51
|
Riquelme S, Varas M, Valenzuela C, Velozo P, Chahin N, Aguilera P, Sabag A, Labra B, Álvarez SA, Chávez FP, Santiviago CA. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum. Front Microbiol 2016; 7:1305. [PMID: 27602025 PMCID: PMC4993766 DOI: 10.3389/fmicb.2016.01305] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host-pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected during infection.
Collapse
Affiliation(s)
- Sebastián Riquelme
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Macarena Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Camila Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Paula Velozo
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Nicolás Chahin
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Paulina Aguilera
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Andrea Sabag
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Bayron Labra
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Sergio A. Álvarez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| |
Collapse
|
52
|
Parameterising a public good: how experiments on predation can be used to predict cheat frequencies. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
53
|
|
54
|
Klapper M, Götze S, Barnett R, Willing K, Stallforth P. Bacterial Alkaloids Prevent Amoebal Predation. Angew Chem Int Ed Engl 2016; 55:8944-7. [PMID: 27294402 DOI: 10.1002/anie.201603312] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 01/20/2023]
Abstract
Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae.
Collapse
Affiliation(s)
- Martin Klapper
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany.,Junior Research Group Chemistry of Microbial Communication, Jena, Germany
| | - Sebastian Götze
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany.,Junior Research Group Chemistry of Microbial Communication, Jena, Germany
| | - Robert Barnett
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany.,Junior Research Group Chemistry of Microbial Communication, Jena, Germany
| | - Karsten Willing
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany.,Bio Pilot Plant, Jena, Germany
| | - Pierre Stallforth
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany. .,Junior Research Group Chemistry of Microbial Communication, Jena, Germany.
| |
Collapse
|
55
|
Torres-Barceló C, Hochberg ME. Evolutionary Rationale for Phages as Complements of Antibiotics. Trends Microbiol 2016; 24:249-256. [PMID: 26786863 DOI: 10.1016/j.tim.2015.12.011] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 01/21/2023]
Abstract
Antibiotic-resistant bacterial infections are a major concern to public health. Phage therapy has been proposed as a promising alternative to antibiotics, but an increasing number of studies suggest that both of these antimicrobial agents in combination are more effective in controlling pathogenic bacteria than either alone. We advocate the use of phages in combination with antibiotics and present the evolutionary basis for our claim. In addition, we identify compelling challenges for the realistic application of phage-antibiotic combined therapy.
Collapse
Affiliation(s)
- Clara Torres-Barceló
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France.
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France; Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| |
Collapse
|
56
|
Vasse M, Torres-Barceló C, Hochberg ME. Phage selection for bacterial cheats leads to population decline. Proc Biol Sci 2015; 282:20152207. [PMID: 26538598 PMCID: PMC4650167 DOI: 10.1098/rspb.2015.2207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 11/12/2022] Open
Abstract
While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies.
Collapse
Affiliation(s)
- Marie Vasse
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Clara Torres-Barceló
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
57
|
Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci U S A 2015; 112:E6028-37. [PMID: 26487679 DOI: 10.1073/pnas.1515749112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Predators feed on prey to acquire the nutrients necessary to sustain their survival, growth, and replication. In Bdellovibrio bacteriovorus, an obligate predator of Gram-negative bacteria, cell growth and replication are tied to a shift from a motile, free-living phase of search and attack to a sessile, intracellular phase of growth and replication during which a single prey cell is consumed. Engagement and sustenance of growth are achieved through the sensing of two unidentified prey-derived cues. We developed a novel ex vivo cultivation system for B. bacteriovorus composed of prey ghost cells that are recognized and invaded by the predator. By manipulating their content, we demonstrated that an early cue is located in the prey envelope and a late cue is found within the prey soluble fraction. These spatially and temporally separated cues elicit discrete and combinatory regulatory effects on gene transcription. Together, they delimit a poorly characterized transitory phase between the attack phase and the growth phase, during which the bdelloplast (the invaded prey cell) is constructed. This transitory phase constitutes a checkpoint in which the late cue presumably acts as a determinant of the prey's nutritional value before the predator commits. These regulatory adaptations to a unique bacterial lifestyle have not been reported previously.
