PMID: 31914428 DOI: 10.1088/1361-648x/ab68f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three isostructural complexes with the formula [Fe(L5Me)(NCE)2]: L5Me = N,N'-bis(5-methyl-2-pyridylmethyl)ethane-1,2-diamine and E = S (1-S), E = Se (1-Se), E = BH3 (1-BH 3 ) have been synthesized and characterized by single-crystal x-ray diffraction, magnetic susceptibility and DSC studies. All the three derivatives are spin crossover (SCO) active, showing complete one-step spin conversion. The SCO midpoint temperatures (T 1/2) are 193 K for 1-S, 226 K for 1-Se, and 330 K for 1-BH 3 , which are among the highest values for the homologous Fe(II)-NCE complexes with comparable tetradentate ligands. The almost linear Fe-N ≡ C(E) angles are consistent with the strong ligand field (LF) strength imposed by these NCE- co-ligands. Strong hydrogen-like bonding N-H…E was observed to connect the molecules into 2D supramolecular sheets parallel to the bc plane. However, such supramolecular interaction is not sufficient enough to transmit strong cooperativity. A discussion on the factors governing the LF strength and the cooperativity has been made, based on the comparison of analogous complexes and also based on UV-vis spectroscopy studies of the Ni(II) complexes.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
52
|
Teng X, Li F, Lu C. Visualization of materials using the confocal laser scanning microscopy technique. Chem Soc Rev 2020; 49:2408-2425. [PMID: 32134417 DOI: 10.1039/c8cs00061a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of materials science always benefits from advanced characterizations. Currently, imaging techniques are of great technological importance in both fundamental and applied research on materials. In comparison to conventional visualization methods, confocal laser scanning microscopy (CLSM) is non-invasive, with macroscale and high-contrast scanning, a simple and fast sample preparation procedure as well as easy operation. In addition, CLSM allows rapid acquisition of longitudinal and cross-sectional images at any position in a material. Therefore, the CLSM-based visualization technique could provide direct and model-independent insight into material characterizations. This review summarizes the recent applications of CLSM in materials science. The current CLSM approaches for the visualization of surface structures, internal structures, spatial structures and reaction processes are discussed in detail. Finally, we provide our thoughts and predictions on the future development of CLSM in materials science. The purpose of this review is to guide researchers to build a suitable CLSM approach for material characterizations, and to open viable opportunities and inspirations for the development of new strategies aiming at the preparation of advanced materials. We hope that this review will be useful for a wide range of research communities of materials science, chemistry, and engineering.
Collapse
Affiliation(s)
- Xu Teng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAICAS), State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | |
Collapse
|
53
|
Chen YC, Meng Y, Dong YJ, Song XW, Huang GZ, Zhang CL, Ni ZP, Navařík J, Malina O, Zbořil R, Tong ML. Light- and temperature-assisted spin state annealing: accessing the hidden multistability. Chem Sci 2020; 11:3281-3289. [PMID: 34122835 PMCID: PMC8156335 DOI: 10.1039/c9sc05971g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Among responsive multistable materials, spin crossover (SCO) systems are of particular interest for stabilizing multiple spin states with various stimulus inputs and physical outputs. Here, in a 2D Hofmann-type coordination polymer, [Fe(isoq)2{Au(CN)2}2] (isoq = isoquinoline), a medium-temperature annealing process is introduced after light/temperature stimulation, which accesses the hidden multistability of the spin state. With the combined effort of magnetic, crystallographic and Mössbauer spectral investigation, these distinct spin states are identified and the light- and temperature-assisted transition pathways are clarified. Such excitation-relaxation and trapping-relaxation joint mechanisms, as ingenious interplays between the kinetic and thermodynamic effects, uncover hidden possibilities for the discovery of multistable materials and the development of multistate intelligent devices. Two new two-stage manipulation protocols, namely light- and temperature-assisted spin state annealing (LASSA/TASSA), are applied to a spin crossover coordination polymer, [Fe(isoq)2{Au(CN)2}2], revealing the hidden multistability of spin states.![]()
Collapse
Affiliation(s)
- Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan Meng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China .,Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University Anqing 246011 P. R. China
| | - Yan-Jie Dong
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University Anqing 246011 P. R. China
| | - Xiao-Wei Song
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University Anqing 246011 P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Chuan-Lei Zhang
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University Anqing 246011 P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jakub Navařík
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Ondřej Malina
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
54
|
Liu MJ, Wu SQ, Li JX, Zhang YQ, Sato O, Kou HZ. Structural Modulation of Fluorescent Rhodamine-Based Dysprosium(III) Single-Molecule Magnets. Inorg Chem 2020; 59:2308-2315. [DOI: 10.1021/acs.inorgchem.9b03105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mei-Jiao Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jia-Xin Li
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
55
|
Sun XP, Tang Z, Yao ZS, Tao J. A homochiral 3D framework of mechanically interlocked 1D loops with solvent-dependent spin-state switching behaviors. Chem Commun (Camb) 2020; 56:133-136. [PMID: 31799549 DOI: 10.1039/c9cc09063k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An atypical homochiral spin-crossover (SCO) framework (1) constructed from mechanically interlocked 1D molecular loops was prepared. Due to the flexibility of the interlocked structure, the guest solvent molecules can be reversibly exchanged. Consequently, its SCO behavior was capable of modulating between one- and two-stepped transitions in response to acetonitrile and methanol.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| |
Collapse
|
56
|
Yao ZS, Tang Z, Tao J. Bistable molecular materials with dynamic structures. Chem Commun (Camb) 2020; 56:2071-2086. [DOI: 10.1039/c9cc09238b] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this Feature Article, we introduce how to manipulate the motion of electrons or molecules by external stimuli, to achieve switchable properties in molecule-based single crystals.
