51
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
52
|
Leblanc S, Brunet MA, Jacques JF, Lekehal AM, Duclos A, Tremblay A, Bruggeman-Gascon A, Samandi S, Brunelle M, Cohen AA, Scott MS, Roucou X. Newfound Coding Potential of Transcripts Unveils Missing Members of Human Protein Communities. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:515-534. [PMID: 36183975 PMCID: PMC10787177 DOI: 10.1016/j.gpb.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Recent proteogenomic approaches have led to the discovery that regions of the transcriptome previously annotated as non-coding regions [i.e., untranslated regions (UTRs), open reading frames overlapping annotated coding sequences in a different reading frame, and non-coding RNAs] frequently encode proteins, termed alternative proteins (altProts). This suggests that previously identified protein-protein interaction (PPI) networks are partially incomplete because altProts are not present in conventional protein databases. Here, we used the proteogenomic resource OpenProt and a combined spectrum- and peptide-centric analysis for the re-analysis of a high-throughput human network proteomics dataset, thereby revealing the presence of 261 altProts in the network. We found 19 genes encoding both an annotated (reference) and an alternative protein interacting with each other. Of the 117 altProts encoded by pseudogenes, 38 are direct interactors of reference proteins encoded by their respective parental genes. Finally, we experimentally validate several interactions involving altProts. These data improve the blueprints of the human PPI network and suggest functional roles for hundreds of altProts.
Collapse
Affiliation(s)
- Sébastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Marie A Brunet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Jean-François Jacques
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Amina M Lekehal
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Andréa Duclos
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Alexia Tremblay
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Alexis Bruggeman-Gascon
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sondos Samandi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Mylène Brunelle
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Alan A Cohen
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
53
|
Liu GY, Jouandin P, Bahng RE, Perrimon N, Sabatini DM. An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.541239. [PMID: 37292894 PMCID: PMC10245982 DOI: 10.1101/2023.05.25.541239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animals must sense and respond to nutrient availability in their local niche. This task is coordinated in part by the mTOR complex 1 (mTORC1) pathway, which regulates growth and metabolism in response to nutrients1-5. In mammals, mTORC1 senses specific amino acids through specialized sensors that act through the upstream GATOR1/2 signaling hub6-8. To reconcile the conserved architecture of the mTORC1 pathway with the diversity of environments that animals can occupy, we hypothesized that the pathway might maintain plasticity by evolving distinct nutrient sensors in different metazoan phyla1,9,10. Whether such customization occurs-and how the mTORC1 pathway might capture new nutrient inputs-is not known. Here, we identify the Drosophila melanogaster protein Unmet expectations (Unmet, formerly CG11596) as a species-restricted nutrient sensor and trace its incorporation into the mTORC1 pathway. Upon methionine starvation, Unmet binds to the fly GATOR2 complex to inhibit dTORC1. S-adenosylmethionine (SAM), a proxy for methionine availability, directly relieves this inhibition. Unmet expression is elevated in the ovary, a methionine-sensitive niche11, and flies lacking Unmet fail to maintain the integrity of the female germline under methionine restriction. By monitoring the evolutionary history of the Unmet-GATOR2 interaction, we show that the GATOR2 complex evolved rapidly in Dipterans to recruit and repurpose an independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes and expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise highly conserved system.
Collapse
Affiliation(s)
- Grace Y. Liu
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology; 455 Main Street, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School; Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA 02115, USA
- Present address: Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-UM-ICM; Campus Val d’Aurelle, F-34298 Montpellier Cedex 5, France
| | - Raymond E. Bahng
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology; 455 Main Street, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School; Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA 02115, USA
| | | |
Collapse
|
54
|
Gerasimenko A, Baldassari S, Baulac S. mTOR pathway: Insights into an established pathway for brain mosaicism in epilepsy. Neurobiol Dis 2023; 182:106144. [PMID: 37149062 DOI: 10.1016/j.nbd.2023.106144] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an essential regulator of numerous cellular activities such as metabolism, growth, proliferation, and survival. The mTOR cascade recently emerged as a critical player in the pathogenesis of focal epilepsies and cortical malformations. The 'mTORopathies' comprise a spectrum of cortical malformations that range from whole brain (megalencephaly) and hemispheric (hemimegalencephaly) abnormalities to focal abnormalities, such as focal cortical dysplasia type II (FCDII), which manifest with drug-resistant epilepsies. The spectrum of cortical dysplasia results from somatic brain mutations in the mTOR pathway activators AKT3, MTOR, PIK3CA, and RHEB and from germline and somatic mutations in mTOR pathway repressors, DEPDC5, NPRL2, NPRL3, TSC1 and TSC2. The mTORopathies are characterized by excessive mTOR pathway activation, leading to a broad range of structural and functional impairments. Here, we provide a comprehensive literature review of somatic mTOR-activating mutations linked to epilepsy and cortical malformations in 292 patients and discuss the perspectives of targeted therapeutics for personalized medicine.