Collapse
|
58
|
Yu L, Yan X, Ye C, Zhao H, Chen X, Hu F, Li H. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans. PLoS One 2015. [PMID: 26222828 PMCID: PMC4519269 DOI: 10.1371/journal.pone.0134401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes.
Collapse
Affiliation(s)
- Li Yu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiaomei Yan
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Chenglong Ye
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Haiyan Zhao
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
- * E-mail:
| |
Collapse
|
59
|
Abstract
Variation in the routes to social success has led to the designation of 'cheats' and 'cooperators', but new work shows that selection on non-social traits can give the illusion of social cheating in the social amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Siobhan O'Brien
- Department of Biosciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK; Department of Biology, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
60
|
Ross-Gillespie A, Dumas Z, Kümmerli R. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. J Evol Biol 2015; 28:29-39. [DOI: 10.1111/jeb.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/03/2023]
Affiliation(s)
- A. Ross-Gillespie
- Microbial Evolutionary Ecology; Institute of Plant Biology; University of Zürich; Zürich Switzerland
| | - Z. Dumas
- Environmental Microbiology; Swiss Federal Institute of Aquatic Science and Technology (EAWAG); Dübendorf Switzerland
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - R. Kümmerli
- Microbial Evolutionary Ecology; Institute of Plant Biology; University of Zürich; Zürich Switzerland
- Environmental Microbiology; Swiss Federal Institute of Aquatic Science and Technology (EAWAG); Dübendorf Switzerland
| |
Collapse
|
61
|
Wang X, Li GH, Zou CG, Ji XL, Liu T, Zhao PJ, Liang LM, Xu JP, An ZQ, Zheng X, Qin YK, Tian MQ, Xu YY, Ma YC, Yu ZF, Huang XW, Liu SQ, Niu XM, Yang JK, Huang Y, Zhang KQ. Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 2014; 5:5776. [PMID: 25514608 PMCID: PMC4275587 DOI: 10.1038/ncomms6776] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022] Open
Abstract
In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode-predatory form; this predacious form is characterized by formation of specialized cellular structures or 'traps'. The bacteria significantly promote the elimination of nematodes by A. oligospora. Disruption of genes involved in urea transport and metabolism in A. oligospora abolishes the urea-induced trap formation. Furthermore, the urea metabolite ammonia functions as a signal molecule in the fungus to initiate the lifestyle switch to form trap structures. Our findings highlight the importance of multiple predator-prey interactions in prey defense mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Guo-Hong Li
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Cheng-Gang Zou
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Xing-Lai Ji
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Tong Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Pei-Ji Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lian-Ming Liang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Jian-Ping Xu
- 1] Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China [2] Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Zhi-Qiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Texas 77030, USA
| | - Xi Zheng
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Yue-Ke Qin
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Meng-Qing Tian
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - You-Yao Xu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi-Cheng Ma
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Ze-Fen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiao-Wei Huang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Shu-Qun Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Xue-Mei Niu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Jin-Kui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Ying Huang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
62
|
Evolutionary history predicts the stability of cooperation in microbial communities. Nat Commun 2014; 4:2573. [PMID: 24113642 DOI: 10.1038/ncomms3573] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 11/08/2022] Open
Abstract
Cooperation fundamentally contributes to the success of life on earth, but its persistence in diverse communities remains a riddle, as selfish phenotypes rapidly evolve and may spread until disrupting cooperation. Here we investigate how evolutionary history affects the emergence and spread of defectors in multispecies communities. We set up bacterial communities of varying diversity and phylogenetic relatedness and measure investment into cooperation (proteolytic activity) and their vulnerability to invasion by defectors. We show that evolutionary relationships predict the stability of cooperation: phylogenetically diverse communities are rapidly invaded by spontaneous signal-blind mutants (ignoring signals regulating cooperation), while cooperation is stable in closely related ones. Maintenance of cooperation is controlled by antagonism against defectors: cooperators inhibit phylogenetically related defectors, but not distant ones. This kin-dependent inhibition links phylogenetic diversity and evolutionary dynamics and thus provides a robust mechanistic predictor for the persistence of cooperation in natural communities.