Collapse
Affiliation(s)
- Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| |
Collapse
|
57
|
Tu J, Chen H, Tian H, Yu X, Zheng B, Zhang S, Ma P. Temperature-induced structural transformations accompanied by changes in magnetic properties of two copper coordination polymers. CrystEngComm 2020. [DOI: 10.1039/d0ce00391c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two ferromagnetic copper compounds have been synthesized under different temperature, which represented the rare example of structural transformations resulting from the coordination modes of organic ligands supported by magnetic results.
Collapse
Affiliation(s)
- Jing Tu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Hongju Tian
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Xianyong Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Shaowei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| |
Collapse
|
58
|
Fan K, Bao SS, Huo R, Huang XD, Liu YJ, Yu ZW, Kurmoo M, Zheng LM. Luminescent Ir(iii)–Ln(iii) coordination polymers showing slow magnetization relaxation. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01504c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two structural types of iridium(iii)–lanthanide(iii) coordination polymers, single-chain Ir2Ln and double-chain Ir4Ln2 (Ln = Gd, Dy, Er, and Yb), have been prepared. SMM behaviour and NIR luminescence were observed for the Ir–Er and Ir–Yb systems.
Collapse
Affiliation(s)
- Kun Fan
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Ran Huo
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Yu-Jie Liu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Zi-Wen Yu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Mohamedally Kurmoo
- Institut de Chimie
- Université de Strasbourg CNRS-UMR7177
- Strasbourg Cedex 67007
- France
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| |
Collapse
|
59
|
Xu Y, Hu ZB, Wu LN, Li MX, Wang ZX, Song Y. Ferrimagnetic Fe(IV)-Mn(II) staircase chain constructed from Fe(IV) building block. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Ma TT, Sun XP, Yao ZS, Tao J. Homochiral versus racemic polymorphs of spin-crossover iron(ii) complexes with reversible LIESST effect. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01590f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homochiral and racemic polymorphs show different spin-crossover behaviours due to different intermolecular interactions, and reversible LIESST effects can be realized on homochiral complexes.
Collapse
Affiliation(s)
- Ting-Ting Ma
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Xiao-Peng Sun
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| |
Collapse
|
61
|
Wu WW, Wu SG, Chen YC, Huang GZ, Lyu BH, Ni ZP, Tong ML. Spin-crossover in an organic–inorganic hybrid perovskite. Chem Commun (Camb) 2020; 56:4551-4554. [DOI: 10.1039/d0cc00992j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first spin-crossover complex with an organic–inorganic hybrid perovskite structure is reported, which displays three-step spin-crossover, light-induced excited spin-state trapping and spin-state dependent fluorescence properties.
