51
|
Jin M, Zhou Z, Zhang L, Chen Y, Liu L, Shen H. Effects of Excessive Iodine on the BDNF-TrkB Signaling Pathway and Related Genes in Offspring of EAT Rats. Biol Trace Elem Res 2023; 201:776-785. [PMID: 35322353 DOI: 10.1007/s12011-022-03187-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 01/21/2023]
Abstract
Excess iodine can cause autoimmune thyroiditis (AIT) in women, but it is unclear whether this has any implications for neurodevelopmental mechanisms in offspring. We studied the effects of experimental autoimmune thyroiditis (EAT) rats with different amounts of iodine intake on offspring brain development via the brain-derived neurotrophic factor (BDNF)-tropomycin receptor kinase B (TrkB) signaling pathway, because BDNF plays an important role in neurodevelopment. Rats in three thyroglobulin (Tg) immunized groups with varying iodine intakes (Tg (100 µg/L iodine), Tg + High-iodine I group (Tg + HI, 20 mg/L iodine), and Tg + High-iodine II group (Tg + HII, 200 mg/L iodine)) were injected with 800 µg Tg once every 2 weeks for 3 times. Rats in the control group (NI, 100 µg/L iodine) were immunized with saline. Arsenic-cerium catalytic spectrophotometry was used to measure urine iodine levels. The lymphocytic infiltration in the thyroids was observed by histopathological studies. Thyroid autoantibodies levels were measured using radioimmunoassay. The norepinephrine (NE) contents were measured by an enzyme-linked immunosorbent assay. The levels of the BDNF-TrkB signaling pathway and related genes were measured by quantitative real-time PCR and Western blot. Urinary iodine levels increased as iodine intake increased. Lymphocytes were significantly aggravated in Tg-immunized rats. Serum thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) levels were clearly elevated in Tg-immunized rats. Tg-immune groups had significantly lower NE levels. The BDNF-TrkB signaling pathway and related gene mRNA and protein levels were found to be significantly lower in Tg-immune groups with higher iodine levels. Maternal AIT may reduce the levels of certain neurodevelopmental mechanisms in the offspring, such as the BDNF-TrkB signaling pathway and related factors, while excessive iodine consumption by the mother may exacerbate this effect.
Collapse
Affiliation(s)
- Meihui Jin
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Zheng Zhou
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Li Zhang
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yao Chen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China.
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| | - Hongmei Shen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China.
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
52
|
Yu Q, Wang Y, Yi G, Yang W, Chen K, Tan X, Zhang X, Xu Z, Yang Z, Peng Y. BDNF is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and is associated with brain metastasis. Immunology 2023; 168:320-330. [PMID: 36151890 DOI: 10.1111/imm.13581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of death worldwide. Brain metastases are a common complication of a wide range of human malignancies, particularly lung adenocarcinoma (LUAD). Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has been linked to several human malignancies and has been shown to promote LUAD tumorigenesis. However, its function in the tumour immune microenvironment (TIME) remains largely unexplored, especially in complex brain tissue environments. In this study, BDNF was found to be particularly increased in patients with advanced tumour stage, lymphatic metastasis, and distant metastasis, indicating a correlation with LUAD progression. We characterized the prognostic value of BDNF and defined BDNF as an unfavourable prognostic indicator through a common driver gene-independent mechanism in LUAD. Furthermore, patients with increased BDNF levels in primary LUAD might have a higher risk of developing brain metastasis (BM), and central nervous system (CNS) metastasis showed an elevated expression of BDNF compared to their matched primary lesions. Additionally, we investigated the interaction between BDNF and infiltrating immune cells in both primary lesions and paired BM using multiplex immunostaining. The results showed that BDNF might drive an immunosuppressive tumour microenvironment (TME) by re-education of tumour-associated macrophages (TAMs) toward a pro-tumorigenic M2 phenotype, particularly in BM. Our findings demonstrate that BDNF serves as an independent potential prognostic marker and correlates with BM in LUAD. As it is closely related to TAM polarization, BDNF may be a promising immune-related biomarker and molecular target in patients with LUAD.
Collapse
Affiliation(s)
- Qian Yu
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yitian Wang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangming Yi
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wendi Yang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kehong Chen
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiangwu Tan
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyue Zhang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenzhou Yang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Peng
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
53
|
Shi M, Zhou J, Hu R, Xu H, Chen Y, Wu X, Chen B, Ma R. EA participates in pain transition through regulating KCC2 expression by BDNF-TrkB in the spinal cord dorsal horn of male rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100115. [PMID: 36875547 PMCID: PMC9982673 DOI: 10.1016/j.ynpai.2023.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The pathogenesis of chronic pain is complex and poorly treated, seriously affecting the quality of life of patients. Electroacupuncture (EA) relieves pain by preventing the transition of acute pain into chronic pain, but its mechanism of action is still unclear. Here, we aimed to investigate whether EA can inhibit pain transition by increasing KCC2 expression via BDNF-TrkB. We used hyperalgesic priming (HP) model to investigate the potential central mechanisms of EA intervention on pain transition. HP model male rats showed significant and persistent mechanically abnormal pain. Brain derived neurotrophic factor (BDNF) expression and Tropomyosin receptor kinase B (TrkB) phosphorylation were upregulated in the affected spinal cord dorsal horn (SCDH) of HP model rats, accompanied by K+-Cl-- Cotransporter-2 (KCC2) expression was down-regulated. EA significantly increased the mechanical pain threshold in HP model male rats and decreased BDNF and p-TrkB overexpression and upregulated KCC2 expression. Blockade of BDNF with BDNF neutralizing antibody attenuated mechanical abnormal pain in HP rats. Finally, administration of exogenous BDNF by pharmacological methods reversed the EA-induced resistance to abnormal pain. In all, these results suggest that BDNF-TrkB contributes to mechanical abnormal pain in HP model rats and that EA ameliorates mechanical abnormal pain through upregulation of KCC2 by BDNF-TrkB in SCDH. Our study further supports EA as an effective treatment to prevent the transition of acute pain into chronic pain.
Collapse
Affiliation(s)
- Mengting Shi
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Zhou
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Acupuncture and Moxibustion, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rong Hu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haipeng Xu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Chen
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xingying Wu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bowen Chen
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ruijie Ma
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Acupuncture and Moxibustion, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
54
|
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023; 48:104-112. [PMID: 36123427 PMCID: PMC9700802 DOI: 10.1038/s41386-022-01389-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. "microdoses"), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics' effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics' effects on neuroplasticity and its potential clinical applications.
Collapse
Affiliation(s)
- Abigail E Calder
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
55
|
Ma K, Taylor C, Williamson M, Newton SS, Qin L. Diminished activity-dependent BDNF signaling differentially causes autism-like behavioral deficits in male and female mice. Front Psychiatry 2023; 14:1182472. [PMID: 37205980 PMCID: PMC10189061 DOI: 10.3389/fpsyt.2023.1182472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with strong genetic heterogeneity and more prevalent in males than females. Recent human genetic studies have identified multiple high-risk genes for ASD, which produce similar phenotypes, indicating that diverse genetic factors converge to common molecular pathways. We and others have hypothesized that activity-dependent neural signaling is a convergent molecular pathway dysregulated in ASD. However, the causal link between diminished activity-dependent neural signaling and ASD remains unclear. Brain-derived neurotrophic factor (BDNF) is a key molecule mediating activity-dependent neural signaling. We therefore hypothesize that diminished activity-dependent BDNF signaling could confer autism-like behavioral deficits. Here, we investigated the effect of diminished activity-dependent BDNF signaling on autism-like behavioral deficits by using mice with genetic knock-in of a human BDNF methionine (Met) allele, which has decreased activity-dependent BDNF release without altering basal BDNF level. Compared with wild-type (WT) controls, diminished activity-dependent BDNF signaling similarly induced anxiety-like behaviors in male and female mice. Notably, diminished activity-dependent BDNF signaling differentially resulted in autism-like social deficits and increased self-grooming in male and female mice, and male mice were more severe than female mice. Again, sexually dimorphic spatial memory deficits were observed in female BDNF+/Met mice, but not in male BDNF+/Met mice. Our study not only reveals a causal link between diminished activity-dependent BDNF signaling and ASD-like behavioral deficits, but also identifies previously underappreciated sex-specific effect of diminished activity-dependent BDNF signaling in ASD. These mice with genetic knock-in of the human BDNF Met variant provide a distinct mouse model for studying the cellular and molecular mechanisms underlying diminished activity-dependent neural signaling, the common molecular pathway dysregulated in ASD.
