51
|
Valcarce D, Cartón-García F, Herráez M, Robles V. Effect of cryopreservation on human sperm messenger RNAs crucial for fertilization and early embryo development. Cryobiology 2013; 67:84-90. [DOI: 10.1016/j.cryobiol.2013.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/03/2013] [Accepted: 05/13/2013] [Indexed: 12/23/2022]
|
52
|
Cryopreservation Causes Genetic and Epigenetic Changes in Zebrafish Genital Ridges. PLoS One 2013; 8:e67614. [PMID: 23805321 PMCID: PMC3689738 DOI: 10.1371/journal.pone.0067614] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/21/2013] [Indexed: 12/17/2022] Open
Abstract
Cryopreservation is an important tool routinely employed in Assisted Reproduction Technologies (ARTs) and germplasm banking. For several years, the assessment of global DNA fragmentation seemed to be enough to ensure the integrity of genetic material. However, cryopreservation can produce molecular alterations in key genes and transcripts undetectable by traditional assays, such modifications could interfere with normal embryo development. We used zebrafish as a model to study the effect of cryopreservation on key transcripts and genes. We employed an optimized cryopreservation protocol for genital ridges (GRs) containing primordial germ cells (PGCs) considered one of the best cell sources for gene banking. Our results indicated that cryopreservation produced a decrease in most of the zebrafish studied transcripts (cxcr4b, pou5f1, vasa and sox2) and upregulation of heat shock proteins (hsp70, hsp90). The observed downregulation could not always be explained by promoter hypermethylation (only the vasa promoter underwent clear hypermethylation). To corroborate this, we used human spermatozoa (transcriptionally inactive cells) obtaining a reduction in some transcripts (eIF2S1, and LHCGR). Our results also demonstrated that this effect was caused by freezing/thawing rather than exposure to cryoprotectants (CPAs). Finally, we employed real-time PCR (qPCR) technology to quantify the number of lesions produced by cryopreservation in the studied zebrafish genes, observing very different vulnerability to damage among them. All these data suggest that molecular alterations caused by cryopreservation should be studied in detail in order to ensure the total safety of the technique.
Collapse
|
53
|
de Haro M, Al-Ramahi I, Jones KR, Holth JK, Timchenko LT, Botas J. Smaug/SAMD4A restores translational activity of CUGBP1 and suppresses CUG-induced myopathy. PLoS Genet 2013; 9:e1003445. [PMID: 23637619 PMCID: PMC3630084 DOI: 10.1371/journal.pgen.1003445] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
We report the identification and characterization of a previously unknown suppressor of myopathy caused by expansion of CUG repeats, the mutation that triggers Myotonic Dystrophy Type 1 (DM1). We screened a collection of genes encoding RNA-binding proteins as candidates to modify DM1 pathogenesis using a well established Drosophila model of the disease. The screen revealed smaug as a powerful modulator of CUG-induced toxicity. Increasing smaug levels prevents muscle wasting and restores muscle function, while reducing its function exacerbates CUG-induced phenotypes. Using human myoblasts, we show physical interactions between human Smaug (SMAUG1/SMAD4A) and CUGBP1. Increased levels of SMAUG1 correct the abnormally high nuclear accumulation of CUGBP1 in myoblasts from DM1 patients. In addition, augmenting SMAUG1 levels leads to a reduction of inactive CUGBP1-eIF2α translational complexes and to a correction of translation of MRG15, a downstream target of CUGBP1. Therefore, Smaug suppresses CUG-mediated muscle wasting at least in part via restoration of translational activity of CUGBP1.