Collapse
Affiliation(s)
- Wei-Wei Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Bang-Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou, 510275
- P. R. China
| |
Collapse
|
62
|
Singh MK, Shukla P, Khatua M, Rajaraman G. A Design Criteria to Achieve Giant Ising-Type Anisotropy in Co II -Encapsulated Metallofullerenes. Chemistry 2019; 26:464-477. [PMID: 31506987 DOI: 10.1002/chem.201903618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Indexed: 11/10/2022]
Abstract
Discovery of permanent magnetisation in molecules just like in hard magnets decades ago led to the proposal of utilising these molecules for information storage devices and also as Q-bits in quantum computing. A significant breakthrough with a blocking temperature as high as 80 K has been recently reported for lanthanocene complexes. While enhancing the blocking temperature further remains one of the primary challenges, obtaining molecules that are suitable for the fabrication of the devices sets the bar very high in this area. Encouraged by the fact that our earlier predictions of potential single-molecule magnets (SMMs) in lanthanide-containing endohedral fullerenes have been verified, here we set out to undertake a comprehensive study on CoII -ion-encapsulated fullerene as potential SMMs. To study this class of molecules, we have utilised an array of theoretical methods ranging from density functional to ab initio CASSCF/NEVPT2 methods for obtaining reliable estimate of zero-field splitting parameters D and E. Additionally, we have also employed, for the first time a combination of molecular dynamics based on DFT methods coupled with CASSCF/NEVPT2 methods to seek the role of conformational isomers in the relaxation of magnetisation. Particularly, we have studied, Co@C28 , Co@C38 and Co@C48 cages and their isomers as potential target molecules that could yield substantial magnetic anisotropy. Our calculations categorically reveal a very large Ising anisotropy in this class of molecules, with Co@C48 cages predicted to yield D values as high as -127 cm-1 . Our calculations on the smaller cages reveal the free movement of CoII ion inside the cage, leading to the likely scenario of faster relaxation of magnetisation. However, larger fullerene cages were found to solve this issue. Further models with incorporating units such as {CoOZn}, {CoScZnN} inside larger fullerenes yield axial zero-field splitting values as high as -200 cm-1 with negligible E/D values. As these units represent a strong axiality coupled with a viable way to obtain air-stable low-coordinate CoII complexes, this opens up a new paradigm in the search of SMMs in this class of molecules.
Collapse
Affiliation(s)
- Mukesh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pratima Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Munmun Khatua
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
63
|
Berdiell IC, Hochdörffer T, Desplanches C, Kulmaczewski R, Shahid N, Wolny JA, Warriner SL, Cespedes O, Schünemann V, Chastanet G, Halcrow MA. Supramolecular Iron Metallocubanes Exhibiting Site-Selective Thermal and Light-Induced Spin-Crossover. J Am Chem Soc 2019; 141:18759-18770. [DOI: 10.1021/jacs.9b08862] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Tim Hochdörffer
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | | | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Juliusz A. Wolny
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | - Stuart L. Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, EC Stoner Building, University of Leeds, Leeds LS2 9JT, U.K
| | - Volker Schünemann
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | | | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|
64
|
Zheng C, Jia S, Dong Y, Xu J, Sui H, Wang F, Li D. Symmetry Breaking and Two-Step Spin-Crossover Behavior in Two Cyano-Bridged Mixed-Valence {FeIII2(μ-CN)4FeII2} Clusters. Inorg Chem 2019; 58:14316-14324. [DOI: 10.1021/acs.inorgchem.9b00544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chunyang Zheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, P. R. China
| | - Shuwen Jia
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yubao Dong
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Juping Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huanhuan Sui
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Feng Wang
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P. R. China
| | - Dongfeng Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
65
|
Huang XD, Jia JG, Kurmoo M, Bao SS, Zheng LM. Interplay of anthracene luminescence and dysprosium magnetism by steric control of photodimerization. Dalton Trans 2019; 48:13769-13779. [PMID: 31482159 DOI: 10.1039/c9dt02854d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systematic control of the intermolecular pair-wise [4 + 4] photocycloaddition of a series of dysprosium phosphonates through fine-tuning of two different phosphonate ligands, one with a bidentate blocker and one with an anthracene antenna, both with alkyl substituents, reveals a size dependent rate. With bulky isopropyl on the diphosphonate blocker little response to UV light is observed. In contrast, compounds with ethyl which has less steric hindrance exhibit almost complete photocycloaddition. Interestingly, the alkyl substituents attached to anthracene monophosphonate have no evident effect on the reaction rate. Although no direct relationship can be found between the substitutions and the observed differences in field-induced single molecule magnetism, remarkable changes in magnetic dynamics are observed for complexes before and after the complete photocycloaddition reactions.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | |
Collapse
|
66
|
Nakanishi T, Hori Y, Sato H, Wu SQ, Okazawa A, Kojima N, Yamamoto T, Einaga Y, Hayami S, Horie Y, Okajima H, Sakamoto A, Shiota Y, Yoshizawa K, Sato O. Observation of Proton Transfer Coupled Spin Transition and Trapping of Photoinduced Metastable Proton Transfer State in an Fe(II) Complex. J Am Chem Soc 2019; 141:14384-14393. [PMID: 31422661 DOI: 10.1021/jacs.9b07204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An important technique to realize novel electron- and/or proton-based functionalities is to use a proton-electron coupling mechanism. When either a proton or electron is excited, the other one is modulated, producing synergistic functions. However, although compounds with proton-coupled electron transfer have been synthesized, crystalline molecular compounds that exhibit proton-transfer-coupled spin-transition (PCST) behavior have not been reported. Here, we report the first example of a PCST Fe(II) complex, wherein the proton lies on the N of hydrazone and pyridine moieties in the ligand at high-spin and low-spin Fe(II), respectively. When the Fe(II) complex is irradiated with light, intramolecular proton transfer occurs from pyridine to hydrazone in conjunction with the photoinduced spin transition via the PCST mechanism. Because the light-induced excited high-spin state is trapped at low temperatures in the Fe(II) complex-a phenomenon known as the light-induced excited-spin-state trapping effect-the light-induced proton-transfer state, wherein the proton lies on the N of hydrazone, is also trapped as a metastable state. The proton transfer was accomplished within 50 ps at 190 K. The bistable nature of the proton position, where the position can be switched by light irradiation, is useful for modulating proton-based functionalities in molecular devices.