Collapse
|
63
|
Abstract
Most ecosystems are populated by a large number of diversified microorganisms, which interact with one another and form complex interaction networks. In addition, some of these microorganisms may colonize the surface or internal parts of plants and animals, thereby providing an additional level of interaction complexity. These microbial relations range from intraspecific to interspecific interactions, and from simple short-term interactions to intricate long-term ones. They have played a key role in the formation of plant and animal kingdoms, often resulting in coevolution; they control the size, activity level, and diversity patterns of microbial communities. Therefore, they modulate trophic networks and biogeochemical cycles, regulate ecosystem productivity, and determine the ecology and health of plant and animal partners. A better understanding of these interactions is needed to develop microbe-based ecological engineering strategies for environmental sustainability and conservation, to improve environment-friendly approaches for feed and food production, and to address health challenges posed by infectious diseases. The main types of biotic interactions are presented: interactions between microorganisms, interactions between microorganisms and plants, and interactions between microorganisms and animals.
Collapse
|
64
|
Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities. ISME JOURNAL 2014; 8:1820-30. [PMID: 24671085 DOI: 10.1038/ismej.2014.40] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/18/2014] [Accepted: 02/23/2014] [Indexed: 11/08/2022]
Abstract
The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs.
Collapse
|
65
|
Keller-Costa T, Jousset A, van Overbeek L, van Elsas JD, Costa R. The freshwater sponge Ephydatia fluviatilis harbours diverse Pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity. PLoS One 2014; 9:e88429. [PMID: 24533086 PMCID: PMC3922812 DOI: 10.1371/journal.pone.0088429] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/07/2014] [Indexed: 11/18/2022] Open
Abstract
Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction--Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.
Collapse
Affiliation(s)
- Tina Keller-Costa
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Algarve, Portugal
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Alexandre Jousset
- Department of Ecology and Biodiversity, Utrecht University, Utrecht, The Netherlands
| | - Leo van Overbeek
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Rodrigo Costa
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Algarve, Portugal
| |
Collapse
|
66
|
Friman VP, Jousset A, Buckling A. Rapid prey evolution can alter the structure of predator-prey communities. J Evol Biol 2013; 27:374-80. [DOI: 10.1111/jeb.12303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- V.-P. Friman
- Department of Biosciences; University of Exeter; Penryn UK
- Imperial College London; Ascot UK
| | - A. Jousset
- Division of Ecology and Biodiversity; Utrecht University; Utrecht The Netherlands
| | - A. Buckling
- Department of Biosciences; University of Exeter; Penryn UK
| |
Collapse
|
67
|
Abstract
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system.
Collapse
|
68
|
Müller MS, Scheu S, Jousset A. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities. PLoS One 2013; 8:e66200. [PMID: 23840423 PMCID: PMC3694078 DOI: 10.1371/journal.pone.0066200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/05/2013] [Indexed: 11/18/2022] Open
Abstract
Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.