Collapse
Affiliation(s)
- Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
| | - Karlie R. Jones
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jerrah K. Holth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lubov T. Timchenko
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
54
|
Pinder BD, Smibert CA. Smaug: an unexpected journey into the mechanisms of post-transcriptional regulation. Fly (Austin) 2013; 7:142-5. [PMID: 23519205 DOI: 10.4161/fly.24336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Drosophila Smaug is a sequence-specific RNA-binding protein that can repress the translation and induce the degradation of target mRNAs in the early Drosophila embryo. Our recent work has uncovered a new mechanism of Smaug-mediated translational repression whereby it interacts with and recruits the Argonaute 1 (Ago1) protein to an mRNA. Argonaute proteins are typically recruited to mRNAs through an associated small RNA, such as a microRNA (miRNA). Surprisingly, we found that Smaug is able to recruit Ago1 to an mRNA in a miRNA-independent manner. This work suggests that other RNA-binding proteins are likely to employ a similar mechanism of miRNA-independent Ago recruitment to control mRNA expression. Our work also adds yet another mechanism to the list that Smaug can use to regulate its targets and here we discuss some of the issues that are raised by Smaug's multi-functional nature.
Collapse
Affiliation(s)
- Benjamin D Pinder
- Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | | |
Collapse
|
55
|
Telley IA, Gáspár I, Ephrussi A, Surrey T. A single Drosophila embryo extract for the study of mitosis ex vivo. Nat Protoc 2013; 8:310-24. [PMID: 23329004 DOI: 10.1038/nprot.2013.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spindle assembly and chromosome segregation rely on a complex interplay of biochemical and mechanical processes. Analysis of this interplay requires precise manipulation of endogenous cellular components and high-resolution visualization. Here we provide a protocol for generating an extract from individual Drosophila syncytial embryos that supports repeated mitotic nuclear divisions with native characteristics. In contrast to the large-scale, metaphase-arrested Xenopus egg extract system, this assay enables the serial generation of extracts from single embryos of a genetically tractable organism, and each extract contains dozens of autonomously dividing nuclei that can be prepared and imaged within 60-90 min after embryo collection. We describe the microscopy setup and micropipette production that facilitate single-embryo manipulation, the preparation of embryos and the steps for making functional extracts that allow time-lapse microscopy of mitotic divisions ex vivo. The assay enables a unique combination of genetic, biochemical, optical and mechanical manipulations of the mitotic machinery.
Collapse
Affiliation(s)
- Ivo A Telley
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | | | | | | |
Collapse
|
56
|
Wahle E, Winkler GS. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:561-70. [PMID: 23337855 DOI: 10.1016/j.bbagrm.2013.01.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022]
Abstract
Shortening and removal of the 3' poly(A) tail of mature mRNA by poly(A)-specific 3' exonucleases (deadenylases) is the initial and often rate-limiting step in mRNA degradation. The majority of cytoplasmic deadenylase activity is associated with the Ccr4-Not and Pan2-Pan3 complexes. Two distinct catalytic subunits, Caf1/Pop2 and Ccr4, are associated with the Ccr4-Not complex, whereas the Pan2 enzymatic subunit forms a stable complex with Pan3. In this review, we discuss the composition and activity of these two deadenylases. In addition, we comment on generic and specific mechanisms of recruitment of Ccr4-Not and Pan2-Pan3 to mRNAs. Finally, we discuss specialised and redundant functions of the deadenylases and review the importance of Ccr4-Not subunits in the regulation of physiological processes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | |
Collapse
|
57
|
Barckmann B, Simonelig M. Control of maternal mRNA stability in germ cells and early embryos. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:714-24. [PMID: 23298642 DOI: 10.1016/j.bbagrm.2012.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