Collapse
Affiliation(s)
- Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Yuta Hori
- Institute for Materials Chemistry and Engineering & IRCCS , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan.,Center for Computational Sciences , University of Tsukuba , Tsukuba 305-8577 , Japan
| | - Hiroyasu Sato
- Rigaku Corporation , 3-9-12 Matsubaracho , Akishima , Tokyo 196-8666 , Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Atsushi Okazawa
- Department of Basic Science, Graduation School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku , Tokyo 153-8902 , Japan
| | - Norimichi Kojima
- Toyota Physical and Chemical Research Institute , Yokomichi, Nagakute , Aichi 480-1192 , Japan
| | - Takashi Yamamoto
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama , Kanagawa 223-8522 , Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Advanced Science and Technology , Kumamoto University , 2-39-1 Kurokami, Chuo-ku , Kumamoto 860-8555 , Japan
| | - Shinya Hayami
- Department of Chemistry, Faculty of Advanced Science and Technology , Kumamoto University , 2-39-1 Kurokami, Chuo-ku , Kumamoto 860-8555 , Japan.,Institute of Pulsed Power Science (IPPS) , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Yusuke Horie
- Graduate School of Science and Engineering , Aoyama Gakuin University , 5-10-1 Fuchinobe, Chuo-ku , Sagamihara , Kanagawa 252-5258 , Japan
| | - Hajime Okajima
- Graduate School of Science and Engineering , Aoyama Gakuin University , 5-10-1 Fuchinobe, Chuo-ku , Sagamihara , Kanagawa 252-5258 , Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering , Aoyama Gakuin University , 5-10-1 Fuchinobe, Chuo-ku , Sagamihara , Kanagawa 252-5258 , Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering & IRCCS , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering & IRCCS , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| |
Collapse
|
67
|
Shi T, Xu Y, Zou YJ, Wang ZX. Synthesis, structure and magnetic properties of copper(ii) azide. Dalton Trans 2019; 48:11186-11190. [PMID: 31273361 DOI: 10.1039/c9dt01450k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel azide-bridged copper compound without an auxiliary ligand has been synthesized and characterized by single-crystal diffraction analysis. The compound consists of 1D double chains with end-on (EO) azide bridges. Furthermore, the neighboring chains are connected by weak coordination bonds, which leads to the formation of a 3D architecture. Low-temperature magnetic measurements reveal that antiferromagnetic interactions are dominant, with concomitant spin-canted antiferromagnetism.
Collapse
Affiliation(s)
- Taqing Shi
- School of Pharmacy, Guangdong Medical University, Dongguan 523800, People's Republic of China
| | - Ye Xu
- Department of Chemistry, Centre for Supramolecular Chemistry and Catalysis, Innovative Drug Research Centre, Shanghai University, Shanghai 200444, People's Republic of China.
| | - Ya-Jing Zou
- Department of Chemistry, Centre for Supramolecular Chemistry and Catalysis, Innovative Drug Research Centre, Shanghai University, Shanghai 200444, People's Republic of China.
| | - Zhao-Xi Wang
- Department of Chemistry, Centre for Supramolecular Chemistry and Catalysis, Innovative Drug Research Centre, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
68
|
Benaicha B, Van Do K, Yangui A, Pittala N, Lusson A, Sy M, Bouchez G, Fourati H, Gómez-García CJ, Triki S, Boukheddaden K. Interplay between spin-crossover and luminescence in a multifunctional single crystal iron(ii) complex: towards a new generation of molecular sensors. Chem Sci 2019; 10:6791-6798. [PMID: 31391900 PMCID: PMC6640196 DOI: 10.1039/c9sc02331c] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 11/21/2022] Open
Abstract
We present a new example of a mononuclear iron(ii) complex exhibiting a correlated spin-crossover (SCO) transition and strong fluorescence, whose coordination sphere is saturated, for the first time, by six phosphorescent ligands. The interplay between SCO and light emission properties in the thermal region of the spin transition was investigated by means of magnetic, fluorescence, optical absorption and optical microscopy measurements on a single crystal. Overall, the results show an excellent correlation between fluorescence and magnetic data of the present gradual transition, indicating an extreme sensitivity of the optical activity of the ligand to the spin state of the active iron(ii) ions. These results open the way for conceiving new prototypes of pressure and temperature sensors based on this synergy between SCO and luminescence properties. In particular, the fact that cooperative SCO material is not a prerequisite for obtaining such synergetic effects, is useful for the design of thin films or nanoparticles, in which the cooperativity is reduced, for appropriate implementation in nanosized devices to enhance the sensing properties at the nanoscale.
