51
|
Chen X, Sun T, Wang F. Lanthanide-Based Luminescent Materials for Waveguide and Lasing. Chem Asian J 2019; 15:21-33. [PMID: 31746524 DOI: 10.1002/asia.201901447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Indexed: 11/10/2022]
Abstract
Microlasers and waveguides have wide applications in the fields of photonics and optoelectronics. Lanthanide-doped luminescent materials featuring large Stokes/anti-Stokes shift, long excited-state lifetime as well as sharp emission bandwidth are excellent optical components for photonic applications. In the past few years, great progress has been made in the design and fabrication of lanthanide-based waveguides and lasers at the micrometer length scale. Waveguide structures and microcavities can be fabricated from lanthanide-doped amorphous materials through top-down process. Alternatively, lanthanide-doped organic compounds featuring large absorption cross-section can self-assemble into low-dimensional structures of well-defined size and morphology. In recent years, lanthanide-doped crystalline structures displaying highly tunable excitation and emission properties have emerged as promising waveguide and lasing materials, which substantially extends the range of lasing wavelength. In this minireview, we discuss recent advances in lanthanide-based luminescent materials that are designed for waveguide and lasing applications. We also attempt to highlight challenging problems of these materials that obstacle further development of this field.
Collapse
Affiliation(s)
- Xian Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianying Sun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
52
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
53
|
Liu X, Ji Q, Hu Q, Li C, Chen M, Sun J, Wang Y, Sun Q, Geng B. Dual-Mode Long-Lived Luminescence of Mn 2+-Doped Nanoparticles for Multilevel Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30146-30153. [PMID: 31361956 DOI: 10.1021/acsami.9b09612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Luminescent nanoparticles with dual-mode long-lived luminescence are of great importance for their attractive applications in biosensing, bioimaging, and data encoding. Herein, we report the realization of up- and downconversion emission of Mn2+ dopants in multilayer nanoparticles of NaGdF4:Yb/Tm@NaGdF4:Ce/Mn@NaYF4 upon excitation at 980 and 254 nm, respectively. The dual-mode emission of the Mn2+ dopants at 531 nm have a long-lived lifetime up to ∼30 ms as a result of the spin-forbidden optical transition of Mn2+ within the 3d5 configuration. After ceasing steady excitation at the two wavelengths, the long-lived feature of Mn2+ luminescence allows a longer persistent time than lanthanide emissions, thereby enabling the ease of data decoding by a cell phone camera under a burst mode. The long-lived green upconversion emission also permits the generation of a long green tail emission upon dynamic excitation at 980 nm. These attributes make the as-prepared Mn2+-doped multilayer nanoparticles particularly attractive for multilevel anticounterfeiting.
Collapse
Affiliation(s)
- Xiaowang Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Qiang Ji
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Qiyan Hu
- School of Pharmacy , Wannan Medical College , Wuhu 241002 , P. R. China
| | - Chen Li
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Meiling Chen
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Jian Sun
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Yu Wang
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Qiang Sun
- Center for Functional Materials , NUS (Suzhou) Research Institute , Suzhou , Jiangsu 215123 , P. R. China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| |
Collapse
|
54
|
Skripka A, Morinvil A, Matulionyte M, Cheng T, Vetrone F. Advancing neodymium single-band nanothermometry. NANOSCALE 2019; 11:11322-11330. [PMID: 31165841 DOI: 10.1039/c9nr02801c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Near-infrared (NIR) emitting contrast agents with integrated optical temperature sensing are highly desirable for a variety of biomedical applications, particularly when subcutaneous target visualization and measurement of its thermodynamic properties are required. To that end, the possibility of using Nd3+ doped LiLuF4 rare-earth nanoparticles (RENPs) as NIR photoluminescent nanothermometers is explored. These RENPs are relatively small, have narrow size distribution, and can easily be core/shell engineered - all combined, these features meet the requirements of biologically relevant and multifunctional nanoprobes. The LiLuF4 host allows to observe the fine Stark structure of the 4F3/2→4I9/2, 4I11/2, and 4I13/2 optical transitions, each of which can then be used for single-band NIR nanothermometry. The thermometric parameter defined for the most intense Nd3+ emission around 1050 nm, shows high temperature sensitivity (∼0.49% °C-1), and low temperature uncertainty (0.3 °C) as compared to the thermometric parameters defined for the 880 and 1320 nm Nd3+ emissions. Additionally, transient temperature measurements through tissue show that these RENPs can be used to assess fast temperature changes at a tissue depth of 3 mm, while slower temperature changes can be measured at even greater depths. Nd3+ doped LiLuF4 RENPs represent a significant improvement for Nd3+ based single-band photoluminescence nanothermometry, with the possibility of its integration within more sophisticated multifunctional theranostic nanostructures.