Collapse
Affiliation(s)
- Maren Stella Müller
- Georg August University Göttingen, J. F. Blumenbach Institute of Zoology and Anthropology, Göttingen, Germany
| | - Stefan Scheu
- Georg August University Göttingen, J. F. Blumenbach Institute of Zoology and Anthropology, Göttingen, Germany
| | - Alexandre Jousset
- Georg August University Göttingen, J. F. Blumenbach Institute of Zoology and Anthropology, Göttingen, Germany
- * E-mail:
| |
Collapse
|
69
|
Direct assessment of viral diversity in soils by random PCR amplification of polymorphic DNA. Appl Environ Microbiol 2013; 79:5450-7. [PMID: 23793630 DOI: 10.1128/aem.00268-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Viruses are the most abundant and diverse biological entities within soils, yet their ecological impact is largely unknown. Defining how soil viral communities change with perturbation or across environments will contribute to understanding the larger ecological significance of soil viruses. A new approach to examining the composition of soil viral communities based on random PCR amplification of polymorphic DNA (RAPD-PCR) was developed. A key methodological improvement was the use of viral metagenomic sequence data for the design of RAPD-PCR primers. This metagenomically informed approach to primer design enabled the optimization of RAPD-PCR sensitivity for examining changes in soil viral communities. Initial application of RAPD-PCR viral fingerprinting to soil viral communities demonstrated that the composition of autochthonous soil viral assemblages noticeably changed over a distance of meters along a transect of Antarctic soils and across soils subjected to different land uses. For Antarctic soils, viral assemblages segregated upslope from the edge of dry valley lakes. In the case of temperate soils at the Kellogg Biological Station, viral communities clustered according to land use treatment. In both environments, soil viral communities changed along with environmental factors known to shape the composition of bacterial host communities. Overall, this work demonstrates that RAPD-PCR fingerprinting is an inexpensive, high-throughput means for addressing first-order questions of viral community dynamics within environmental samples and thus fills a methodological gap between narrow single-gene approaches and comprehensive shotgun metagenomic sequencing for the analysis of viral community diversity.
Collapse
|
70
|
Barret M, Egan F, Moynihan J, Morrissey JP, Lesouhaitier O, O'Gara F. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:377-86. [PMID: 23754718 DOI: 10.1111/1758-2229.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/10/2013] [Indexed: 05/21/2023]
Abstract
Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar beet rhizosphere. The recent annotation of the F113 genome sequence has revealed that this strain encodes a wide array of secretion systems, including two complete type three secretion systems (T3SSs) belonging to the Hrp1 and SPI-1 families. While Hrp1 T3SSs are frequently encoded in other P. fluorescens strains, the presence of a SPI-1 T3SS in a plant-beneficial bacterial strain was unexpected. In this work, the genetic organization and expression of these two T3SS loci have been analysed by a combination of transcriptional reporter fusions and transcriptome analyses. Overexpression of two transcriptional activators has shown a number of genes encoding putative T3 effectors. In addition, the influence of these two T3SSs during the interaction of P. fluorescens F113 with some bacterial predators was also assessed. Our data revealed that the transcriptional activator hilA is induced by amoeba and that the SPI-1 T3SS could potentially be involved in resistance to amoeboid grazing.
Collapse
Affiliation(s)
- Matthieu Barret
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
71
|
Pseudomonas fluorescens NZI7 repels grazing by C. elegans, a natural predator. ISME JOURNAL 2013; 7:1126-38. [PMID: 23426012 DOI: 10.1038/ismej.2013.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bacteriovorous nematode Caenorhabditis elegans has been used to investigate many aspects of animal biology, including interactions with pathogenic bacteria. However, studies examining C. elegans interactions with bacteria isolated from environments in which it is found naturally are relatively scarce. C. elegans is frequently associated with cultivation of the edible mushroom Agaricus bisporus, and has been reported to increase the severity of bacterial blotch of mushrooms, a disease caused by bacteria from the Pseudomonas fluorescens complex. We observed that pseudomonads isolated from mushroom farms showed differential resistance to nematode predation. Under nutrient poor conditions, in which most pseudomonads were consumed, the mushroom pathogenic isolate P. fluorescens NZI7 was able to repel C. elegans without causing nematode death. A draft genome sequence of NZI7 showed it to be related to the biocontrol strain P. protegens Pf-5. To identify the genetic basis of nematode repellence in NZI7, we developed a grid-based screen for mutants that lacked the ability to repel C. elegans. The mutants isolated in this screen included strains with insertions in the global regulator GacS and in a previously undescribed GacS-regulated gene cluster, 'EDB' ('edible'). Our results suggest that the product of the EDB cluster is a poorly diffusible or cell-associated factor that acts together with other features of NZI7 to provide a novel mechanism to deter nematode grazing. As nematodes interact with NZI7 colonies before being repelled, the EDB factor may enable NZI7 to come into contact with and be disseminated by C. elegans without being subject to intensive predation.