Collapse
Affiliation(s)
- Bouabdellah Benaicha
- Univ. Brest , CNRS , CEMCA , 6 Avenue Victor Le Gorgeu, C. S. 93837 , 29238 Brest Cedex 3 , France .
| | - Khanh Van Do
- Groupe d'Etude de la Matière Condensée , CNRS UMR8635 , Université de Versailles Saint Quentin , Université Paris-Saclay , 45 Avenue des Etats-Unis , 78035 Versailles cedex , France .
| | - Aymen Yangui
- Department of Chemistry and Biochemistry , University of Oklahoma , 101 Stephenson Parkway , Norman , OK 73019 , USA
| | - Narsimhulu Pittala
- Univ. Brest , CNRS , CEMCA , 6 Avenue Victor Le Gorgeu, C. S. 93837 , 29238 Brest Cedex 3 , France .
| | - Alain Lusson
- Groupe d'Etude de la Matière Condensée , CNRS UMR8635 , Université de Versailles Saint Quentin , Université Paris-Saclay , 45 Avenue des Etats-Unis , 78035 Versailles cedex , France .
| | - Mouhamadou Sy
- Groupe d'Etude de la Matière Condensée , CNRS UMR8635 , Université de Versailles Saint Quentin , Université Paris-Saclay , 45 Avenue des Etats-Unis , 78035 Versailles cedex , France .
| | - Guillaume Bouchez
- Groupe d'Etude de la Matière Condensée , CNRS UMR8635 , Université de Versailles Saint Quentin , Université Paris-Saclay , 45 Avenue des Etats-Unis , 78035 Versailles cedex , France .
| | - Houcem Fourati
- Groupe d'Etude de la Matière Condensée , CNRS UMR8635 , Université de Versailles Saint Quentin , Université Paris-Saclay , 45 Avenue des Etats-Unis , 78035 Versailles cedex , France .
| | - Carlos J Gómez-García
- Instituto de Ciencia Molecular (ICMol) , Departamento de Química Inorgánica , Universidad de Valencia , C/Catedrático José Beltrán 2, 46980 Paterna , Spain
| | - Smail Triki
- Univ. Brest , CNRS , CEMCA , 6 Avenue Victor Le Gorgeu, C. S. 93837 , 29238 Brest Cedex 3 , France .
| | - Kamel Boukheddaden
- Groupe d'Etude de la Matière Condensée , CNRS UMR8635 , Université de Versailles Saint Quentin , Université Paris-Saclay , 45 Avenue des Etats-Unis , 78035 Versailles cedex , France .