Collapse
Affiliation(s)
- Kaijie Ma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Connie Taylor
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| | - Mark Williamson
- Biostatistics, Epidemiology, and Research Design Core, University of North Dakota, Grand Forks, ND, United States
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Luye Qin
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- *Correspondence: Luye Qin,
| |
Collapse
|
56
|
de Assis GG, Hoffman JR. The BDNF Val66Met Polymorphism is a Relevant, But not Determinant, Risk Factor in the Etiology of Neuropsychiatric Disorders - Current Advances in Human Studies: A Systematic Review. Brain Plast 2022; 8:133-142. [PMID: 36721394 PMCID: PMC9837733 DOI: 10.3233/bpl-210132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the brain's most-produced neurotrophin during the lifespan, essentially involved in multiple mechanisms of nervous system development and function. The production/release of BDNF requires multi-stage processing that appears to be regulated at various stages in which the presence of a polymorphism "Val66Met" can exert a critical influence. Aim To synthesize the knowledge on the BDNF Val66Met polymorphism on intracellular processing and function of BDNF. Methods We performed a systematic review and collected all available studies on the post-translation processes of BDNF, regarding the Val66Met polymorphism. Searches were performed up to 21st March 2021. Results Out of 129 eligible papers, 18 studies addressed or had findings relating to BDNF post-translation processes and were included in this review. Discussion Compilation of experimental findings reveals that the Val66Met polymorphism affects BDNF function by slightly altering the processing, distribution, and regulated release of BDNF. Regarding the critical role of pro-BDNF as a pro-apoptotic factor, such alteration might represent a risk for the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Laboratory of Endocrinology, Brain Institute, Federal University of Rio Grande do Norte, Brazil
- Gdansk University of Physical Education and Sports, Faculty of Physical Education, Gdansk, Poland
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| |
Collapse
|
57
|
Egbenya DL, Hussain S, Lai YC, Anderson AE, Davanger S. Synapse-specific changes in Arc and BDNF in rat hippocampus following chronic temporal lobe epilepsy. Neurosci Res 2022; 191:1-12. [PMID: 36535366 DOI: 10.1016/j.neures.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Expression of immediate early genes (IEGs) in the brain is important for synaptic plasticity, and probably also in neurodegenerative conditions. To understand the cellular mechanisms of the underlying neuropathophysiological processes in epilepsy, we need to pinpoint changes in concentration of synaptic plasticity-related proteins at subsynaptic levels. In this study, we examined changes in synaptic expression of Activity-regulated cytoskeleton-associated (Arc) and Brai Derived Neurotrophic Factor (BDNF) in a rat model of kainate-induced temporal lobe epilepsy (TLE). Western blotting showed reduced concentrations of Arc and increased concentrations of BDNF in hippocampal synaptosomes in chronic TLE rats. Then, using quantitative electron microscopy, we found corresponding changes in subsynaptic regions in the hippocampus. Specifically, we detected significant reductions in the concentrations of Arc in the presynaptic terminal of Schaffer collateral glutamatergic synapses in the stratum radiatum of the CA1 area in TLE, as well as in their adjacent postsynaptic spines. In CA3, there was a significant reduction of Arc only in the presynaptic terminal cytoplasm. Conversely, in CA3, there was a significant increase in the expression of BDNF in the presynaptic terminal, but not in the postsynaptic spine. Significant increase in BDNF concentration in the CA1 postsynaptic density was also obtained. We hypothesize that the observed changes in Arc and BDNF may contribute to both cognitive impairment and increased excitotoxic vulnerability in chronic epilepsy.
Collapse
Affiliation(s)
- Daniel L Egbenya
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Suleman Hussain
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Yi-Chen Lai
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Anne E Anderson
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Svend Davanger
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
58
|
Lv YN, Cui Y, Zhang B, Huang SM. Sleep deficiency promotes Alzheimer's disease development and progression. Front Neurol 2022; 13:1053942. [PMID: 36588906 PMCID: PMC9795181 DOI: 10.3389/fneur.2022.1053942] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are a common health problem in modern society. Long-term sleep deficiency increases the risk for Alzheimer's disease. However, the exact mechanisms by which sleep deficiency affects Alzheimer's disease remain unclear. Therefore, we reviewed the relevant studies and investigated the role of sleep deprivation in Alzheimer's disease pathogenesis. Sleep deficiency was found to be associated with oxidative stress, β-amyloid protein deposition, tau hyperphosphorylation, and neuroinflammation, which are known to increase the risk for Alzheimer's disease. In addition, insufficient sleep also increases glucocorticoid levels, decreases brain-derived neurotrophic factor levels, and reduces the number of synapses in the central nervous system. These factors also promote Alzheimer's disease development and progression. The present study showed that a growing body of evidence supports an association between sleep disturbances and Alzheimer's disease. It discusses the role of sleep insufficiency in Alzheimer's disease pathogenesis, which may provide a theoretical basis for effective treatment and prevention strategies.
Collapse
Affiliation(s)
- Ya-Nan Lv
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medicine, School of Animal Science and Technology, Hainan University, Haikou, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Bo Zhang
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
59
|
Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. eLife 2022; 11:e79863. [PMID: 36515276 PMCID: PMC9797192 DOI: 10.7554/elife.79863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Kristin L Arendt
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Anthony G Lau
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
60
|
Differential Regulation of the BDNF Gene in Cortical and Hippocampal Neurons. J Neurosci 2022; 42:9110-9128. [PMID: 36316156 PMCID: PMC9761680 DOI: 10.1523/jneurosci.2535-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin that supports the survival, differentiation, and signaling of various neuronal populations. Although it has been well described that expression of BDNF is strongly regulated by neuronal activity, little is known whether regulation of BDNF expression is similar in different brain regions. Here, we focused on this fundamental question using neuronal populations obtained from rat cerebral cortices and hippocampi of both sexes. First, we thoroughly characterized the role of the best-described regulators of BDNF gene - cAMP response element binding protein (CREB) family transcription factors, and show that activity-dependent BDNF expression depends more on CREB and the coactivators CREB binding protein (CBP) and CREB-regulated transcriptional coactivator 1 (CRTC1) in cortical than in hippocampal neurons. Our data also reveal an important role of CREB in the early induction of BDNF mRNA expression after neuronal activity and only modest contribution after prolonged neuronal activity. We further corroborated our findings at BDNF protein level. To determine the transcription factors regulating BDNF expression in these rat brain regions in addition to CREB family, we used in vitro DNA pulldown assay coupled with mass spectrometry, chromatin immunoprecipitation (ChIP), and bioinformatics, and propose a number of neurodevelopmentally important transcription factors, such as FOXP1, SATB2, RAI1, BCL11A, and TCF4 as brain region-specific regulators of BDNF expression. Together, our data reveal complicated brain region-specific fine-tuning of BDNF expression.SIGNIFICANCE STATEMENT To date, majority of the research has focused on the regulation of brain-derived neurotrophic factor (BDNF) in the brain but much less is known whether the regulation of BDNF expression is universal in different brain regions and neuronal populations. Here, we report that the best described regulators of BDNF gene from the cAMP-response element binding protein (CREB) transcription factor family have a more profound role in the activity-dependent regulation of BDNF in cortex than in hippocampus. Our results indicate a brain region-specific fine tuning of BDNF expression. Moreover, we have used unbiased determination of novel regulators of the BDNF gene and report a number of neurodevelopmentally important transcription factors as novel potential regulators of the BDNF expression.
Collapse
|
61
|
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Front Mol Neurosci 2022; 15:1028223. [PMID: 36466807 PMCID: PMC9708894 DOI: 10.3389/fnmol.2022.1028223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a prevalent mental health disorder and is the number one cause of disability worldwide. Risk factors for depression include genetic predisposition and stressful life events, and depression is twice as prevalent in women compared to men. Both clinical and preclinical research have implicated a critical role for brain-derived neurotrophic factor (BDNF) signaling in depression pathology as well as therapeutics. A preponderance of this research has focused on the role of BDNF and its primary receptor tropomyosin-related kinase B (TrkB) in the cortex and hippocampus. However, much of the symptomatology for depression is consistent with disruptions in functions of the hypothalamus including changes in weight, activity levels, responses to stress, and sociability. Here, we review evidence for the role of BDNF and TrkB signaling in the regions of the hypothalamus and their role in these autonomic and behavioral functions associated with depression. In addition, we identify areas for further research. Understanding the role of BDNF signaling in the hypothalamus will lead to valuable insights for sex- and stress-dependent neurobiological underpinnings of depression pathology.