Collapse
Affiliation(s)
- Anna Gerasimenko
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; APHP Sorbonne Université, GH Pitié Salpêtrière et Trousseau, Département de Génétique, Centre de référence "déficiences intellectuelles de causes rares", Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
55
|
Yan G, Yang J, Li W, Guo A, Guan J, Liu Y. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing. Nat Cell Biol 2023; 25:754-764. [PMID: 37037994 DOI: 10.1038/s41556-023-01123-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an essential hub that integrates nutrient signals and coordinates metabolism to control cell growth. Amino acid signals are detected by sensor proteins and relayed to the GATOR2 and GATOR1 complexes to control mTORC1 activity. Here we perform genome-wide CRISPR/Cas9 screens, coupled with an assay for mTORC1 activity based on fluorescence-activated cell sorting analysis of pS6, to identify potential regulators of mTORC1-dependent amino acid sensing. We then focus on interleukin enhancer binding factor 3 (ILF3), one of the candidate genes from the screen. ILF3 tethers the GATOR complexes to lysosomes to control mTORC1. Adding a lysosome-targeting sequence to the GATOR2 component WDR24 bypasses the requirement for ILF3 to modulate amino-acid-dependent mTORC1 signalling. ILF3 plays an evolutionarily conserved role in human and mouse cells, and in worms to regulate the mTORC1 pathway, control autophagy activity and modulate the ageing process.
Collapse
Affiliation(s)
- Guokai Yan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinxin Yang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wen Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ao Guo
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jialiang Guan
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
56
|
Yin S, Liu L, Ball LE, Wang Y, Bedford MT, Duncan SA, Wang H, Gan W. CDK5-PRMT1-WDR24 signaling cascade promotes mTORC1 signaling and tumor growth. Cell Rep 2023; 42:112316. [PMID: 36995937 PMCID: PMC10539482 DOI: 10.1016/j.celrep.2023.112316] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
The mammalian target of rapamycin complex1 (mTORC1) is a central regulator of metabolism and cell growth by sensing diverse environmental signals, including amino acids. The GATOR2 complex is a key component linking amino acid signals to mTORC1. Here, we identify protein arginine methyltransferase 1 (PRMT1) as a critical regulator of GATOR2. In response to amino acids, cyclin-dependent kinase 5 (CDK5) phosphorylates PRMT1 at S307 to promote PRMT1 translocation from nucleus to cytoplasm and lysosome, which in turn methylates WDR24, an essential component of GATOR2, to activate the mTORC1 pathway. Disruption of the CDK5-PRMT1-WDR24 axis suppresses hepatocellular carcinoma (HCC) cell proliferation and xenograft tumor growth. High PRMT1 protein expression is associated with elevated mTORC1 signaling in patients with HCC. Thus, our study dissects a phosphorylation- and arginine methylation-dependent regulatory mechanism of mTORC1 activation and tumor growth and provides a molecular basis to target this pathway for cancer therapy.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 78957, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
57
|
Cui Z, Joiner AMN, Jansen RM, Hurley JH. Amino acid sensing and lysosomal signaling complexes. Curr Opin Struct Biol 2023; 79:102544. [PMID: 36804703 DOI: 10.1016/j.sbi.2023.102544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
Amino acid pools in the cell are monitored by dedicated sensors, whose structures are now coming into view. The lysosomal Rag GTPases are central to this pathway, and the regulation of their GAP complexes, FLCN-FNIP and GATOR1, have been worked out in detail. For FLCN-FNIP, the entire chain of events from the arginine transporter SLC38A9 to substrate-specific mTORC1 activation has been visualized. The structure GATOR2 has been determined, hinting at an ordering of amino acid signaling across a larger size scale than anticipated. The centerpiece of lysosomal signaling, mTORC1, has been revealed to recognize its substrates by more nuanced and substrate-specific mechanisms than previous appreciated. Beyond the well-studied Rag GTPase and mTORC1 machinery, another lysosomal amino acid sensor/effector system, that of PQLC2 and the C9orf72-containing CSW complex, is coming into structural view. These developments hold promise for further insights into lysosomal physiology and lysosome-centric therapeutics.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Aaron M N Joiner
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Rachel M Jansen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
58
|
Regulation of mTORC1 by the Rag GTPases. Biochem Soc Trans 2023; 51:655-664. [PMID: 36929165 DOI: 10.1042/bst20210038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration. The Rag GTPases sense amino acid levels and form heterodimers, where RagA or RagB binds to RagC or RagD, to recruit mTORC1 to the lysosome where it becomes activated. Here, we review amino acid signaling to mTORC1 through the Rag GTPases.