| |
Collapse
|
69
|
Halcrow MA, Capel Berdiell I, Pask CM, Kulmaczewski R. Relationship between the Molecular Structure and Switching Temperature in a Library of Spin-Crossover Molecular Materials. Inorg Chem 2019; 58:9811-9821. [PMID: 31335133 DOI: 10.1021/acs.inorgchem.9b00843] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-function relationships relating the spin-crossover (SCO) midpoint temperature (T1/2) in the solid state are surveyed for 43 members of the iron(II) dipyrazolylpyridine family of SCO compounds. The difference between T1/2 in the solid state and in solution [ΔT(latt)] is proposed as a measure of the lattice contribution to the transition temperature. Negative linear correlations between the SCO temperature and the magnitude of the rearrangement of the coordination sphere during SCO are evident among isostructural or near-isostructural subsets of compounds; that is, a larger change in the molecular structure during SCO stabilizes the high-spin state of a material. Improved correlations are often obtained when ΔT(latt), rather than the raw T1/2 value, is considered as the measure of the SCO temperature. Different lattice types show different tendencies to stabilize the high-spin or low-spin state of the molecules they contain, which correlates with the structural changes that most influence ΔT(latt) in each case. These relationships are mostly unaffected by the SCO cooperativity in the compounds or by the involvement of any crystallographic phase changes. One or two materials within each subset are outliers in some or all of these correlations, however, which, in some cases, can be attributed to small differences in their ligand geometry or unusual phase behavior during SCO. A reinvestigation of the structural chemistry of [Fe(3-bpp)2][NCS]2·nH2O [3-bpp = bis(1H-pyrazol-3-yl)pyridine; n = 0 or 2], undertaken as part of this study, is also presented.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , U.K
| | - Izar Capel Berdiell
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , U.K
| | - Christopher M Pask
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , U.K
| | - Rafal Kulmaczewski
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , U.K
| |
Collapse
|
70
|
Ge J, Chen Z, Zhang L, Liang X, Su J, Kurmoo M, Zuo J. A Two‐Dimensional Iron(II) Coordination Polymer with Synergetic Spin‐Crossover and Luminescent Properties. Angew Chem Int Ed Engl 2019; 58:8789-8793. [DOI: 10.1002/anie.201903281] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Jing‐Yuan Ge
- College of Materials and Environmental EngineeringHangzhou Dianzi University Hangzhou 310018 China
| | - Zhongyan Chen
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Xiao Liang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Jian Su
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Mohamedally Kurmoo
- Institut de Chimie de StrasbourgUniversité de Strasbourg, CNRS-UMR 7177 4 rue Blaise Pascal 67008 Strasbourg France
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|
71
|
Abstract
The spin transition of metal ions involves interconversion between electron configurations exhibiting considerably different functions and plays a substantial role in the chemical, physical, and biological fields. The photoinduced spin transition offers a promising approach to tune various physical properties with high spatial and temporal resolutions for producing smart multifunctional materials not only to explore their basic science but also to satisfy the demands of the next-generation photoswitchable-molecule-based devices. Therefore, it is attracting considerable interest to utilize photoinduced spin transition to simultaneously tune multifunctions. However, two issues are challenging in obtaining reversible and swift manipulation of functions: (1) the interconversion between different electron configurations of photoresponsive units should be reversibly switched via photoinduced spin transition; (2) effective coupling should be built between the photoresponsive and functional units to produce photoswitchable functions utilizing photoinduced spin transition. In this Account, we will review our recent advances in the usage of spin transition of metal ions as actuators for tuning the magnetic, dielectric, fluorescence, and mechanical properties, wherein the role of a photoswitchable spin transition is highlighted. We mainly focus on the study of two spin-transition categories, including spin-crossover (SCO) of one metal ion and metal-to-metal charge transfer (MMCT). Initially, we will describe a strategy for developing photoinduced reversible SCO and MMCT. The role of flexible intermolecular interactions, in particular, π···π interactions, is discussed with respect to a photoinduced reversible MMCT. Then, the SCO and MMCT units were assembled using metallocyanate building blocks to form a chain, wherein the spin states, anisotropy, and magnetic coupling interactions can be photoswitched to tune the single-chain magnet behavior. Besides magnetic properties, the photoinduced spin transition that is associated with the concomitant changing of charge distribution, bond lengths, and absorption spectra can be utilized to tune the multifunctions. Therefore, the transfer of an electron from a central cobalt site to one of the two iron sites in linear trinuclear Fe2Co compounds resulted in the transformation of a centrosymmetric nonpolar molecule into an asymmetric polar molecule, and the molecular electric dipole and dielectric properties can be reversibly switched. Moreover, the spin transition usually involved significant expansion or contraction of the coordination sphere of metal ions because of the population/depopulation of the antibonding eg orbitals. Therefore, colossal positive and negative thermal expansion behaviors were achieved in a layered compound by manipulating the spin-transition process and the rotation of the functional units, thereby providing a strategy for synthesizing phototunable nanomotors. Photoinduced spin transition can also be used to modulate the fluorescence properties by controlling the energy transfer between the fluorescent ligands and the metal sites showing SCO. Finally, we will provide a perspective and detail the remaining challenges that are associated with this research area. We believe that an increasing number of fascinating photoswitchable SCO and MMCT systems will emerge in the near future and that the materials exhibiting various properties and functions that can be manipulated using photoinduced spin transition will provide novel opportunities for the development of smart multifunctional materials and devices.