Collapse
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Anita E. Autry,
| |
Collapse
|
62
|
Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, Fan W, Guo Y, Guo Y, Xu Z, Guo Y. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Front Cell Neurosci 2022; 16:817732. [PMID: 36439200 PMCID: PMC9685811 DOI: 10.3389/fncel.2022.817732] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/24/2022] [Indexed: 09/07/2023] Open
Abstract
Ischemic stroke is common in the elderly, and is one of the main causes of long-term disability worldwide. After ischemic stroke, spontaneous recovery and functional reconstruction take place. These processes are possible thanks to neuroplasticity, which involves neurogenesis, synaptogenesis, and angiogenesis. However, the repair of ischemic damage is not complete, and neurological deficits develop eventually. The WHO recommends acupuncture as an alternative and complementary method for the treatment of stroke. Moreover, clinical and experimental evidence has documented the potential of acupuncture to ameliorate ischemic stroke-induced neurological deficits, particularly sequelae such as dyskinesia, spasticity, cognitive impairment, and dysphagia. These effects are related to the ability of acupuncture to promote spontaneous neuroplasticity after ischemic stroke. Specifically, acupuncture can stimulate neurogenesis, activate axonal regeneration and sprouting, and improve the structure and function of synapses. These processes modify the neural network and function of the damaged brain area, producing the improvement of various skills and adaptability. Astrocytes and microglia may be involved in the regulation of neuroplasticity by acupuncture, such as by the production and release of a variety of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Moreover, the evidence presented indicates that acupuncture promotes neuroplasticity by modulating the functional reconstruction of the whole brain after ischemia. Therefore, the promotion of neuroplasticity is expected to become a new target for acupuncture in the treatment of neurological deficits after ischemic stroke, and research into the mechanisms responsible for these actions will be of significant clinical value.
Collapse
Affiliation(s)
- Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zichen Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Acupuncture Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
63
|
Miranda-Riestra A, Estrada-Reyes R, Torres-Sanchez ED, Carreño-García S, Ortiz GG, Benítez-King G. Melatonin: A Neurotrophic Factor? Molecules 2022; 27:7742. [PMID: 36431847 PMCID: PMC9698771 DOI: 10.3390/molecules27227742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Melatonin, N-acetyl-5-hydroxytryptamine, is a hormone that synchronizes the internal environment with the photoperiod. It is synthesized in the pineal gland and greatly depends on the endogenous circadian clock located in the suprachiasmatic nucleus and the retina's exposure to different light intensities. Among its most studied functions are the regulation of the waking-sleep rhythm and body temperature. Furthermore, melatonin has pleiotropic actions, which affect, for instance, the modulation of the immune and the cardiovascular systems, as well as the neuroprotection achieved by scavenging free radicals. Recent research has supported that melatonin contributes to neuronal survival, proliferation, and differentiation, such as dendritogenesis and axogenesis, and its processes are similar to those caused by Nerve Growth Factor, Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Neurotrophin-4/5. Furthermore, this indolamine has apoptotic and anti-inflammatory actions in specific brain regions akin to those exerted by neurotrophic factors. This review presents evidence suggesting melatonin's role as a neurotrophic factor, describes the signaling pathways involved in these processes, and, lastly, highlights the therapeutic implications involved.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Erandis D. Torres-Sanchez
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Jalisco, Mexico
| | - Silvia Carreño-García
- Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Genaro Gabriel Ortiz
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Jalisco, Mexico
- Departamento de Disciplinas Filosóficas y Metodológicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| |
Collapse
|
64
|
German-Ponciano LJ, Rosas-Sánchez GU, Cueto-Escobedo J, Fernández-Demeneghi R, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV, Rodríguez-Landa JF. Participation of the Serotonergic System and Brain-Derived Neurotrophic Factor in the Antidepressant-like Effect of Flavonoids. Int J Mol Sci 2022; 23:ijms231810896. [PMID: 36142808 PMCID: PMC9505567 DOI: 10.3390/ijms231810896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Depressive disorders are among the most disabling diseases experienced around the world, and their incidence has significantly increased over the last few decades due to multiple environmental, social, and biological factors. The search for new pharmacological alternatives to treat depression is a global priority. In preclinical research, molecules obtained from plants, such as flavonoids, have shown promising antidepressant-like properties through several mechanisms of action that have not been fully elucidated, including crossing of the blood brain barrier (BBB). This review will focus on discussing the main findings related to the participation of the serotonergic system and brain-derived neurotrophic factor (BDNF) on the antidepressant-like effect of some flavonoids reported by behavioral, neurochemical, and molecular studies. In this sense, evidence shows that depressive individuals have low levels of serotonin and BDNF, while flavonoids can reverse it. Finally, the elucidation of the mechanism used by flavonoids to modulate serotonin and BDNF will contribute to our understanding of the neurobiological bases underlying the antidepressant-like effects produced by these natural compounds.
Collapse
Affiliation(s)
| | | | - Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Gabriel Guillén-Ruiz
- Programa de Investigadoras e Investigadores por México CONACyT-Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Mexico
| | - César Soria-Fregozo
- Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico
| | | | | |
Collapse
|
65
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
66
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
67
|
Yao G, Bai Z, Niu J, Zhang R, Lu Y, Gao T, Wang H. Astragalin attenuates depression-like behaviors and memory deficits and promotes M2 microglia polarization by regulating IL-4R/JAK1/STAT6 signaling pathway in a murine model of perimenopausal depression. Psychopharmacology (Berl) 2022; 239:2421-2443. [PMID: 35411464 DOI: 10.1007/s00213-022-06133-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
RATIONALE Neuroinflammation can be alleviated via M2 microglia polarization, which could promote the recovery of perimenopausal depression. Astragalin (AST) possesses anti-neuroinflammatory activity. However, the effects of AST on perimenopausal depression and the molecular mechanism in regulating microglia polarization remained unknown. OBJECTIVES The purpose was to investigate the effects of AST on mice with simulated perimenopausal depression through regulating microglia polarization. It was aimed to clarify the molecular mechanism related to the interleukin-4 receptor (IL-4R)/janus kinase (JAK) 1/signal transducer and activator of transcription (STAT) 6 signaling pathway. METHODS The ovariectomy (OVX)/chronic unpredictable mild stress (CUMS)-induced murine model of perimenopausal depression was established and treated with AST. Then the depression-like behaviors and cognitive ability of mice were examined. After that, we detected the markers of microglia polarization and its regulatory signals. In addition, lipopolysaccharides (LPS)/adenosine triphosphate (ATP)-induced inflammatory BV2 model were used to verify the potential molecular mechanism. RESULTS AST alleviated perimenopausal depression-like behaviors and memory deficits. AST alleviated microglia activation and increased Ki67-positive cells in dentate gyrus (DG). The viability of BV2 decreased by LPS/ATP was raised by AST. Moreover, both in vivo and in vitro, AST switched microglia from M1 phenotype caused by OVX/CUMS or LPS/ATP to M2 phenotype. The IL-4R/JAK1/STAT6 signaling was restored, and the levels of inducible nitric oxide synthase (iNOS), nuclear NF-KappaB-p65 were reduced by AST. Importantly, AST showed prevention against the ubiquitination modification and degradation of STAT6. CONCLUSIONS Our results revealed new insights into molecular mechanism associated with microglia polarization in the effect of AST on the mouse model of perimenopausal depression.
Collapse
Affiliation(s)
- Guangda Yao
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Zijun Bai
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Jianguo Niu
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Rui Zhang
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Youyuan Lu
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Tiantian Gao
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Ningxia, Yinchuan, 750004, China. .,Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, China. .,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
68
|
Pan H, Wang Y, Wang X, Yan C. Dimethyl fumarate improves cognitive impairment by enhancing hippocampal brain-derived neurotrophic factor levels in hypothyroid rats. BMC Endocr Disord 2022; 22:188. [PMID: 35869475 PMCID: PMC9306081 DOI: 10.1186/s12902-022-01086-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dimethyl fumarate (DMF) is an effective drug for multiple sclerosis and can improve the cognitive dysfunction caused by streptozotocin, but the effect on cognitive dysfunction caused by hypothyroidism is unclear. METHODS After the hypothyroidism rat model induced by propylthiouracil, we gave rats 25 mg/kg DMF by gavage. The body weight during model building and administration was recorded. The levels of T4 and T3 in serum were detected by an automatic biochemical analyzer. Morris water maze test was used to detect the effect of DMF on cognitive learning ability. The effect of DMF on Nissl bodies in the brain tissue was evaluated by Nissl staining. The mRNA and protein levels of BDNF in brain tissue were detected by quantitative reverse transcription-polymerase chain reaction and Western blot. The degrees of p-AKT/AKT and p-CREB/CREB in brain tissue were detected by Western blot. RESULTS After DMF treatment, the body weight of hypothyroid rats recovered, and the levels of T3 and T4 in the serum were ameliorated. DMF also reduced the escape latency and distance traveled, and increased the swim speed. The number of Nissl bodies and expression of BDNF, p-AKT/AKT, and p-CREB/CREB in the brain tissue were increased after DMF treatment. CONCLUSION DMF improved the cognitive dysfunction of hypothyroid rats by increasing the level of BDNF in the brain tissue of hypothyroid rats.