Collapse
|
72
|
Sun S, Kjelleberg S, McDougald D. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists. PLoS One 2013; 8:e56338. [PMID: 23441178 PMCID: PMC3575383 DOI: 10.1371/journal.pone.0056338] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/08/2013] [Indexed: 12/04/2022] Open
Abstract
Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS). In addition to negatively controlling vps genes, the global quorum sensing (QS) regulator, HapR, plays a role in grazing resistance as the ΔhapR strain is efficiently consumed while the wild type (WT) is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms.
Collapse
Affiliation(s)
- Shuyang Sun
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Institute, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
73
|
Kupferschmied P, Maurhofer M, Keel C. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. FRONTIERS IN PLANT SCIENCE 2013; 4:287. [PMID: 23914197 PMCID: PMC3728486 DOI: 10.3389/fpls.2013.00287] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/12/2013] [Indexed: 05/20/2023]
Abstract
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.
Collapse
Affiliation(s)
- Peter Kupferschmied
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology ZurichZurich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
- *Correspondence: Christoph Keel, Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|
74
|
S. Jones R, C. Davis S, Speed MP. Defence Cheats Can Degrade Protection of Chemically Defended Prey. Ethology 2012. [DOI: 10.1111/eth.12036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca S. Jones
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| | - Sian C. Davis
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| | - Michael P. Speed
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| |
Collapse
|
75
|
Speed MP, Ruxton GD, Mappes J, Sherratt TN. Why are defensive toxins so variable? An evolutionary perspective. Biol Rev Camb Philos Soc 2012; 87:874-84. [PMID: 22540874 DOI: 10.1111/j.1469-185x.2012.00228.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defensive toxins are widely used by animals, plants and micro-organisms to deter natural enemies. An important characteristic of such defences is diversity both in the quantity of toxins and the profile of specific defensive chemicals present. Here we evaluate evolutionary and ecological explanations for the persistence of toxin diversity within prey populations, drawing together a range of explanations from the literature, and adding new hypotheses. We consider toxin diversity in three ways: (1) the absence of toxicity in a proportion of individuals in an otherwise toxic prey population (automimicry); (2) broad variation in quantities of toxin within individuals in the same population; (3) variation in the chemical constituents of chemical defence. For each of these phenomena we identify alternative evolutionary explanations for the persistence of variation. One important general explanation is diversifying (frequency- or density-dependent) selection in which either costs of toxicity increase or their benefits decrease with increases in the absolute or relative abundance of toxicity in a prey population. A second major class of explanation is that variation in toxicity profiles is itself nonadaptive. One application of this explanation requires that predator behaviour is not affected by variation in levels or profiles of chemical defence within a prey population, and that there are no cost differences between different quantities or forms of toxins found within a population. Finally, the ecology and life history of the animal may enable some general predictions about toxin variation. For example, in animals which only gain their toxins in their immature forms (e.g. caterpillars on host plants) we may expect a decline in toxicity during adult life (or at least no change). By contrast, when toxins are also acquired during the adult form, we may for example expect the converse, in which young adults have less time to acquire toxicity than older adults. One major conclusion that we draw is that there are good reasons to consider within-species variation in defensive toxins as more than mere ecological noise. Rather there are a number of compelling evolutionary hypotheses which can explain and predict variation in prey toxicity.
Collapse
Affiliation(s)
- Michael P Speed
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, UK.
| | | | | | | |
Collapse
|
76
|
Abstract
Bacterial communities are often heavily consumed by microfaunal predators, such as protozoa and nematodes. Predation is an important cause of mortality and determines the structure and activity of microbial communities in both terrestrial and aquatic ecosystems, and bacteria evolved various defence mechanisms helping them to resist predation. In this review, I summarize known antipredator defence strategies and their regulation, and explore their importance for bacterial fitness in various environmental conditions, and their implications for bacterial evolution and diversification under predation pressure. I discuss how defence mechanisms affect competition and cooperation within bacterial communities. Finally I present some implications of bacterial defence mechanisms for ecosystem services provided by microbial communities, such as nutrient cycling, virulence and the biological control of plant diseases.