Collapse
Affiliation(s)
- Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
72
|
Ge J, Chen Z, Zhang L, Liang X, Su J, Kurmoo M, Zuo J. A Two‐Dimensional Iron(II) Coordination Polymer with Synergetic Spin‐Crossover and Luminescent Properties. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903281] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Yuan Ge
- College of Materials and Environmental EngineeringHangzhou Dianzi University Hangzhou 310018 China
| | - Zhongyan Chen
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Xiao Liang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Jian Su
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Mohamedally Kurmoo
- Institut de Chimie de StrasbourgUniversité de Strasbourg, CNRS-UMR 7177 4 rue Blaise Pascal 67008 Strasbourg France
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|
73
|
Wang Y, Ding H, Wang S, Fan C, Tu Y, Liu G, Pu S. A ratiometric and colorimetric probe for detecting Hg 2+ based on naphthalimide-rhodamine and its staining function in cell imaging. RSC Adv 2019; 9:11664-11669. [PMID: 35516999 PMCID: PMC9063400 DOI: 10.1039/c9ra01459d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
In this work, a rhodamine derivative was developed as a colorimetric and ratiometric fluorescent probe for Hg2+. It exhibited a highly sensitive fluorescence response toward Hg2+. Importantly, studies revealed that the probe could be used for ratiometric detection of Hg2+, with a low detection limit of 0.679 μM. The mechanism of Hg2+ detection using compound 1 was confirmed by ESI-MS, 1H NMR, and HPLC. Upon the addition of Hg2+, the rhodamine receptor was induced to be in the ring-opening form via an Hg2+-promoted hydrolysis of rhodamine hydrazide to rhodamine acid. In addition to Hg2+ detection, the naphthalimide-rhodamine compound was proven to be effective in cell imaging.
Collapse
Affiliation(s)
- Yuesong Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Shuai Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Yayi Tu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| |
Collapse
|
74
|
Five 2,6-Di(pyrazol-1-yl)pyridine-4-carboxylate Esters, and the Spin States of their Iron(II) Complexes. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two phenyl ester and three benzyl ester derivatives have been synthesized from 2,6-di(pyrazol-1-yl)pyridine-4-carboxylic acid and the appropriate phenyl or benzyl alcohol using N,N’-dicyclohexylcarbodiimide as the coupling reagent. Complexation of the ligands with Fe[BF4]2·6H2O in acetone yielded the corresponding [FeL2][BF4]2 complex salts. Four of the new ligands and four of the complexes have been crystallographically characterised. Particularly noteworthy are two polymorphs of [Fe(L3)2][BF4]2·2MeNO2 (L3 = 3,4-dimethoxyphenyl 2,6-di{pyrazol-1-yl}pyridine-4-carboxylate), one of which is crystallographically characterised as high-spin while the other exhibits the onset of spin-crossover above room temperature. The other complexes are similarly low-spin at low temperature but exhibit gradual spin-crossover on heating, except for an acetone solvate of [Fe(L5)2][BF4]2 (L5 = benzyl 2,6-di{pyrazol-1-yl}pyridine-4-carboxylate), which exhibits a more abrupt spin-transition at T½ = 273 K with 9 K thermal hysteresis.
Collapse
|
75
|
Chen XQ, Cai YD, Jiang W, Peng G, Fang JK, Liu JL, Tong ML, Bao X. A Multi-Stimuli-Responsive Fe(II) SCO Complex Based on an Acylhydrazone Ligand. Inorg Chem 2019; 58:999-1002. [PMID: 30618249 DOI: 10.1021/acs.inorgchem.8b02922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An Fe(II) SCO complex based on an acylhydrazone ligand with an amino functional group has been prepared. The complex is able to dissociate and regather upon protonation and deprotonation, in both solid state and solution, accompanied by spin state switching, marked change of color, and distinct solubility in water. Moreover, the complex shows distinct magnetic responses toward formaldehyde and protic and nonprotic solvents, as a result of the different affinity of the amino functional site with those chemicals.
Collapse
Affiliation(s)
- Xiu-Qin Chen
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - You-De Cai
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Wei Jiang
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Guo Peng
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Jing-Kun Fang
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Jun-Liang Liu
- School of Chemistry , Sun Yat-Sen University , 510275 Guangzhou , P. R. China
| | - Ming-Liang Tong
- School of Chemistry , Sun Yat-Sen University , 510275 Guangzhou , P. R. China
| | - Xin Bao
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| |
Collapse
|
76
|
Yuan J, Liu MJ, Wu SQ, Zhu X, Zhang N, Sato O, Kou HZ. Substituent effects on the fluorescent spin-crossover Fe(ii) complexes of rhodamine 6G hydrazones. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00111e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The magnetic properties of Fe(ii) pyridine-2-carbaldehyde rhodamine 6G hydrazone complexes are modulated by the substituents. The desolvated complex displays the correlation between the spin crossover and the fluorescence.