Collapse
|
59
|
Jansen RM, Hurley JH. Longin domain GAP complexes in nutrient signalling, membrane traffic and neurodegeneration. FEBS Lett 2023; 597:750-761. [PMID: 36367440 PMCID: PMC10050129 DOI: 10.1002/1873-3468.14538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Small GTPases act as molecular switches and control numerous cellular processes by their binding and hydrolysis of guanosine triphosphate (GTP). The activity of small GTPases is coordinated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Recent structural and functional studies have characterized a subset of GAPs whose catalytic units consist of longin domains. Longin domain containing GAPs regulate small GTPases that facilitate nutrient signalling, autophagy, vesicular trafficking and lysosome homeostasis. All known examples in this GAP family function as part of larger multiprotein complexes. The three characterized mammalian protein complexes in this class are FLCN:FNIP, GATOR1 and C9orf72:SMCR8. Each complex carries out a unique cellular function by regulating distinct small GTPases. In this article, we explore the roles of longin domain GAPs in nutrient sensing, membrane dynamic, vesicular trafficking and disease. Through a structural lens, we examine the mechanism of each longin domain GAP and highlight potential therapeutic applications.
Collapse
Affiliation(s)
- Rachel M. Jansen
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
60
|
Wang G, Chen L, Qin S, Geng H, Xia C, Zheng Y, Lei X, Zhang J, Wu S, Yao J, Deng L. Farnesoid X Receptor (FXR) Regulates mTORC1 Signaling and Autophagy by Inhibiting SESN2 Expression. Mol Nutr Food Res 2023; 67:e2200517. [PMID: 36715418 DOI: 10.1002/mnfr.202200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/25/2023] [Indexed: 01/31/2023]
Abstract
SCOPE The mechanistic target of rapamycin complex 1 (mTORC1), as a link between nutrients and autophagy, senses many nutrients in the microenvironment. A growing body of recent literature describes the function of bile acids (BAs) as versatile signaling molecules, while it remains largely unclear whether mTORC1 can sense BAs and the mechanism has not been studied. METHODS AND RESULTS After treating LO2 cells with indicated concentration of chenodeoxycholic acid (CDCA) and farnesoid X receptor (FXR) inhibitor/activator for 6 h, it finds that CDCA and FXR significantly accelerate mTORC1 activation. The results of immunofluorescence indicate that CDCA and FXR inhibit cellular autophagy through activating mTORC1 pathway. In particular, these findings show that CDCA and FXR promote the lysosomal translocation and activation of mTORC1 in an amino acid-sensitive manner. Mechanistically, the transcriptomics data indicate that SESN2 is a checkpoint for mTORC1 lysosome translocation and activation induced by FXR, and knockdown SESN2 with siRNA suppresses the regulation of FXR on autophagy. CONCLUSION These results indicate that FXR-induced decrease in SESN2 expression and activation of the mTORC1 pathway can control autophagy and be explored as potential therapeutic targets for enterohepatic and metabolic disorders.
Collapse
Affiliation(s)
- GuoYan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - SenLin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - HuiJun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - YiNing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - XinJian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - ShengRu Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - JunHu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
61
|
Hasan S, Fernandopulle MS, Humble SW, Frankenfield AM, Li H, Prestil R, Johnson KR, Ryan BJ, Wade-Martins R, Ward ME, Hao L. Multi-modal Proteomic Characterization of Lysosomal Function and Proteostasis in Progranulin-Deficient Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529955. [PMID: 36865171 PMCID: PMC9980118 DOI: 10.1101/2023.02.24.529955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Progranulin (PGRN) is a lysosomal protein implicated in various neurodegenerative diseases. Over 70 mutations discovered in the GRN gene all result in reduced expression of PGRN protein. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomal biology remain unclear. Here we leveraged multifaceted proteomic techniques to comprehensively characterize how PGRN deficiency changes the molecular and functional landscape of neuronal lysosomes. Using lysosome proximity labeling and immuno-purification of intact lysosomes, we characterized lysosome compositions and interactomes in both human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i3Neurons) and mouse brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics, we measured global protein half-lives in i3Neurons for the first time and characterized the impact of progranulin deficiency on neuronal proteostasis. Together, this study indicated that PGRN loss impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the lysosome membrane, increased catabolic enzymes within the lysosome, elevated lysosomal pH, and pronounced alterations in neuron protein turnover. Collectively, these results suggested PGRN as a critical regulator of lysosomal pH and degradative capacity, which in turn influences global proteostasis in neurons. The multi-modal techniques developed here also provided useful data resources and tools to study the highly dynamic lysosome biology in neurons.