Collapse
Affiliation(s)
- Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310000, China
| | - Yanbo Wang
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310000, China
| | - Xiaowei Wang
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
69
|
Lee B, Shin E, Song I, Chang B. Depression in Adolescence and Brain-Derived Neurotrophic Factor. Front Mol Neurosci 2022; 15:947192. [PMID: 35875661 PMCID: PMC9302599 DOI: 10.3389/fnmol.2022.947192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
The incidence of depression among adolescents has been rapidly increasing in recent years. Environmental and genetic factors have been identified as important risk factors for adolescent depression. However, the mechanisms underlying the development of adolescent depression that are triggered by these risk factors are not well understood. Clinical and preclinical studies have focused more on adult depression, and differences in depressive symptoms between adolescents and adults make it difficult to adequately diagnose and treat adolescent depression. Brain-derived neurotrophic factor (BDNF) is known to play a critical role in the pathophysiology of many psychiatric disorders, including depression. However, there are still few studies on adolescent depression. Therefore, in this review paper, the causes and treatment of adolescent depression and the function of BDNF are investigated.
Collapse
|
70
|
Chen Y, Li S, Zhang T, Yang F, Lu B. Corticosterone antagonist or TrkB agonist attenuates schizophrenia-like behavior in a mouse model combining Bdnf-e6 deficiency and developmental stress. iScience 2022; 25:104609. [PMID: 35789832 PMCID: PMC9250029 DOI: 10.1016/j.isci.2022.104609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yanhui Chen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyi Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100084, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Corresponding author
| |
Collapse
|
71
|
Yang S, Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 2022; 20:1479-1497. [PMID: 34525922 PMCID: PMC9881092 DOI: 10.2174/1570159x19666210915122820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China,Address correspondence to this author at the Anhui University of Chinese Medicine, Meishan Road 103, Hefei 230038, China; E-mail:
| |
Collapse
|
72
|
Dou SH, Cui Y, Huang SM, Zhang B. The Role of Brain-Derived Neurotrophic Factor Signaling in Central Nervous System Disease Pathogenesis. Front Hum Neurosci 2022; 16:924155. [PMID: 35814950 PMCID: PMC9263365 DOI: 10.3389/fnhum.2022.924155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have found abnormal levels of brain-derived neurotrophic factor (BDNF) in a variety of central nervous system (CNS) diseases (e.g., stroke, depression, anxiety, Alzheimer's disease, and Parkinson's disease). This suggests that BDNF may be involved in the pathogenesis of these diseases. Moreover, regulating BDNF signaling may represent a potential treatment for such diseases. With reference to recent research papers in related fields, this article reviews the production and regulation of BDNF in CNS and the role of BDNF signaling disorders in these diseases. A brief introduction of the clinical application status of BDNF is also provided.
Collapse
Affiliation(s)
- Shu-Hui Dou
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medicine, College of Agriculture, Hainan University, Haikou, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
73
|
Xu X, Liang Z, Lin Y, Rao J, Lin F, Yang Z, Wang R, Chen C. Comparing the Efficacy and Safety of Cell Transplantation for Spinal Cord Injury: A Systematic Review and Bayesian Network Meta-Analysis. Front Cell Neurosci 2022; 16:860131. [PMID: 35444516 PMCID: PMC9013778 DOI: 10.3389/fncel.2022.860131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo compare the safety and effectiveness of transplanted cells from different sources for spinal cord injury (SCI).DesignA systematic review and Bayesian network meta-analysis.Data SourcesMedline, Embase, and the Cochrane Central Register of Controlled Trials.Study SelectionWe included randomized controlled trials, case–control studies, and case series related to cell transplantation for SCI patients, that included at least 1 of the following outcome measures: American Spinal Cord Injury Association (ASIA) Impairment Scale (AIS grade), ASIA motor score, ASIA sensory score, the Functional Independence Measure score (FIM), International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS), or adverse events. Follow-up data were analyzed at 6 and 12 months.ResultsForty-four eligible trials, involving 1,266 patients, investigated 6 treatments: olfactory ensheathing cells (OECs), neural stem cells/ neural progenitor cells (NSCs), mesenchymal stem cells (MSCs), Schwann cells, macrophages, and combinations of cells (MSCs plus Schwann cells). Macrophages improved the AIS grade at 12 months (mean 0.42, 95% credible interval: 0–0.91, low certainty) and FIM score at 12 months (42.83, 36.33–49.18, very low certainty). MSCs improved the AIS grade at 6 months (0.42, 0.15–0.73, moderate certainty), the motor score at 6 months (4.43, 0.91–7.78, moderate certainty), light touch at 6 (10.01, 5.81–13.88, moderate certainty) and 12 months (11.48, 6.31–16.64, moderate certainty), pinprick score at 6 (14.54, 9.76–19.46, moderate certainty) and 12 months (12.48, 7.09–18.12, moderate certainty), and the IANR-SCIFRS at 6 (3.96, 0.62–6.97, moderate certainty) and 12 months (5.54, 2.45–8.42, moderate certainty). OECs improved the FIM score at 6 months (9.35, 1.71–17.00, moderate certainty). No intervention improved the motor score significantly at 12 months. The certainty of other interventions was low or very low. Overall, the number of adverse events associated with transplanted cells was low.ConclusionsPatients with SCI who receive transplantation of macrophages, MSCs, NSCs, or OECs may have improved disease prognosis. MSCs are the primary recommendations. Further exploration of the mechanism of cell transplantation in the treatment of SCI, transplantation time window, transplantation methods, and monitoring of the number of transplanted cells and cell survival is needed.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD 42021282043.
Collapse
|
74
|
Zhang D, Ji Y, Chen X, Chen R, Wei Y, Peng Q, Lin J, Yin J, Li H, Cui L, Lin Z, Cai Y. Peripheral Blood Circular RNAs as a Biomarker for Major Depressive Disorder and Prediction of Possible Pathways. Front Neurosci 2022; 16:844422. [PMID: 35431783 PMCID: PMC9009243 DOI: 10.3389/fnins.2022.844422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and have been reported to be associated with neuropsychiatric diseases, but their potential role in major depressive disorder (MDD) remains unclear. Here, we demonstrated that there was a disorder of circRNAs in the blood of MDD patients. It has been preliminarily proved that hsa_circ_0002473, hsa_circ_0079651, hsa_circ_0137187, hsa_circ_0006010, and hsa_circ_0113010 were highly expressed in MDD patients and can be used as diagnostic markers for MDD. Bioinformatics analysis revealed that hsa_circ_0079651, hsa_circ_0137187, hsa_circ_0006010, and hsa_circ_0113010 may affect the neuroplasticity of MDD through the ceRNA mechanism.
Collapse
Affiliation(s)
- Dandan Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - RunSen Chen
- Department of Rehabilitation Medicine Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China
| | - Yaxue Wei
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Peng
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hezhan Li
- School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Zhixiong Lin,
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Yujie Cai,
| |
Collapse
|
75
|
Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun Biol 2022; 5:236. [PMID: 35301411 PMCID: PMC8931075 DOI: 10.1038/s42003-022-03177-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) promotes the growth, differentiation, maintenance and survival of neurons. These attributes make BDNF a potentially powerful therapeutic agent. However, its charge, instability in blood, and poor blood brain barrier (BBB) penetrability have impeded its development. Here, we show that engineered clathrin triskelia (CT) conjugated to BDNF (BDNF-CT) and delivered intranasally increased hippocampal BDNF concentrations 400-fold above that achieved previously with intranasal BDNF alone. We also show that BDNF-CT targeted Tropomyosin receptor kinase B (TrkB) and increased TrkB expression and downstream signaling in iTat mouse brains. Mice were induced to conditionally express neurotoxic HIV Transactivator-of-Transcription (Tat) protein that decreases BDNF. Down-regulation of BDNF is correlated with increased severity of HIV/neuroAIDS. BDNF-CT enhanced neurorestorative effects in the hippocampus including newborn cell proliferation and survival, granule cell neurogenesis, synaptogenesis and increased dendritic integrity. BDNF-CT exerted cognitive-enhancing effects by reducing Tat-induced learning and memory deficits. These results show that CT bionanoparticles efficiently deliver BDNF to the brain, making them potentially powerful tools in regenerative medicine.