mRNA regulation is essential in germ cells and early embryos. In particular, late oogenesis and early embryogenesis occur in the absence of transcription and rely on maternal mRNAs stored in oocytes. These maternal mRNAs subsequently undergo a general decay in embryos during the maternal-to-zygotic transition in which the control of development switches from the maternal to the zygotic genome. Regulation of mRNA stability thus plays a key role during these early stages of development and is tightly interconnected with translational regulation and mRNA localization. A common mechanism in these three types of regulation implicates variations in mRNA poly(A) tail length. Recent advances in the control of mRNA stability include the widespread and essential role of regulated deadenylation in early developmental processes, as well as the mechanisms regulating mRNA stability which involve RNA binding proteins, microRNAs and interplay between the two. Also emerging are the roles that other classes of small non-coding RNAs, endo-siRNAs and piRNAs play in the control of mRNA decay, including connections between the regulation of transposable elements and cellular mRNA regulation through the piRNA pathway. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Bridlin Barckmann
- mRNA Regulation and Development, Institute of Human Genetics, Montpellier Cedex 5, France
| | | |
Collapse
|
58
|
Buschmann J, Moritz B, Jeske M, Lilie H, Schierhorn A, Wahle E. Identification of Drosophila and human 7-methyl GMP-specific nucleotidases. J Biol Chem 2012; 288:2441-51. [PMID: 23223233 DOI: 10.1074/jbc.m112.426700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Turnover of mRNA releases, in addition to the four regular nucleoside monophosphates, the methylated cap nucleotide in the form of 7-methylguanosine monophosphate (m(7)GMP) or diphosphate (m(7)GDP). The existence of pathways to eliminate the modified nucleotide seems likely, as its incorporation into nucleic acids is undesirable. Here we describe a novel 5' nucleotidase from Drosophila that cleaves m(7)GMP to 7-methylguanosine and inorganic phosphate. The enzyme, encoded by the predicted gene CG3362, also efficiently dephosphorylates CMP, although with lower apparent affinity; UMP and the purine nucleotides are poor substrates. The enzyme is inhibited by elevated concentrations of AMP and also cleaves m(7)GDP to the nucleoside and two inorganic phosphates, albeit less efficiently. CG3362 has equivalent sequence similarity to two human enzymes, cytosolic nucleotidase III (cNIII) and the previously uncharacterized cytosolic nucleotidase III-like (cNIII-like). We show that cNIII-like also displays 5' nucleotidase activity with a high affinity for m(7)GMP. CMP is a slightly better substrate but again with a higher K(m). The activity of cNIII-like is stimulated by phosphate. In contrast to cNIII-like, cNIII and human cytosolic nucleotidase II do not accept m(7)GMP as a substrate. We suggest that the m(7)G-specific nucleotidases protect cells against undesired salvage of m(7)GMP and its incorporation into nucleic acids.
Collapse
Affiliation(s)
- Juliane Buschmann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | | | | | | | | | | |
Collapse
|
59
|
microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep 2012. [PMID: 23184089 DOI: 10.1038/embor.2012.192] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.
Collapse
|
60
|
Pascual ML, Luchelli L, Habif M, Boccaccio GL. Synaptic activity regulated mRNA-silencing foci for the fine tuning of local protein synthesis at the synapse. Commun Integr Biol 2012; 5:388-92. [PMID: 23060966 PMCID: PMC3460847 DOI: 10.4161/cib.20257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The regulated synthesis of specific proteins at the synapse is important for neuron plasticity, and several localized mRNAs are translated upon specific stimulus. Repression of mRNA translation is linked to the formation of mRNA-silencing foci, including Processing Bodies (PBs) and Stress Granules (SGs), which are macromolecular aggregates that harbor silenced messengers and associated proteins. In a recent work, we identified a kind of mRNA-silencing foci unique to neurons, termed S-foci, that contain the post-transcriptional regulator Smaug1/SAMD4. Upon specific synaptic stimulation, the S-foci dissolve and release mRNAs to allow their translation, paralleling the cycling of mRNAs between PBs and polysomes in other cellular contexts. Smaug 1 and other proteins involved in mRNA regulation in neurons contain aggregation domains distinct from their RNA binding motifs, and we speculate that self-aggregation helps silencing and transport. In addition to S-foci and PBs, other foci formed by distinct RNA binding proteins, such as TDP-43 and FMRP among others, respond dynamically to specific synaptic stimuli. We propose the collective name of synaptic activity-regulated mRNA silencing (SyAS) foci for these RNP aggregates that selectively respond to distinct stimulation patterns and contribute to the fine-tuning of local protein synthesis at the synapse.