Collapse
Affiliation(s)
- Saadia Hasan
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- MD-PhD program, Augusta University/University of Georgia Medical Partnership, Athens, GA, USA
| | - Michael S. Fernandopulle
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stewart W. Humble
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Oxford Parkinson’s Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | | | - Haorong Li
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Ryan Prestil
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Kory R. Johnson
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brent J. Ryan
- Oxford Parkinson’s Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ling Hao
- Department of Chemistry, George Washington University, Washington, DC, USA
| |
Collapse
|
62
|
Dai X, Jiang C, Jiang Q, Fang L, Yu H, Guo J, Yan P, Chi F, Zhang T, Inuzuka H, Asara JM, Wang P, Guo J, Wei W. AMPK-dependent phosphorylation of the GATOR2 component WDR24 suppresses glucose-mediated mTORC1 activation. Nat Metab 2023; 5:265-276. [PMID: 36732624 PMCID: PMC11070849 DOI: 10.1038/s42255-022-00732-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth in response to amino acid and glucose levels. However, how mTORC1 senses glucose availability to regulate various downstream signalling pathways remains largely elusive. Here we report that AMP-activated protein kinase (AMPK)-mediated phosphorylation of WDR24, a core component of the GATOR2 complex, has a role in the glucose-sensing capability of mTORC1. Mechanistically, glucose deprivation activates AMPK, which directly phosphorylates WDR24 on S155, subsequently disrupting the integrity of the GATOR2 complex to suppress mTORC1 activation. Phosphomimetic Wdr24S155D knock-in mice exhibit early embryonic lethality and reduced mTORC1 activity. On the other hand, compared to wild-type littermates, phospho-deficient Wdr24S155A knock-in mice are more resistant to fasting and display elevated mTORC1 activity. Our findings reveal that AMPK-mediated phosphorylation of WDR24 modulates glucose-induced mTORC1 activation, thereby providing a rationale for targeting AMPK-WDR24 signalling to fine-tune mTORC1 activation as a potential therapeutic means to combat human diseases with aberrant activation of mTORC1 signalling including cancer.
Collapse
Affiliation(s)
- Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Haihong Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinhe Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Fangtao Chi
- The David H. Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
63
|
Horn S, Danyel M, Erdmann N, Boschann F, Gunnarsson C, Biskup S, Juengling J, Potratz C, Prager C, Kaindl AM. Case report: KPTN gene-related syndrome associated with a spectrum of neurodevelopmental anomalies including severe epilepsy. Front Neurol 2023; 13:1113811. [PMID: 36703628 PMCID: PMC9871926 DOI: 10.3389/fneur.2022.1113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Biallelic variants in the kaptin gene KPTN were identified recently in individuals with a novel syndrome referred to as autosomal recessive intellectual developmental disorder 41 (MRT41). MRT41 is characterized by developmental delay, predominantly in language development, behavioral abnormalities, and epilepsy. Only about 15 affected individuals have been described in the literature, all with primary or secondary macrocephaly. Using exome sequencing, we identified three different biallelic variants in KPTN in five affected individuals from three unrelated families. In total, two KPTN variants were already reported as a loss of function variants. A novel splice site variant in KPTN was detected in two unrelated families of this study. The core phenotype with neurodevelopment delay was present in all patients. However, macrocephaly was not present in at least one patient. In total, two patients exhibited developmental and epileptic encephalopathies with generalized tonic-clonic seizures that were drug-resistant in one of them. Thus, we further delineate the KPTN-related syndrome, especially emphasizing the severity of epilepsy phenotypes and difficulties in treatment in patients of our cohort.
Collapse
Affiliation(s)
- Svea Horn
- Department of Pediatric Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Magdalena Danyel
- Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, Berlin, Germany,BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Nina Erdmann
- Department of Pediatric Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, Berlin, Germany,BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, Linköping University, Linköping, Sweden,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | | | | | - Cornelia Potratz
- Department of Pediatric Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Prager
- Department of Pediatric Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, Berlin, Germany,Institute for Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Angela M. Kaindl ✉
| |
Collapse
|
64
|
Jiang C, Dai X, He S, Zhou H, Fang L, Guo J, Liu S, Zhang T, Pan W, Yu H, Fu T, Li D, Inuzuka H, Wang P, Xiao J, Wei W. Ring domains are essential for GATOR2-dependent mTORC1 activation. Mol Cell 2023; 83:74-89.e9. [PMID: 36528027 PMCID: PMC11027793 DOI: 10.1016/j.molcel.2022.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
The GATOR2-GATOR1 signaling axis is essential for amino-acid-dependent mTORC1 activation. However, the molecular function of the GATOR2 complex remains unknown. Here, we report that disruption of the Ring domains of Mios, WDR24, or WDR59 completely impedes amino-acid-mediated mTORC1 activation. Mechanistically, via interacting with Ring domains of WDR59 and WDR24, the Ring domain of Mios acts as a hub to maintain GATOR2 integrity, disruption of which leads to self-ubiquitination of WDR24. Physiologically, leucine stimulation dissociates Sestrin2 from the Ring domain of WDR24 and confers its availability to UBE2D3 and subsequent ubiquitination of NPRL2, contributing to GATOR2-mediated GATOR1 inactivation. As such, WDR24 ablation or Ring deletion prevents mTORC1 activation, leading to severe growth defects and embryonic lethality at E10.5 in mice. Hence, our findings demonstrate that Ring domains are essential for GATOR2 to transmit amino acid availability to mTORC1 and further reveal the essentiality of nutrient sensing during embryonic development.