Collapse
|
76
|
Effects of Involuntary and Voluntary Exercise in Combination with Acousto-Optic Stimulation on Adult Neurogenesis in an Alzheimer's Mouse Model. Mol Neurobiol 2022; 59:3254-3279. [PMID: 35297012 DOI: 10.1007/s12035-022-02784-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
Single-factor intervention, such as physical exercise and auditory and visual stimulation, plays a positive role on the prevention and treatment of Alzheimer's disease (AD); however, the therapeutic effects of single-factor intervention are limited. The beneficial effects of these multifactor combinations on AD and its molecular mechanism have yet to be elucidated. Here, we investigated the effect of multifactor intervention, voluntary wheel exercise, and involuntary treadmill running in combination with acousto-optic stimulation, on adult neurogenesis and behavioral phenotypes in a mouse model of AD. We found that 4 weeks of multifactor intervention can significantly increase the production of newborn cells (BrdU+ cells) and immature neurons (DCX+ cells) in the hippocampus and lateral ventricle of Aβ oligomer-induced mice. Importantly, the multifactor intervention could promote BrdU+ cells to differentiate into neurons (BrdU+ DCX+ cells or BrdU+ NeuN+ cells) and astrocytes (BrdU+GFAP+ cells) in the hippocampus and ameliorate Aβ oligomer-induced cognitive impairment and anxiety- and depression-like behaviors in mice evaluated by novel object recognition, Morris water maze tests, elevated zero maze, forced swimming test, and tail suspension test, respectively. Moreover, multifactor intervention could lead to an increase in the protein levels of PSD-95, SYP, DCX, NeuN, GFAP, Bcl-2, BDNF, TrkB, and pSer473-Akt and a decrease in the protein levels of BAX and caspase-9 in the hippocampal lysates of Aβ oligomer-induced mice. Furthermore, sequencing analysis of serum metabolites revealed that aberrantly expressed metabolites modulated by multifactor intervention were highly enriched in the biological process associated with keeping neurons functioning and neurobehavioral function. Additionally, the intervention-mediated serum metabolites mainly participated in glutamate metabolism, glucose metabolism, and the tricarboxylic acid cycle in mice. Our findings suggest the potential of multifactor intervention as a non-invasive therapeutic strategy for AD to anti-Aβ oligomer neurotoxicity.
Collapse
|
77
|
Ju L, Yang J, Zhu T, Liu P, Yang J. BDNF-TrkB signaling-mediated upregulation of Narp is involved in the antidepressant-like effects of (2R,6R)-hydroxynorketamine in a chronic restraint stress mouse model. BMC Psychiatry 2022; 22:182. [PMID: 35291971 PMCID: PMC8922900 DOI: 10.1186/s12888-022-03838-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Preclinical studies have indicated that the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) is a rapid-acting antidepressant drug with limited dissociation properties and low abuse potential. However, its effects and molecular mechanisms remain unclear. In this work, we examined the involvement of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) and Narp in the antidepressant-like actions of (2R,6R)-HNK in a chronic restraint stress (CRS) mouse model. METHODS C57BL/6 male mice were subjected to CRS for 8 h per day for 14 consecutive days. Open field, forced swimming, novelty suppressed feeding, and tail suspension tests were performed after administering (2R,6R)-HNK (10 mg/kg), a combination of (2R,6R)-HNK and NBQX (an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist; 10 mg/kg), or a combination of (2R,6R)-HNK and ANA-12 (a TrkB receptor antagonist; 0.5 mg/kg). The mRNA levels of Bdnf and Narp in the hippocampus were determined by quantitative reverse transcription-PCR (qRT-PCR). Western blotting was used to determine the hippocampal protein levels of GluA1, GluA2, BDNF, Narp, PSD95, and synaptophysin, as well as the p-TrkB/TrkB protein ratio. RESULTS (2R,6R)-HNK had rapid antidepressant-like effects in CRS mice. Furthermore, (2R,6R)-HNK significantly ameliorated CRS-induced downregulation of GluA1, GluA2, BDNF, Narp, PSD95, and the p-TrkB/TrkB protein ratio in the hippocampus. The effects of (2R,6R)-HNK were blocked by combinations with NBQX or ANA-12. CONCLUSION BDNF-TrkB signaling-mediated upregulation of Narp in the hippocampus may play a key role in the antidepressant-like effect of (2R,6R)-HNK in the CRS model of depression.
Collapse
Affiliation(s)
- Lingsha Ju
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Tingting Zhu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
78
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
79
|
Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23031844. [PMID: 35163764 PMCID: PMC8836876 DOI: 10.3390/ijms23031844] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| | | |
Collapse
|
80
|
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:86-103. [PMID: 34893785 DOI: 10.1038/s41583-021-00540-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
81
|
Khoodoruth MAS, Estudillo-Guerra MA, Pacheco-Barrios K, Nyundo A, Chapa-Koloffon G, Ouanes S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front Psychiatry 2022; 13:886918. [PMID: 35492692 PMCID: PMC9047946 DOI: 10.3389/fpsyt.2022.886918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders are among the most common psychiatric conditions and contribute to significant morbidity. Even though the use of antidepressants revolutionized the management of depression and had a tremendous positive impact on the patient's outcome, a significant proportion of patients with major depressive disorder (MDD) show no or partial or response even with adequate treatment. Given the limitations of the prevailing monoamine hypothesis-based pharmacotherapy, glutamate and glutamatergic related pathways may offer an alternative and a complementary option for designing novel intervention strategies. Over the past few decades, there has been a growing interest in understanding the neurobiological underpinnings of glutamatergic dysfunctions in the pathogenesis of depressive disorders and the development of new pharmacological and non-pharmacological treatment options. There is a growing body of evidence for the efficacy of neuromodulation techniques, including transcranial magnetic stimulation, transcutaneous direct current stimulation, transcranial alternating current stimulation, and photo-biomodulation on improving connectivity and neuroplasticity associated with depression. This review attempts to revisit the role of glutamatergic neurotransmission in the etiopathogenesis of depressive disorders and review the current neuroimaging, neurophysiological and clinical evidence of these neuromodulation techniques in the pathophysiology and treatment of depression.
Collapse
Affiliation(s)
| | - Maria Anayali Estudillo-Guerra
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States.,Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Azan Nyundo
- Department of Psychiatry and Mental Health, School of Medicine and Dental Health, The University of Dodoma, Dodoma, Tanzania
| | | | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
82
|
Ramnauth AD, Maynard KR, Kardian AS, Phan BN, Tippani M, Rajpurohit S, Hobbs JW, Cerceo Page S, Jaffe AE, Martinowich K. Induction of Bdnf from promoter I following electroconvulsive seizures contributes to structural plasticity in neurons of the piriform cortex. Brain Stimul 2022; 15:427-433. [PMID: 35183789 PMCID: PMC8957536 DOI: 10.1016/j.brs.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF). HYPOTHESIS We hypothesized that cells expressing the Bdnf exon 1-containing isoform are important for ECS-induced structural plasticity in the piriform cortex, a highly epileptogenic region that is responsive to ECS. METHODS We selectively labeled Bdnf exon 1-expressing neurons in mouse piriform cortex using Cre recombinase dependent on GFP technology (CRE-DOG). We then quantified changes in dendrite morphology and density of Bdnf exon 1-expressing neurons. RESULTS Loss of promoter I-derived BDNF caused changes in spine density and morphology in Bdnf exon 1-expressing neurons following ECS. CONCLUSIONS Promoter I-derived Bdnf is required for ECS-induced dendritic structural plasticity in Bdnf exon 1-expressing neurons.
Collapse
Affiliation(s)
- Anthony D. Ramnauth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Alisha S. Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - BaDoi N. Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Sumita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - John W. Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
83
|
Pigment epithelium-derived factor may induce antidepressant phenotypes in mice by the prefrontal cortex. Neurosci Lett 2021; 771:136423. [PMID: 34965441 DOI: 10.1016/j.neulet.2021.136423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional glycoprotein encoded by SERPINF1 and our previous study reported that PEDF may have antidepressant effects. As a key brain region regulating cognition, memory and emotion, the prefrontal cortex (PFC) has been studied extensively in major depressive disorder (MDD), but there are few reports on the relationship between PEDF and the PFC. In this study, enzyme-linked immunosorbent assay showed that the PEDF level was decreased in the plasma of MDD patients compared with that of healthy controls. Western blotting validated that the PEDF expression in the PFC was downregulated in the mouse chronic social defeat stress and rat chronic unpredictable mild stress models of depression. Correspondingly, normal mice overexpressing PEDF in the PFC showed depression-resistant phenotypes. We detected PFC metabolite levels by liquid chromatography-tandem mass spectrometry and found significant upregulation of 5-hydroxyindoleacetic acid, kynurenine, 5-hydroxytryptamine, ornithine and glutamine, and downregulation of 5-hydroxytryptophan, glutamic acid and aspartic acid in PEDF-overexpressing mice compared with control mice, in which no such changes were detected. Combined with the above findings, this provides an insight into a potential mechanism of the antidepressant effects of PEDF via the PFC, which may help to improve understanding of depression pathophysiology.