Collapse
Affiliation(s)
- A Skripka
- Institute National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| | - A Morinvil
- Institute National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| | - M Matulionyte
- Institute National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| | - T Cheng
- Institute National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| | - F Vetrone
- Institute National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| |
Collapse
|
55
|
Fischer S, Mehlenbacher RD, Lay A, Siefe C, Alivisatos AP, Dionne JA. Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion. NANO LETTERS 2019; 19:3878-3885. [PMID: 31056918 PMCID: PMC6613352 DOI: 10.1021/acs.nanolett.9b01057] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The optical efficiency of lanthanide-based upconversion is intricately related to the crystalline host lattice. Different crystal fields interacting with the electron clouds of the lanthanides can significantly affect transition probabilities between the energy levels. Here, we investigate six distinct alkaline-earth rare-earth fluoride host materials (M1- xLn xF2+x, MLnF) for infrared-to-visible upconversion, focusing on nanoparticles of CaYF, CaLuF, SrYF, SrLuF, BaYF, and BaLuF doped with Yb3+ and Er3+. We first synthesize ∼5 nm upconverting cores of each material via a thermal decomposition method. Then we introduce a dropwise hot-injection method to grow optically inert MYF shell layers around the active cores. Five distinct shell thicknesses are considered for each host material, resulting in 36 unique, monodisperse upconverting nanomaterials each with size below ∼15 nm. The upconversion quantum yield (UCQY) is measured for all core/shell nanoparticles as a function of shell thickness and compared with hexagonal (β-phase) NaGdF4, a traditional upconverting host lattice. While the UCQY of core nanoparticles is below the detection limit (<10-5%), it increases by 4 to 5 orders of magnitude as the shell thickness approaches 4-6 nm. The UCQY values of our cubic MLnF nanoparticles meet or exceed the β-NaGdF4 reference sample. Across all core/shell samples, SrLuF nanoparticles are the most efficient, with UCQY values of 0.53% at 80 W/cm2 for cubic nanoparticles with ∼11 nm edge length. This efficiency is 5 times higher than our β-NaGdF4 reference material with comparable core size and shell thickness. Our work demonstrates efficient and bright upconversion in ultrasmall alkaline-earth-based nanoparticles, with applications spanning biological imaging and optical sensing.
Collapse
Affiliation(s)
- Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
- Corresponding Author:,
| | - Randy D. Mehlenbacher
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | - Alice Lay
- Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, CA 94305, USA
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | - A. Paul Alivisatos
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, USA
- Kavli Energy NanoScience Institute, Berkeley, California 94720, USA
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
- Corresponding Author:,
| |
Collapse
|
56
|
Rare Earth Hydroxide as a Precursor for Controlled Fabrication of Uniform β-NaYF₄ Nanoparticles: A Novel, Low Cost, and Facile Method. Molecules 2019; 24:molecules24020357. [PMID: 30669489 PMCID: PMC6359501 DOI: 10.3390/molecules24020357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/04/2023] Open
Abstract
In recent years, rare earth doped upconversion nanocrystals have been widely used in different fields owing to their unique merits. Although rare earth chlorides and trifluoroacetates are commonly used precursors for the synthesis of nanocrystals, they have certain disadvantages. For example, rare earth chlorides are expensive and rare earth trifluoroacetates produce toxic gases during the reaction. To overcome these drawbacks, we use the less expensive rare earth hydroxide as a precursor to synthesize β-NaYF4 nanoparticles with multiform shapes and sizes. Small-sized nanocrystals (15 nm) can be obtained by precisely controlling the synthesis conditions. Compared with the previous methods, the current method is more facile and has lower cost. In addition, the defects of the nanocrystal surface are reduced through constructing core–shell structures, resulting in enhanced upconversion luminescence intensity.
Collapse
|