Collapse
Affiliation(s)
- Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohui He
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hongfei Zhou
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haihong Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianmin Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianru Xiao
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
65
|
Oh S, Jo S, Bajzikova M, Kim HS, Dao TTP, Rohlena J, Kim JM, Neuzil J, Park S. Non-bioenergetic roles of mitochondrial GPD2 promote tumor progression. Theranostics 2023; 13:438-457. [PMID: 36632231 PMCID: PMC9830446 DOI: 10.7150/thno.75973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Sihyang Jo
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Martina Bajzikova
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld, Australia
| | - Han Sun Kim
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Thien T. P. Dao
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Jakub Rohlena
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jin-Mo Kim
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic.,✉ Corresponding authors: Sunghyouk Park, Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul 08826, Republic of Korea, Tel: +82-2-880-7831; Fax: +82-2-880-7831; E-mail: ; Jiri Neuzil, School of Pharmacy and Medical Science, Griffith University, 1 Parklands Dr, Southport, Qld 4215, Australia, Tel: +61-(0)7-5552-9109; Fax: +61-(0)7-5552-9109; E-mail: or
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea.,✉ Corresponding authors: Sunghyouk Park, Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul 08826, Republic of Korea, Tel: +82-2-880-7831; Fax: +82-2-880-7831; E-mail: ; Jiri Neuzil, School of Pharmacy and Medical Science, Griffith University, 1 Parklands Dr, Southport, Qld 4215, Australia, Tel: +61-(0)7-5552-9109; Fax: +61-(0)7-5552-9109; E-mail: or
| |
Collapse
|
66
|
Luo S, Ye XG, Jin L, Li H, He YY, Guan BZ, Gao LD, Liang XY, Wang PY, Lu XG, Yan HJ, Li BM, Chen YJ, Liu ZG. SZT2 variants associated with partial epilepsy or epileptic encephalopathy and the genotype-phenotype correlation. Front Mol Neurosci 2023; 16:1162408. [PMID: 37213690 PMCID: PMC10198435 DOI: 10.3389/fnmol.2023.1162408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Background Recessive SZT2 variants are reported to be associated with developmental and epileptic encephalopathy 18 (DEE-18) and occasionally neurodevelopment abnormalities (NDD) without seizures. This study aims to explore the phenotypic spectrum of SZT2 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy. Previously reported SZT2 mutations were systematically reviewed to analyze the genotype-phenotype correlations. Results SZT2 variants were identified in six unrelated cases with heterogeneous epilepsy, including one de novo null variant and five pairs of biallelic variants. These variants had no or low frequencies in controls. All missense variants were predicted to alter the hydrogen bonds with surrounding residues and/or protein stability. The three patients with null variants exhibited DEE. The patients with biallelic null mutations presented severe DEE featured by frequent spasms/tonic seizures and diffuse cortical dysplasia/periventricular nodular heterotopia. The three patients with biallelic missense variants presented mild partial epilepsy with favorable outcomes. Analysis of previously reported cases revealed that patients with biallelic null mutations presented significantly higher frequency of refractory seizures and earlier onset age of seizure than those with biallelic non-null mutations or with biallelic mutations containing one null variant. Significance This study suggested that SZT2 variants were potentially associated with partial epilepsy with favorable outcomes without NDD, expanding the phenotypic spectrum of SZT2. The genotype-phenotype correlation helps in understanding the underlying mechanism of phenotypic variation.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bao-Zhu Guan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Jun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Yong-Jun Chen
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Zhi-Gang Liu
| |
Collapse
|
67
|
Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation. Nat Commun 2022; 13:7578. [PMID: 36481721 PMCID: PMC9732310 DOI: 10.1038/s41467-022-35334-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
How the carbohydrate binding protein galectin-3 might act as a diabetogenic and tumorogenic factor remains to be investigated. Here we report that intracellular galectin-3 interacts with Rag GTPases and Ragulator on lysosomes. We show that galectin-3 senses lipopolysaccharide (LPS) to facilitate the interaction of Rag GTPases and Ragulator, leading to the activation of mTORC1. We find that the lipopolysaccharide/galectin-3-Rag GTPases/Ragulator-mTORC1 axis regulates a cohort of genes including GLUT1, and HK2, and PKM2 that are critically involved in glucose uptake and glycolysis. Indeed, galectin-3 deficiency severely compromises LPS-promoted glycolysis. Importantly, the expression of HK2 is significantly reduced in diabetes patients. In multiple types of cancer including hepatocellular carcinoma (HCC), galectin-3 is highly expressed, and its level of expression is positively correlated with that of HK2 and PKM2 and negatively correlated with the prognosis of HCC patients. Our study unravels that galectin-3 is a sensor of LPS, an important modulator of the mTORC1 signaling, and a critical regulator of glucose metabolism.