Collapse
|
84
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
85
|
Zhao Z, Hu X, Wang J, Wang J, Hou Y, Chen S. Zinc finger E-Box binding homeobox 2 (ZEB2)-induced astrogliosis protected neuron from pyroptosis in cerebral ischemia and reperfusion injury. Bioengineered 2021; 12:12917-12930. [PMID: 34852714 PMCID: PMC8809936 DOI: 10.1080/21655979.2021.2012551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022] Open
Abstract
Ischemia injury can cause cell death or impairment of neuron and astrocytes, and thus induce loss of nerve function. central nervous systems injury induces an aberrant activation of astrocytes called astrogliosis. Pyroptosis, which is a kind of programmed cell death, was proved play an important role in ischemia injury. Zinc Finger E-Box Binding Homeobox 2 (ZEB2) promoted neuron astrogliosis, which play a protected role in neuron regeneration. However, its precise mechanism remains unclear. This study investigated the mechanism of ZEB2 on astrogliosis and neuron regeneration after cerebral ischemia reperfusion condition. To confirm our hypothesis, Neurons and astrocytes were isolated from fetal Sprague Dawley rats, in vivo Middle Cerebral Artery Occlusion/reperfusion (MCAO/R) rat model and in vitro oxygen-glucose deprivation/reperfusion (OGD/R)-treated astrocytes and neurocytes model were constructed. Our results showed that ZEB2 was expressed in nucleus of astrocyte and upregulated after OGD/R induction, ZEB2 promoted astrogliosis. Further upregulation of ZEB2 promoted the astrogliosis, which promoted neuron proliferation and regeneration by decreased pyroptosis. Moreover, this finding was further confirmed in vivo MCAO/R rat model. Overexpression of ZEB2 promoted astrogliosis, which decreased infarct volume and accumulated recovery of neurological function by alleviated pyroptosis. This finding revealed that ZEB2 was a regulator of the astrogliosis after ischemia/reperfusion injury, and then astrogliosis promoted neuron regeneration via decreased neuron pyroptosis. Therefore, ZEB2 may be a potential therapeutic target for ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhixin Zhao
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Jie Wang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Yong Hou
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Suyun Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| |
Collapse
|
86
|
Nowroozi A, Salehi MA, Mohammadi S. Brain-derived neurotrophic factor in patients with epilepsy: A systematic review and meta-analysis. Epilepsy Res 2021; 178:106794. [PMID: 34773766 DOI: 10.1016/j.eplepsyres.2021.106794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Epilepsy affects almost 1% of people and is characterized by sudden seizures. To date, no reliable biomarker has been found to diagnose or predict the outcomes of epilepsy. Brain-derived neurotrophic factor (BDNF) levels have recently been shown to differ between patients with certain neurologic disorders and normal population, and it is unknown whether this is the case for epilepsy. In this study, we mainly aim to answer this question. METHODS We searched three databases for studies comparing BDNF levels between patients with epilepsy and controls. Quality assessment of included studies was performed using the Newcastle-Ottawa scale and statistical analyses were carried out in STATA software version 16. RESULTS Final analyses included 10 studies involving 403 patients with epilepsy. BDNF levels were statistically similar between patients and controls (standardized mean difference (SMD) = - 0.30, 95% CI = - 1.32 to 0.71, p = 0.56). When categorized by epilepsy subtype, patients with partial epilepsy showed lower BDNF measures than controls (95% CI = - 1.42 to - 0.32, p < 0.01), while the difference was not significant in patients with generalized epilepsy (95% CI = - 2.81 to 1.65, p = 0.61). Subgroup analyses indicated that BDNF was lower in patients than controls when age or sex matching was not present. Patient samples acquired in the morning also showed significantly lower BDNF levels than controls, unlike afternoon samples. Meta-regression identified no predictor for the difference in BDNF levels. CONCLUSION Generally, patients with epilepsy had BDNF levels similar to general population, although patients with partial epilepsy showed lower BDNF levels. Taking into account the sub-group analyses, further studies with higher qualities are required to evaluate the role and utility of BDNF in epilepsy.
Collapse
Affiliation(s)
- Ali Nowroozi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
87
|
BDNF Genetic Variant and Its Genotypic Fluctuation in Major Depressive Disorder. Behav Neurol 2021; 2021:7117613. [PMID: 34760029 PMCID: PMC8575598 DOI: 10.1155/2021/7117613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder (MDD) still has an unknown etiology and mechanisms. Many studies have been conducted seeking to associate and understand the connection of different genetic variants to this disease. Researchers have extensively studied the brain-derived neurotrophic factor (BDNF) Val66Met genetic variant in MDD; yet, their findings remain inconsistent. This systematic review sought to verify the GG (Val/Val) genotype frequency fluctuation in different populations with MDD. For this, we searched in different databases and, after applying the eligibility criteria, selected 17 articles. Most studies demonstrate the higher frequency of the ancestral (wild) GG (Val/Val) genotype, although associations of the polymorphic A (Met) allele, changes in BDNF protein serum levels, or both were also found in MDD, whether related to the disease's development or other factors. Nevertheless, despite these findings, disagreements between several studies are seen. For this reason, further BDNF Val66Met genetic variant studies should not only bridge the gap in the knowledge of this polymorphism's role in MDD's different facets but also analyze the genotypic and phenotypic heterogeneity in different populations to help provide a better quality of life for patients.
Collapse
|
88
|
Vignoli B, Sansevero G, Sasi M, Rimondini R, Blum R, Bonaldo V, Biasini E, Santi S, Berardi N, Lu B, Canossa M. Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun Biol 2021; 4:1152. [PMID: 34611268 PMCID: PMC8492720 DOI: 10.1038/s42003-021-02678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Memory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation. This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits. Beatrice Vignoli et al. examine potential molecular mechanisms of long-term storage information in mice. Their results suggest that astrocytes may help convert neuronal BDNF precursor into active prodomain and mature forms to enhance post-synaptic signaling and memory, providing further insight into the development of memory circuits.
Collapse
Affiliation(s)
- Beatrice Vignoli
- Department of Physics, University of Trento, 38123, Povo (TN), Italy. .,Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| | - Gabriele Sansevero
- Neuroscience Institute, National Research Council (IN-CNR), 56100, Pisa, Italy
| | - Manju Sasi
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Valerio Bonaldo
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Emiliano Biasini
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Spartaco Santi
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", National Research Council of Italy, 40136, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Nicoletta Berardi
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), University of Florence, 50100, Florence, Italy
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Marco Canossa
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| |
Collapse
|
89
|
Recart VM, Spohr L, Soares MSP, Luduvico KP, Stefanello FM, Spanevello RM. Therapeutic approaches employing natural compounds and derivatives for treating bipolar disorder: emphasis on experimental models of the manic phase. Metab Brain Dis 2021; 36:1481-1499. [PMID: 34264451 DOI: 10.1007/s11011-021-00776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/06/2021] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a complex psychiatric disease characterized by mood swings that include episodes of mania and depression. Given its cyclical nature, BD is especially hard to model; however, the standard practice has been to mimic manic episodes in animal models. Despite scientific advances, the pathophysiology of BD is not fully understood, and treatment remains limited. In the last years, natural products have emerged as potential neuroprotective agents for the treatment of psychiatric diseases. Thus, the aim of this review was to explore the therapeutic potential of natural compounds and derivatives against BD, taking into account preclinical and clinical studies. Reliable articles indexed in databases such as PubMed, Web of Science and Science Direct were used. In clinical studies, treatment with herbal plants extracts, omega-3, inositol, n-acetylcysteine and vitamin D has been associated with a clinical improvement in symptoms of mania and depression in BD patients. In animal models, it has been shown that red fruits extracts, curcumin, quercetin, gallic acid, alpha-lipoic acid and carvone can modulate many neurochemical pathways involved in the pathophysiology of manic episodes. Thus, this review appointed the advances in the consumption of natural compounds and derivatives as an important therapeutic strategy to mitigate the symptoms of BD.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
90
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
91
|
Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. CHRONIC STRESS 2021; 5:24705470211029254. [PMID: 34485797 PMCID: PMC8408896 DOI: 10.1177/24705470211029254] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention.