Collapse
Affiliation(s)
- Juan Yuan
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
- Department of Chemistry
| | - Mei-Jiao Liu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering
- Kyushu University
- 819-0395 Fukuoka
- Japan
| | - Xin Zhu
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Nan Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering
- Kyushu University
- 819-0395 Fukuoka
- Japan
| | - Hui-Zhong Kou
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
77
|
Shen FX, Pi Q, Shi L, Shao D, Li HQ, Sun YC, Wang XY. Spin crossover in hydrogen-bonded frameworks of FeII complexes with organodisulfonate anions. Dalton Trans 2019; 48:8815-8825. [DOI: 10.1039/c9dt01326a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Four spin crossover FeII complexes of hydrogen-bonded frameworks were constructed from the charge-assisted hydrogen bonds between the FeII complexes and organodisulfonate anions.
Collapse
Affiliation(s)
- Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Qian Pi
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Le Shi
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Hong-Qing Li
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
78
|
Senthil Kumar K, Bayeh Y, Gebretsadik T, Elemo F, Gebrezgiabher M, Thomas M, Ruben M. Spin-crossover in iron(ii)-Schiff base complexes. Dalton Trans 2019; 48:15321-15337. [DOI: 10.1039/c9dt02085c] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A collective overview of iron(ii)-Schiff base complexes, showing abrupt and hysteretic SCO suitable for device applications, and the structure–property relationships governing the SCO of the complexes in the solid-state is presented.
Collapse
Affiliation(s)
- Kuppusamy Senthil Kumar
- Institut de Physique et de Chimie des Matériaux-Université de Strasbourg23
- F-67034 Strasbourg
- France
| | - Yosef Bayeh
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Tesfay Gebretsadik
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Fikre Elemo
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Mamo Gebrezgiabher
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Madhu Thomas
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Mario Ruben
- Institut de Physique et de Chimie des Matériaux-Université de Strasbourg23
- F-67034 Strasbourg
- France
- Institute of Nanotechnology
- Karlsruhe Institute of Technology
| |
Collapse
|
79
|
Chen XQ, Cai YD, Ye YS, Tong ML, Bao X. Investigation of SCO property–structural relationships in a family of mononuclear Fe(ii) complexes. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00577c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Six complexes with the formula [FeL(NCE)2] (E = S, Se, BH3) have been reported. A survey of the magneto-structural relationship has been conducted.
Collapse
Affiliation(s)
- Xiu-Qin Chen
- School of Chemical Engineering
- Nanjing University of Science and Technology
- 210094 Nanjing
- P. R. China
| | - You-De Cai
- School of Chemical Engineering
- Nanjing University of Science and Technology
- 210094 Nanjing
- P. R. China
| | - Yi-Shan Ye
- School of Chemical Engineering
- Nanjing University of Science and Technology
- 210094 Nanjing
- P. R. China
| | - Ming-Liang Tong
- School of Chemistry
- Sun Yat-Sen University
- 510275 Guangzhou
- P. R. China
| | - Xin Bao
- School of Chemical Engineering
- Nanjing University of Science and Technology
- 210094 Nanjing
- P. R. China
- State Key Laboratory of Coordination Chemistry
| |
Collapse
|
80
|
Yuan J, Wang X, Zhang N, Liu MJ, Kou HZ. Two new cobalt(II) rhodamine 6G hydrazone complexes: structure, fluorescence and magnetism. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1622-1628. [PMID: 30516145 DOI: 10.1107/s2053229618015541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022]
Abstract
Two new CoII complexes, namely bis{N-[(6-bromopyridin-2-yl)methylidene]-2-[6-ethylamino-3-(ethyliminiumyl)-2,7-dimethyl-3H-xanthen-9-yl]benzene-1-carbohydrazonate}cobalt(II) bis(perchlorate)-dichloromethane-methanol (1/1/2), [Co(C32H30BrN5O2)2](ClO4)2·CH2Cl2·2CH3OH or [CoII(L)2](ClO4)2·CH2Cl2·2CH3OH, (1), and the bis(tetrafluoridoborate) salt, [Co(C32H30BrN5O2)2](BF4)2·CH2Cl2·2CH3OH or [CoII(L)2](BF4)2·CH2Cl2·2CH3OH, (2) (L is commonly 6-bromopyridine-2-carbaldehyde rhodamine 6G hydrazone), have been successfully constructed and characterized. The crystal structure analysis revealed that complexes (1) and (2) are mononuclear and have a CoIIN4O2 distorted octahedral structure. The large π-conjugated xanthene moiety of the L ligand causes strong intermolecular π-π stacking interactions, yielding a supramolecular one-dimensional chain. Complexes (1) and (2) display an obvious fluorescence emission near 560 nm in the solid state. Magnetic investigations show that both (1) and (2) are paramagnetic, dominated by the structural distortion and spin-orbit coupling of CoII.
Collapse
Affiliation(s)
- Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, People's Republic of China
| | - Xia Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, People's Republic of China
| | - Nan Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mei Jiao Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hui Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|