Collapse
|
68
|
Wang G, Zhang J, Wu S, Qin S, Zheng Y, Xia C, Geng H, Yao J, Deng L. The mechanistic target of rapamycin complex 1 pathway involved in hepatic gluconeogenesis through peroxisome-proliferator-activated receptor γ coactivator-1α. ANIMAL NUTRITION 2022; 11:121-131. [PMID: 36204284 PMCID: PMC9516411 DOI: 10.1016/j.aninu.2022.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Cattle can efficiently perform de novo generation of glucose through hepatic gluconeogenesis to meet post-weaning glucose demand. Substantial evidence points to cattle and non-ruminant animals being characterized by phylogenetic features in terms of their differing capacity for hepatic gluconeogenesis, a process that is highly efficient in cattle yet the underlying mechanism remains unclear. Here we used a variety of transcriptome data, as well as tissue and cell-based methods to uncover the mechanisms of high-efficiency hepatic gluconeogenesis in cattle. We showed that cattle can efficiently convert propionate into pyruvate, at least partly, via high expression of acyl-CoA synthetase short-chain family member 1 (ACSS1), propionyl-CoA carboxylase alpha chain (PCCA), methylmalonyl-CoA epimerase (MCEE), methylmalonyl-CoA mutase (MMUT), and succinate-CoA ligase (SUCLG2) genes in the liver (P < 0.01). Moreover, higher expression of the rate-limiting enzymes of gluconeogenesis, such as phosphoenolpyruvate carboxykinase (PCK) and fructose 1,6-bisphosphatase (FBP), ensures the efficient operation of hepatic gluconeogenesis in cattle (P < 0.01). Mechanistically, we found that cattle liver exhibits highly active mechanistic target of rapamycin complex 1 (mTORC1), and the expressions of PCCA, MMUT, SUCLG2, PCK, and FBP genes are regulated by the activation of mTORC1 (P < 0.001). Finally, our results showed that mTORC1 promotes hepatic gluconeogenesis in a peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) dependent manner. Collectively, our results not only revealed an important mechanism responsible for the quantitative differences in the efficiency of hepatic gluconeogenesis in cattle versus non-ruminant animals, but also established that mTORC1 is indeed involved in the regulation of hepatic gluconeogenesis through PGC-1α. These results provide a novel potential insight into promoting hepatic gluconeogenesis through activated mTORC1 in both ruminants and mammals.
Collapse
|
69
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
70
|
Napolitano G, Di Malta C, Ballabio A. Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol 2022; 32:920-931. [PMID: 35654731 DOI: 10.1016/j.tcb.2022.04.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/21/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling hub integrates multiple environmental cues to modulate cell growth and metabolism. Over the past decade considerable knowledge has been gained on the mechanisms modulating mTORC1 lysosomal recruitment and activation. However, whether and how mTORC1 is able to elicit selective responses to diverse signals has remained elusive until recently. We discuss emerging evidence for a 'non-canonical' mTORC1 signaling pathway that controls the function of microphthalmia/transcription factor E (MiT-TFE) transcription factors, key regulators of cell metabolism. This signaling pathway is mediated by a specific mechanism of substrate recruitment, and responds to stimuli that appear to converge on the lysosomal surface. We discuss the relevance of this pathway in physiological and disease conditions.
Collapse
Affiliation(s)
- Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy.
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy.
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Wang YX, Chen HF, Yin ZY, Chen WL, Lu LT. The genetic adaptations of Toxoptera aurantii facilitated its rapid multiple plant hosts dispersal and invasion. Genomics 2022; 114:110472. [PMID: 36055573 DOI: 10.1016/j.ygeno.2022.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 01/14/2023]
Abstract
Toxoptera aurantii Boyer de Fonscolombe (Hemiptera: Aphididae) can attack many plant hosts, including tea (Camellia sinensis L.), citrus (Citrus spp.), lychee (Litchi chinensis Sonn.), banana (Musa spp.), and pineapple (Ananas comasus L.) among others. It is a widely distributed hexapod and one of the most destructive pests in tea plantations, causing enormous economic losses in tea production each year. A high-quality reference genome is important to study the phylogenetics and evolution of T. aurantii because its genome is highly heterozygous and repetitive. We obtained a de novo genome assembly of T. aurantii at the chromosome level using a combination of long Nanopore reads from sequencing with high-throughput chromosome conformation capture technology. When finally assembled, the genome was 318.95 Mb on four chromosomes with a 15.19 Mb scaffold N50. A total of 12,162 genes encoded proteins, while there were 22.01% repetitive sequences that totaled 67.73 Mb. Phylogenetic analyses revealed that T. aurantii and Aphis gossypii parted ways approximately 7.6 million years ago (Mya). We used a combination of long-read single-molecule sequencing with Hi-C-based chromatin interaction maps that resulted in a reference chromosomal level reference genome of T. aurantii that was high quality. Our results will enable the exploration of the genetics behind the special biological features of T. aurantii and also provide a source of data that should be useful to compare the compare genome among the Hemiptera.