Collapse
Affiliation(s)
- Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA.,Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| |
Collapse
|
92
|
Wang XL, Feng ST, Wang YT, Chen NH, Wang ZZ, Zhang Y. Paeoniflorin: A neuroprotective monoterpenoid glycoside with promising anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153669. [PMID: 34334273 DOI: 10.1016/j.phymed.2021.153669] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Depression, as a prevalent and debilitating psychiatric disease, severely decreases the life quality of individuals and brings heavy burdens to the whole society. Currently, some antidepressants are applied in the treatment of severe depressive symptoms, while there are still some undesirable drawbacks. Paeoniflorin is a monoterpenoid glycoside that was firstly extracted from Paeonia lactiflora Pall, a traditional Chinese herb that is widely used in the Chinese herbal formulas for treating depression. PURPOSE This review summarized the previous pre-clinical studies of paeoniflorin in treating depression and further discussed the potential anti-depressive mechanisms for that paeoniflorin to be further explored and utilized in the treatment of depression clinically. METHODS Some electronic databases, e.g., PubMed and China National Knowledge Infrastructure, were searched from inception until April 2021. RESULTS This review summarized the effective anti-depressive properties of paeoniflorin, which is related to its functions in the upregulation of the levels of monoaminergic neurotransmitters, inhibition of the hypothalamic-pituitary-adrenal axis hyperfunction, promotion of neuroprotection, promotion of hippocampus neurogenesis, and upregulation of brain-derived neurotrophic factor level, inhibition of inflammatory reaction, downregulation of nitric oxide level, etc. CONCLUSION: This review focused on the pre-clinical studies of paeoniflorin in depression and summarized the recent development of the anti-depressive mechanisms of paeoniflorin, which approves the role of paeoniflorin plays in anti-depression. However, more high-quality pre-clinical and clinical studies are expected to be conducted in the future.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
93
|
Kibitov AO, Trusova AV, Chuprova NA, Solovieva MG, Grechaniy SV, Soldatkin VA, Yakovlev AN, Ilyuk RD, Nikolishin AE, Krupitsky EM, Shmukler AB, Egorov AY. [An associations of possible genetic risk markers for Internet addiction with childhood trauma experience and personality traits in young adults : preliminary results]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:77-83. [PMID: 34460161 DOI: 10.17116/jnevro202112107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study was to test an associations of the preliminary genetic risk markers for Internet addiction (IA) with clinical, psychological and personality characteristics, taking into account the childhood traumatic experience, in 44 IA persons compared with 120 healthy individuals. MATERIAL AND METHODS The study included 164 participants: 44 individuals with IZ (group IZ), male and female, aged 16 to 30 years in the absence of diagnoses of mental health problems. diseases from rubrics F00-09 and F20-29 (ICD-10) and 120 healthy (control group). RESULTS AND CONCLUSION We have found an associations of the preliminary IA genetic risk markers with some personality traits and behavioral characteristics (TCI-125, TIPI) and with the childhood trauma experience (ACE IQ, CTQ), both for healthy individuals and to a greater extent for IA individuals, that may suggests the possible effects of the gene-environment interaction on a risk of developing IA. The data obtained on the structure of associations between IA genetic risk markers and individual psychological characteristics under the significant influence of the childhood trauma experience allow us to proceed with the construction of models for IA risk prediction taking into account the "gene - environment" interactions.
Collapse
Affiliation(s)
- A O Kibitov
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia.,V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - A V Trusova
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.,Saint Petersburg State University, St. Petersburg, Russia
| | - N A Chuprova
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - M G Solovieva
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - S V Grechaniy
- Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - V A Soldatkin
- Rostov State Medical University, Rostov-on-Don, Russia
| | - A N Yakovlev
- Lipetsk Regional Addictions Hospital, Lipetsk, Russia
| | - R D Ilyuk
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - A E Nikolishin
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - E M Krupitsky
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.,I.P. Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - A B Shmukler
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - A Yu Egorov
- Saint Petersburg State University, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia.,I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia
| |
Collapse
|
94
|
Xu M, Zhu J, Liu XD, Luo MY, Xu NJ. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodegener 2021; 10:30. [PMID: 34389067 PMCID: PMC8361623 DOI: 10.1186/s40035-021-00254-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
The epigenetic clock is defined by the DNA methylation (DNAm) level and has been extensively applied to distinguish biological age from chronological age. Aging-related neurodegeneration is associated with epigenetic alteration, which determines the status of diseases. In recent years, extensive research has shown that physical exercise (PE) can affect the DNAm level, implying a reversal of the epigenetic clock in neurodegeneration. PE also regulates brain plasticity, neuroinflammation, and molecular signaling cascades associated with epigenetics. This review summarizes the effects of PE on neurodegenerative diseases via both general and disease-specific DNAm mechanisms, and discusses epigenetic modifications that alleviate the pathological symptoms of these diseases. This may lead to probing of the underpinnings of neurodegenerative disorders and provide valuable therapeutic references for cognitive and motor dysfunction.
Collapse
Affiliation(s)
- Miao Xu
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500, China.,Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - JiaYi Zhu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming-Ying Luo
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
95
|
Cui YH, Zhou SF, Liu Y, Wang S, Li F, Dai RP, Hu ZL, Li CQ. Injection of Anti-proBDNF Attenuates Hippocampal-Dependent Learning and Memory Dysfunction in Mice With Sepsis-Associated Encephalopathy. Front Neurosci 2021; 15:665757. [PMID: 34354558 PMCID: PMC8329425 DOI: 10.3389/fnins.2021.665757] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a risk factor for cognitive and memory dysfunction; however, the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) was reported to have a positive effect on cognition and emotion regulation, but the study of its precursor, proBDNF, has been limited. This study aimed to elucidate the effects and associated mechanisms of hippocampal proBDNF in a lipopolysaccharide (LPS)-induced SAE mouse model. In this study, we found that the mice exhibited cognitive dysfunction on day 7 after LPS injection. The expression of proBDNF and its receptor, p75NTR, was also increased in the hippocampus, while the levels of BDNF and its receptor, TrkB, were decreased. A co-localization study showed that proBDNF and p75NTR were mainly co-localized with neurons. Furthermore, LPS treatment reduced the expression of NeuN, Nissl bodies, GluR4, NR1, NR2A, and NR2B in the hippocampus of SAE mice. Furthermore, an intrahippocampal or intraperitoneal injection of anti-proBDNF antibody was able to ameliorate LPS-induced cognitive dysfunction and restore the expression of NeuN, Nissl bodies, GluR4, NR1, NR2A, NR2B, and PSD95. These results indicated that treatment with brain delivery by an intrahippocampal and systemic injection of mAb-proBDNF may represent a potential therapeutic strategy for treating patients with SAE.
Collapse
Affiliation(s)
- Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Wang
- Department of Medical Research Center and Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
96
|
Murawska-Ciałowicz E, Wiatr M, Ciałowicz M, Gomes de Assis G, Borowicz W, Rocha-Rodrigues S, Paprocka-Borowicz M, Marques A. BDNF Impact on Biological Markers of Depression-Role of Physical Exercise and Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7553. [PMID: 34300001 PMCID: PMC8307197 DOI: 10.3390/ijerph18147553] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022]
Abstract
Depression is the most common and devastating psychiatric disorder in the world. Its symptoms, especially during the pandemic, are observed in all age groups. Exercise training (ET) is well known as a non-pharmacological strategy to alleviate clinical depression. The brain-derived neurotrophic factor (BDNF) is one of the biological factors whose expression and secretion are intensified in response to ET. BDNF is also secreted by contracted skeletal muscle that likely exerts para-, auto- and endocrine effects, supporting the crosstalk between skeletal muscle and other distant organs/tissues, such as the nervous system. This finding suggests that they communicate and work together to induce improvements on mood, cognition, and learning processes as BDNF is the main player in the neurogenesis, growth, and survival of neurons. Therefore, BDNF has been recognized as a therapeutic factor in clinical depression, especially in response to ET. The underlying mechanisms through which ET impacts depression are varied. The aim of this review was to provide information of the biological markers of depression such as monoamines, tryptophan, endocannabinoids, markers of inflammatory processes (oxidative stress and cytokines) stress and sex hormones and their relationship to BDNF. In addition, we reviewed the effects of ET on BNDF expression and how it impacts depression as well as the potential mechanisms mediating this process, providing a better understanding of underlying ET-related mechanisms in depression.