Collapse
Affiliation(s)
- Alexandre Jousset
- Georg-August University Göttingen, JF Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Berliner Str. 28, 37073 Göttingen, Germany.
| |
Collapse
|
77
|
Borić M, Danevčič T, Stopar D. Prodigiosin from Vibrio sp. DSM 14379; a new UV-protective pigment. MICROBIAL ECOLOGY 2011; 62:528-36. [PMID: 21547449 DOI: 10.1007/s00248-011-9857-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/08/2011] [Indexed: 05/04/2023]
Abstract
Pigments such as melanin, scytonemin and carotenoids protect microbial cells against the harmful effects of ultraviolet (UV) radiation. The role in UV protection has never been assigned to the prodigiosin pigment. In this work, we demonstrate that prodigiosin provides a significant level of protection against UV stress in Vibrio sp. DSM 14379. In the absence of pigment production, Vibrio sp. was significantly more susceptible to UV stress, and there was no difference in UV survival between the wild-type strain and non-pigmented mutant. The pigment's protective role was more important at higher doses of UV irradiation and correlated with pigment concentration in the cell. Pigmented cells survived high UV exposure (324 J/m(2)) around 1,000-fold more successfully compared to the non-pigmented mutant cells. Resistance to UV stress was conferred to the non-pigmented mutant by addition of exogenous pigment extract to the growth medium. A level of UV protection equivalent to that exhibited by the wild-type strain was attained by the non-pigmented mutant once the prodigiosin concentration had reached comparable levels to those found in the wild-type strain. In co-culture experiments, prodigiosin acted as a UV screen, protecting both the wild-type and non-pigmented mutants. Our results suggest a new ecophysiological role for prodigiosin.
Collapse
Affiliation(s)
- Maja Borić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
78
|
Spontaneous Gac mutants of Pseudomonas biological control strains: cheaters or mutualists? Appl Environ Microbiol 2011; 77:7227-35. [PMID: 21873476 DOI: 10.1128/aem.00679-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are "cheaters" that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacterium Pseudomonas chlororaphis strain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions.
Collapse
|
79
|
Romanowski A, Migliori ML, Valverde C, Golombek DA. Circadian variation in Pseudomonas fluorescens (CHA0)-mediated paralysis of Caenorhabditis elegans. Microb Pathog 2011; 50:23-30. [DOI: 10.1016/j.micpath.2010.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 11/17/2022]
|
80
|
Rochat L, Péchy-Tarr M, Baehler E, Maurhofer M, Keel C. Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:949-61. [PMID: 20521957 DOI: 10.1094/mpmi-23-7-0949] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Some root-associated pseudomonads sustain plant growth by suppressing root diseases caused by pathogenic fungi. We investigated to which extent select cereal cultivars influence expression of relevant biocontrol traits (i.e., root colonization efficacy and antifungal activity) in Pseudomonas fluorescens CHA0. In this representative plant-beneficial bacterium, the antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN), pyoluteorin (PLT), and hydrogen cyanide (HCN) are required for biocontrol. To monitor host plant effects on the expression of biosynthetic genes for these compounds on roots, we developed fluorescent dual-color reporters suited for flow cytometric analysis using fluorescence-activated cell sorting (FACS). In the dual-label strains, the constitutively expressed red fluorescent protein mCherry served as a cell tag and marker for root colonization, whereas reporter fusions based on the green fluorescent protein allowed simultaneous recording of antifungal gene expression within the same cell. FACS analysis revealed that expression of DAPG and PRN biosynthetic genes was promoted in a cereal rhizosphere, whereas expression of PLT and HCN biosynthetic genes was markedly less sustained. When analyzing the response of the bacterial reporters on roots of a selection of wheat, spelt, and triticale cultivars, we were able to detect subtle species- and cultivar-dependent differences in colonization and DAPG and HCN gene expression levels. The expression of these biocontrol traits was particularly favored on roots of one spelt cultivar, suggesting that a careful choice of pseudomonad-cereal combinations might be beneficial to biocontrol. Our approach may be useful for selective single-cell level analysis of plant effects in other bacteria-root interactions.