Collapse
Affiliation(s)
- Yan-Xia Wang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Hu-Fang Chen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Zheng-Yan Yin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Wen-Long Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Li-Tang Lu
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
72
|
Navare AT, Mast FD, Olivier JP, Bertomeu T, Neal ML, Carpp LN, Kaushansky A, Coulombe-Huntington J, Tyers M, Aitchison JD. Viral protein engagement of GBF1 induces host cell vulnerability through synthetic lethality. J Cell Biol 2022; 221:213618. [PMID: 36305789 PMCID: PMC9623979 DOI: 10.1083/jcb.202011050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal (SL) partners of cancer-specific mutations. Similarly, SL interactions of viral-induced hypomorphs can potentially be targeted as host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for SL partners of GBF1 revealed ARF1 as the top hit, disruption of which selectively killed cells that synthesize 3A alone or in the context of a poliovirus replicon. Thus, viral protein interactions can induce hypomorphs that render host cells selectively vulnerable to perturbations that leave uninfected cells otherwise unscathed. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Arti T. Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | | | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA,Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA,Department of Pediatrics, University of Washington, Seattle, WA,Department of Biochemistry, University of Washington, Seattle, WA,Correspondence to John D. Aitchison:
| |
Collapse
|
73
|
Induced Pluripotent Stem Cell (iPSC) Lines from a Family with Resistant Epileptic Encephalopathy Caused by Compound Heterozygous Mutations in SZT2 Gene. Int J Mol Sci 2022; 23:ijms232113095. [PMID: 36361881 PMCID: PMC9654488 DOI: 10.3390/ijms232113095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the SZT2 gene have been associated with developmental and epileptic encephalopathy-18, a rare severe autosomal recessive neurologic disorder, characterized by psychomotor impairment/intellectual disability, dysmorphic facial features and early onset of refractory seizures. Here we report the generation of the first induced pluripotent stem cell (iPSC) lines from a patient with treatment-resistant epilepsy, carrying compound heterozygous mutations in SZT2 (Mut1: c.498G>T and Mut2: c.6553C>T), and his healthy heterozygous parents. Peripheral blood mononuclear cells were reprogrammed by a non-integrating Sendai virus-based reprogramming system. The generated human iPSC lines exhibited expression of the main pluripotency markers, the potential to differentiate into all three germ layers and presented a normal karyotype. These lines represent a valuable resource to study neurodevelopmental alterations, and to obtain mature, pathology-relevant neuronal populations as an in vitro model to perform functional assays and test the patient’s responsiveness to novel antiepileptic treatments.
Collapse
|
74
|
Tafur L, Hinterndorfer K, Gabus C, Lamanna C, Bergmann A, Sadian Y, Hamdi F, Kyrilis FL, Kastritis PL, Loewith R. Cryo-EM structure of the SEA complex. Nature 2022; 611:399-404. [DOI: 10.1038/s41586-022-05370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
AbstractThe SEA complex (SEAC) is a growth regulator that acts as a GTPase-activating protein (GAP) towards Gtr1, a Rag GTPase that relays nutrient status to the Target of Rapamycin Complex 1 (TORC1) in yeast1. Functionally, the SEAC has been divided into two subcomplexes: SEACIT, which has GAP activity and inhibits TORC1, and SEACAT, which regulates SEACIT2. This system is conserved in mammals: the GATOR complex, consisting of GATOR1 (SEACIT) and GATOR2 (SEACAT), transmits amino acid3 and glucose4 signals to mTORC1. Despite its importance, the structure of SEAC/GATOR, and thus molecular understanding of its function, is lacking. Here, we solve the cryo-EM structure of the native eight-subunit SEAC. The SEAC has a modular structure in which a COPII-like cage corresponding to SEACAT binds two flexible wings, which correspond to SEACIT. The wings are tethered to the core via Sea3, which forms part of both modules. The GAP mechanism of GATOR1 is conserved in SEACIT, and GAP activity is unaffected by SEACAT in vitro. In vivo, the wings are essential for recruitment of the SEAC to the vacuole, primarily via the EGO complex. Our results indicate that rather than being a direct inhibitor of SEACIT, SEACAT acts as a scaffold for the binding of TORC1 regulators.
Collapse
|
75
|
Yin N, Jin G, Ma Y, Zhao H, Zhang G, Li MO, Peng M. SZT2 maintains hematopoietic stem cell homeostasis via nutrient-mediated mTORC1 regulation. J Clin Invest 2022; 132:146272. [PMID: 36250465 PMCID: PMC9566891 DOI: 10.1172/jci146272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The mTORC1 pathway coordinates nutrient and growth factor signals to maintain organismal homeostasis. Whether nutrient signaling to mTORC1 regulates stem cell function remains unknown. Here, we show that SZT2 — a protein required for mTORC1 downregulation upon nutrient deprivation — is critical for hematopoietic stem cell (HSC) homeostasis. Ablation of SZT2 in HSCs decreased the reserve and impaired the repopulating capacity of HSCs. Furthermore, ablation of both SZT2 and TSC1 — 2 repressors of mTORC1 on the nutrient and growth factor arms, respectively — led to rapid HSC depletion, pancytopenia, and premature death of the mice. Mechanistically, loss of either SZT2 or TSC1 in HSCs led to only mild elevation of mTORC1 activity and reactive oxygen species (ROS) production. Loss of both SZT2 and TSC1, on the other hand, simultaneously produced a dramatic synergistic effect, with an approximately 10-fold increase of mTORC1 activity and approximately 100-fold increase of ROS production, which rapidly depleted HSCs. These data demonstrate a critical role of nutrient mTORC1 signaling in HSC homeostasis and uncover a strong synergistic effect between nutrient- and growth factor–mediated mTORC1 regulation in stem cells.