Collapse
Affiliation(s)
- Malena Lucia Pascual
- Instituto Leloir; IIBBA-CONICET and Facultad de Ciencias Exactas y Naturales; University of Buenos Aires; Buenos Aires, Argentina
| | | | | | | |
Collapse
|
61
|
Lasko P. mRNA localization and translational control in Drosophila oogenesis. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012294. [PMID: 22865893 DOI: 10.1101/cshperspect.a012294] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Localization of an mRNA species to a particular subcellular region can complement translational control mechanisms to produce a restricted spatial distribution of the protein it encodes. mRNA localization has been studied most in asymmetric cells such as budding yeast, early embryos, and neurons, but the process is likely to be more widespread. This article reviews the current state of knowledge about the mechanisms of mRNA localization and its functions in early embryonic development, focusing on Drosophila where the relevant knowledge is most advanced. Links between mRNA localization and translational control mechanisms also are examined.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, Bellini Life Sciences Building, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
62
|
Kong J, Lasko P. Translational control in cellular and developmental processes. Nat Rev Genet 2012; 13:383-94. [PMID: 22568971 DOI: 10.1038/nrg3184] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence indicates that translational control of specific mRNAs contributes importantly to genetic regulation across the breadth of cellular and developmental processes. Synthesis of protein from a specific mRNA can be controlled by RNA-binding proteins at the level of translational initiation and elongation, and translational control is also sometimes coupled to mRNA localization mechanisms. Recent discoveries from invertebrate and vertebrate systems have uncovered novel modes of translational regulation, have provided new insights into how specific regulators target the general translational machinery and have identified several new links between translational control and human disease.
Collapse
Affiliation(s)
- Jian Kong
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0T5, Canada
| | | |
Collapse
|
63
|
Gebauer F, Preiss T, Hentze MW. From cis-regulatory elements to complex RNPs and back. Cold Spring Harb Perspect Biol 2012; 4:a012245. [PMID: 22751153 DOI: 10.1101/cshperspect.a012245] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Messenger RNAs (mRNAs), the templates for translation, have evolved to harbor abundant cis-acting sequences that affect their posttranscriptional fates. These elements are frequently located in the untranslated regions and serve as binding sites for trans-acting factors, RNA-binding proteins, and/or small non-coding RNAs. This article provides a systematic synopsis of cis-acting elements, trans-acting factors, and the mechanisms by which they affect translation. It also highlights recent technical advances that have ushered in the era of transcriptome-wide studies of the ribonucleoprotein complexes formed by mRNAs and their trans-acting factors.
Collapse
Affiliation(s)
- Fátima Gebauer
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003-Barcelona, Spain.
| | | | | |
Collapse
|
64
|
Rajyaguru P, She M, Parker R. Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol Cell 2012; 45:244-54. [PMID: 22284680 DOI: 10.1016/j.molcel.2011.11.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/25/2011] [Accepted: 11/04/2011] [Indexed: 12/30/2022]
Abstract
The formation of mRNPs controls the interaction of the translation and degradation machinery with individual mRNAs. The yeast Scd6 protein and its orthologs regulate translation and mRNA degradation in yeast, C. elegans, D. melanogaster, and humans by an unknown mechanism. We demonstrate that Scd6 represses translation by binding the eIF4G subunit of eIF4F in a manner dependent on its RGG domain, thereby forming an mRNP repressed for translation initiation. Strikingly, several other RGG domain-containing proteins in yeast copurify with eIF4E/G and we demonstrate that two such proteins, Npl3 and Sbp1, also directly bind eIF4G and repress translation in a manner dependent on their RGG motifs. These observations identify the mechanism of Scd6 function through its RGG motif and indicate that eIF4G plays an important role as a scaffolding protein for the recruitment of translation repressors.