Collapse
Affiliation(s)
- Laurène Rochat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
81
|
Ostermaier V, Kurmayer R. Application of real-time PCR to estimate toxin production by the cyanobacterium Planktothrix sp. Appl Environ Microbiol 2010; 76:3495-502. [PMID: 20363794 PMCID: PMC2876456 DOI: 10.1128/aem.02771-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/24/2010] [Indexed: 11/20/2022] Open
Abstract
Quantitative real-time PCR methods are increasingly being applied for the enumeration of toxic cyanobacteria in the environment. However, to justify the use of real-time PCR quantification as a monitoring tool, significant correlations between genotype abundance and actual toxin concentrations are required. In the present study, we aimed to explain the concentrations of three structural variants of the hepatotoxin microcystin (MC) produced by the filamentous cyanobacterium Planktothrix sp., [Asp, butyric acid (Dhb)]-microcystin-RR (where RR means two arginines), [Asp, methyl-dehydro-alanine (Mdha)]-microcystin-RR, and [Asp, Dhb]-microcystin-homotyrosine-arginine (HtyR), by the abundance of the microcystin genotypes encoding their synthesis. Three genotypes of microcystin-producing cyanobacteria (denoted the Dhb, Mdha, and Hty genotypes) in 12 lakes of the Alps in Austria, Germany, and Switzerland from 2005 to 2007 were quantified by means of real-time PCR. Their absolute and relative abundances were related to the concentration of the microcystin structural variants in aliquots determined by high-performance liquid chromatography (HPLC). The total microcystin concentrations varied from 0 to 6.2 microg liter(-1) (mean +/- standard error [SE] of 0.6 +/- 0.1 microg liter(-1)) among the samples, in turn resulting in an average microcystin content in Planktothrix of 3.1 +/- 0.7 microg mm(-3) biovolume. Over a wide range of the population density (0.001 to 3.6 mm(3) liter(-1) Planktothrix biovolume), the Dhb genotype and [Asp, Dhb]-MC-RR were most abundant, while the Hty genotype and MC-HtyR were found to be in the lowest proportion only. In general, there was a significant linear relationship between the abundance/proportion of specific microcystin genotypes and the concentration/proportion of the respective microcystin structural variants on a logarithmic scale. We conclude that estimating the abundance of specific microcystin genotypes by quantitative real-time PCR is useful for predicting the concentration of microcystin variants in water.
Collapse
Affiliation(s)
- Veronika Ostermaier
- Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Rainer Kurmayer
- Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee, Austria
| |
Collapse
|
82
|
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26:1408-46. [PMID: 19844639 DOI: 10.1039/b817075b] [Citation(s) in RCA: 406] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Harald Gross
- Institute for Pharmaceutical Biology, Nussallee 6, 53115, Bonn, Germany.
| | | |
Collapse
|
83
|
van Ooij C. Cheaters get eaten. Nat Rev Microbiol 2009. [DOI: 10.1038/nrmicro2142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
84
|
Abstract
Cooperation is integral to much of biological life but can be threatened by selfish evolutionary strategies. Diverse cooperative traits have evolved among microbes, but particularly sophisticated forms of sociality have arisen in the myxobacteria, including group motility and multicellular fruiting body development. Myxobacterial cooperation has succeeded against socially destructive cheaters and can readily re-evolve from some socially defective genotypes. However, social harmony does not extend far. Spatially structured natural populations of the model species Myxococcus xanthus have fragmented into a large number of socially incompatible genotypes that exclude, exploit, and/or antagonize one another, including genetically similar neighbors. Here, we briefly review basic social evolution concepts as they pertain to microbes, discuss potential benefits of myxobacterial social traits, highlight recent empirical studies of social evolution in M. xanthus, and consider their implications for how myxobacterial cooperation and conflict evolve in the wild.
Collapse
Affiliation(s)
- Gregory J Velicer
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|