Collapse
Affiliation(s)
| | - Mona Wiatr
- Department of Physiotherapy, Physiotherapy Faculty, Medical University in Wroclaw, 50-355 Wroclaw, Poland; (M.W.); (M.P.-B.)
| | - Maria Ciałowicz
- Physiotherapy Faculty, University School of Physical Education, 51-612 Wroclaw, Poland;
| | - Gilmara Gomes de Assis
- Department of Molecular Biology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Wojciech Borowicz
- Neurological Diseases Department, Medical University in Wroclaw, 51-618 Wroclaw, Poland;
| | - Silvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal;
- Health Sciences and Human Development (CIDESD), Research Centre in Sports Sciences, Quinta de Prados, Edifício Ciências de Desporto, 5001-801 Vila Real, Portugal
- Tumor & Microenvironment Interactions Group, i3S, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Małgorzata Paprocka-Borowicz
- Department of Physiotherapy, Physiotherapy Faculty, Medical University in Wroclaw, 50-355 Wroclaw, Poland; (M.W.); (M.P.-B.)
| | - Adilson Marques
- CIPER, Faculty of Human Kinetics, University of Lisboa, 1499-002 Cruz Quebrada, Portugal;
| |
Collapse
|
97
|
Molecular Basis of Late-Life Depression. Int J Mol Sci 2021; 22:ijms22147421. [PMID: 34299040 PMCID: PMC8303929 DOI: 10.3390/ijms22147421] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Late-life depression (LLD), compared to depression at a young age, is more likely to have poor prognosis and high risk of progression to dementia. A recent systemic review and meta-analysis of the present antidepressants for LLD showed that the treatment response rate was 48% and the remission rate was only 33.7%, thus implying the need to improve the treatment with other approaches in the future. Recently, agents modulating the glutamatergic system have been tested for mental disorders such as schizophrenia, dementia, and depressive disorder. Ketamine, a noncompetitive NMDA receptor (NMDAR) antagonist, requires more evidence from randomized clinical trials (RCTs) to prove its efficacy and safety in treating LLD. The metabotropic receptors (mGluRs) of the glutamatergic system are family G-protein-coupled receptors, and inhibition of the Group II mGluRs subtypes (mGlu2 and mGlu3) was found to be as effective as ketamine in exerting rapid antidepressant activity in some animal studies. Inflammation has been thought to contribute to depression for a long time. The cytokine levels not only increase with age but also decrease serotonin. Regarding LLD, interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) released in vivo are likely to contribute to the reduced serotonin level. Brain-derived neurotrophic factor (BDNF), a growth factor and a modulator in the tropomyosin receptor kinase (Trk) family of tyrosine kinase receptors, probably declines quantitatively with age. Recent studies suggest that BDNF/TrkB decrement may contribute to learning deficits and memory impairment. In the process of aging, physiological changes in combination with geriatric diseases such as vascular diseases result in poorer prognosis of LLD in comparison with that of young-age depression. Treatments with present antidepressants have been generally unsatisfactory. Novel treatments such as anti-inflammatory agents or NMDAR agonists/antagonists require more studies in LLD. Last but not least, LLD and dementia, which share common pathways and interrelate reciprocally, are a great concern. If it is possible to enhance the treatment of LDD, dementia can be prevented or delated.
Collapse
|
98
|
Silva Junior JF, Eckeli AL, Ribeiro CCC, Batista RFL, da Silva AAM, Alves CMC. Influence of excessive daily sleeping and sleep quality on BDNF and NGF serum levels in adolescents. Sleep Med 2021; 84:415-423. [PMID: 34329829 DOI: 10.1016/j.sleep.2021.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) and neural growth factor (NGF) are widely expressed in the brain and play an important role in neuroplasticity, neurogenesis, and increased neuronal connections. Previous studies have shown that reduced serum levels of these proteins are associated with disorders in human sleep. OBJECTIVE Current study evaluates the prevalence in adolescents of excessive daytime sleepiness (EDS) and sleep quality, and analyzes the influence of these factors on BDNF and NGF serum levels. METHODS A cross-section population-based study was conducted with data from a Brazilian birth cohort, with a sample of five hundred and thirteen 18-19-year-old adolescents. Sleep quality was assessed by the Pittsburgh Sleep Quality Index and EDS by Epworth Sleepiness Scale. Neurotrophins serum levels were measured by Luminex™ technology kits. Analysis consisted of marginal structural models which compared people who were exposed and not exposed to sleep quality and EDS. RESULTS Poor sleep quality and EDS were detected in 62.57% and 36.35% of the sample. Adolescents with poor sleep quality and EDS had -0.39 (p-value = 0.049) and -0.51 pg/ml in NGF (p-value = 0.009). Individuals with self-reported sleep disorder had lower serum levels of NGF (Coef. -0.41, p-value = 0.045). CONCLUSION High prevalence of EDS and low sleep quality in a population of adolescents were evidenced. Poor sleep quality and EDS were associated with lower NGF levels, whilst adolescents with self-reported sleep disorder had lower serum levels of NGF.
Collapse
Affiliation(s)
| | - Alan Luiz Eckeli
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
99
|
Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener 2021; 16:29. [PMID: 33926499 PMCID: PMC8086309 DOI: 10.1186/s13024-021-00452-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that is characterized by neurodegeneration, cognitive impairment, and an eventual inability to perform daily tasks. The etiology of Alzheimer's is complex, with numerous environmental and genetic factors contributing to the disease. Late-onset AD is highly heritable (60 to 80%), and over 40 risk loci for AD have been identified via large genome-wide association studies, most of which are common variants with small effect sizes. Although these discoveries have provided novel insight on biological contributors to AD, disease-modifying treatments remain elusive. Recently, the concepts of resistance to pathology and resilience against the downstream consequences of pathology have been of particular interest in the Alzheimer's field as studies continue to identify individuals who evade the pathology of the disease even into late life and individuals who have all of the neuropathological features of AD but evade downstream neurodegeneration and cognitive impairment. It has been hypothesized that a shift in focus from Alzheimer's risk to resilience presents an opportunity to uncover novel biological mechanisms of AD and to identify promising therapeutic targets for the disease. This review will highlight a selection of genes and variants that have been reported to confer protection from AD within the literature and will also discuss evidence for the biological underpinnings behind their protective effect with a focus on genes involved in lipid metabolism, cellular trafficking, endosomal and lysosomal function, synaptic function, and inflammation. Finally, we offer some recommendations in areas where the field can rapidly advance towards precision interventions that leverage the ideas of protection and resilience for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Rebecca L. Weiner
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
100
|
Si J, Zhang H, Zhu L, Chen A. The Relationship between Overweight/Obesity and Executive Control in College Students: The Mediating Effect of BDNF and 5-HT. Life (Basel) 2021; 11:313. [PMID: 33916706 PMCID: PMC8065408 DOI: 10.3390/life11040313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
The main aim of this study was to explore the association between overweight/obesity and executive control (EC) in young adults, and to further analyze the mediating effect of brain-derived neurotrophic factor (BDNF) and serotonin (5-hydroxytryptamine (5-HT)) on the relationship between overweight/obesity and EC. A total of 449 college students aged between 18 and 20 years were recruited for the study between March and December 2019. Their height and weight were then measured professionally. Subsequently, body mass index (BMI) was calculated as weight (kg) divided by the square of height (m). The EC of the participants was then estimated using the Flanker task, while their serum BDNF levels and 5-HT levels were measured using an enzyme-linked immunosorbent assay (ELISA) kit. Finally, the multiple intermediary models in SPSS were used to analyze the mediating effect of 5-HT and BDNF between overweight/obesity and EC. The result show that the overweight/obesity of college students was positively correlated with the response of EC (p ≤ 0.005). However, it was negatively correlated with BDNF (p ≤ 0.05) and 5-HT (p ≤ 0.05). Moreover, BDNF (p ≤ 0.001) and 5-HT (p ≤ 0.001) were negatively correlated with the response of EC. The BDNF level played a partial mediating role between overweight/obesity and EC that accounted for 7.30% of the total effect value. Similarly, the 5-HT of college students played a partial mediating role between overweight/obesity and EC that accounted for 8.76% of the total effect value. Gender and age had no regulatory effect on the relationship between overweight/obesity, BDNF, 5-HT, and EC. This study provides the evidence that 5-HT and BDNF mediated the association between overweight/obesity and executive control. It is indicated that 5-HT and BDNF might be the biological pathways underpinning the link between overweight/obesity and executive control.
Collapse
Affiliation(s)
- Jing Si
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Z.)
| | - Haidi Zhang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Z.)
| | - Lina Zhu
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China;
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Z.)
| |
Collapse
|