Collapse
Affiliation(s)
- Purusharth Rajyaguru
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
65
|
Baez MV, Luchelli L, Maschi D, Habif M, Pascual M, Thomas MG, Boccaccio GL. Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation. ACTA ACUST UNITED AC 2012; 195:1141-57. [PMID: 22201125 PMCID: PMC3246892 DOI: 10.1083/jcb.201108159] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-foci, the first reported mRNA-silencing foci specific to neurons, may control local mRNA translation in response to NMDA receptor stimulation and synaptic plasticity. Mammalian Smaug1/Samd4A is a translational repressor. Here we show that Smaug1 forms mRNA-silencing foci located at postsynapses of hippocampal neurons. These structures, which we have named S-foci, are distinct from P-bodies, stress granules, or other neuronal RNA granules hitherto described, and are the first described mRNA-silencing foci specific to neurons. RNA binding was not required for aggregation, which indicates that S-foci formation is not a consequence of mRNA silencing. N-methyl-d-aspartic acid (NMDA) receptor stimulation provoked a rapid and reversible disassembly of S-foci, transiently releasing transcripts (the CaMKIIα mRNA among others) to allow their translation. Simultaneously, NMDA triggered global translational silencing, which suggests the specific activation of Smaug1-repressed transcripts. Smaug1 is expressed during synaptogenesis, and Smaug1 knockdown affected the number and size of synapses, and also provoked an impaired response to repetitive depolarizing stimuli, as indicated by a reduced induction of Arc/Arg3.1. Our results suggest that S-foci control local translation, specifically responding to NMDA receptor stimulation and affecting synaptic plasticity.
Collapse
|
66
|
Abstract
"Germ granules" are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
67
|
Igreja C, Izaurralde E. CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes Dev 2011; 25:1955-67. [PMID: 21937713 DOI: 10.1101/gad.17136311] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CUP is an eIF4E-binding protein (4E-BP) that represses the expression of specific maternal mRNAs prior to their posterior localization. Here, we show that CUP employs multiple mechanisms to repress the expression of target mRNAs. In addition to inducing translational repression, CUP maintains mRNA targets in a repressed state by promoting their deadenylation and protects deadenylated mRNAs from further degradation. Translational repression and deadenylation are independent of eIF4E binding and require both the middle and C-terminal regions of CUP, which collectively we termed the effector domain. This domain associates with the deadenylase complex CAF1-CCR4-NOT and decapping activators. Accordingly, in isolation, the effector domain is a potent trigger of mRNA degradation and promotes deadenylation, decapping and decay. However, in the context of the full-length CUP protein, the decapping and decay mediated by the effector domain are inhibited, and target mRNAs are maintained in a deadenylated, repressed form. Remarkably, an N-terminal regulatory domain containing a noncanonical eIF4E-binding motif is required to protect CUP-associated mRNAs from decapping and further degradation, suggesting that this domain counteracts the activity of the effector domain. Our findings indicate that the mode of action of CUP is more complex than previously thought and provide mechanistic insight into the regulation of mRNA expression by 4E-BPs.
Collapse
Affiliation(s)
- Catia Igreja
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
68
|
Walser CB, Lipshitz HD. Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev 2011; 21:431-43. [PMID: 21497081 DOI: 10.1016/j.gde.2011.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 02/04/2023]
Abstract
In all animals, a key event in the transition from maternal control of development to control by products of the zygotic genome is the elimination of a significant fraction of the mRNAs loaded into the egg by the mother. Clearance of these maternal mRNAs is accomplished by two activities: the first is maternally encoded while the second requires zygotic transcription. Recent advances include identification of RNA-binding proteins that function as specificity factors to direct the maternal degradation machinery to its target mRNAs; small RNAs-most notably microRNAs-that function as components of the zygotically encoded activity; signaling pathways that trigger production and/or activation of the clearance mechanism in early embryos; and mechanisms for spatial control of transcript clearance.
Collapse
Affiliation(s)
- Claudia B Walser
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|