Collapse
Affiliation(s)
- Na Yin
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Gang Jin
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Yuying Ma
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Hanfei Zhao
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Guangyue Zhang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ming O. Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Min Peng
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
76
|
Destabilization of TP53 by USP10 is essential for neonatal autophagy and survival. Cell Rep 2022; 41:111435. [DOI: 10.1016/j.celrep.2022.111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
|
77
|
Shin HR, Citron YR, Wang L, Tribouillard L, Goul CS, Stipp R, Sugasawa Y, Jain A, Samson N, Lim CY, Davis OB, Castaneda-Carpio D, Qian M, Nomura DK, Perera RM, Park E, Covey DF, Laplante M, Evers AS, Zoncu R. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 2022; 377:1290-1298. [PMID: 36007018 PMCID: PMC10023259 DOI: 10.1126/science.abg6621] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.
Collapse
Affiliation(s)
- Hijai R. Shin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Y. Rose Citron
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lei Wang
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Laura Tribouillard
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Claire S. Goul
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robin Stipp
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yusuke Sugasawa
- Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Aakriti Jain
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nolwenn Samson
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Oliver B. Davis
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Castaneda-Carpio
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Daniel K. Nomura
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Rushika M. Perera
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Douglas F. Covey
- Department of Developmental Biology and Biochemistry, Washington University School of Medicine, St Louis, MO 63110, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mathieu Laplante
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Developmental Biology and Biochemistry, Washington University School of Medicine, St Louis, MO 63110, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
78
|
Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci 2022; 9:897929. [PMID: 36188218 PMCID: PMC9515494 DOI: 10.3389/fmolb.2022.897929] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Tryptophan is an essential amino acid, which is not only a building block for protein synthesis, but also a precursor for the biosynthesis of co-enzymes and neuromodulators, such as NAD/NADP(H), kynurenic acid, melatonin and serotonin. It also plays a role in immune homeostasis, as local tryptophan catabolism impairs T-lymphocyte mediated immunity. Therefore, tryptophan plasmatic concentration needs to be stable, in spite of large variations in dietary supply. Here, we review the main checkpoints accounting for tryptophan homeostasis, including absorption, transport, metabolism and elimination, and we discuss the physiopathology of disorders associated with their dysfunction. Tryptophan is catabolized along the kynurenine pathway through the action of two enzymes that mediate the first and rate-limiting step of the pathway: indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). While IDO1 expression is restricted to peripheral sites of immune modulation, TDO is massively expressed in the liver and accounts for 90% of tryptophan catabolism. Recent data indicated that the stability of the TDO protein is regulated by tryptophan and that this regulation allows a tight control of tryptophanemia. TDO is stabilized when tryptophan is abundant in the plasma, resulting in rapid degradation of dietary tryptophan. In contrast, when tryptophan is scarce, TDO is degraded by the proteasome to avoid excessive tryptophan catabolism. This is triggered by the unmasking of a degron in a non-catalytic tryptophan-binding site, resulting in TDO ubiquitination by E3 ligase SKP1-CUL1-F-box. Deficiency in TDO or in the hepatic aromatic transporter SLC16A10 leads to severe hypertryptophanemia, which can disturb immune and neurological homeostasis.
Collapse
Affiliation(s)
- Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| |
Collapse
|
79
|
Figlia G, Müller S, Hagenston AM, Kleber S, Roiuk M, Quast JP, Ten Bosch N, Carvajal Ibañez D, Mauceri D, Martin-Villalba A, Teleman AA. Brain-enriched RagB isoforms regulate the dynamics of mTORC1 activity through GATOR1 inhibition. Nat Cell Biol 2022; 24:1407-1421. [PMID: 36097071 PMCID: PMC9481464 DOI: 10.1038/s41556-022-00977-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/13/2022] [Indexed: 12/26/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient availability to appropriately regulate cellular anabolism and catabolism. During nutrient restriction, different organs in an animal do not respond equally, with vital organs being relatively spared. This raises the possibility that mTORC1 is differentially regulated in different cell types, yet little is known about this mechanistically. The Rag GTPases, RagA or RagB bound to RagC or RagD, tether mTORC1 in a nutrient-dependent manner to lysosomes where mTORC1 becomes activated. Although the RagA and B paralogues were assumed to be functionally equivalent, we find here that the RagB isoforms, which are highly expressed in neurons, impart mTORC1 with resistance to nutrient starvation by inhibiting the RagA/B GTPase-activating protein GATOR1. We further show that high expression of RagB isoforms is observed in some tumours, revealing an alternative strategy by which cancer cells can retain elevated mTORC1 upon low nutrient availability.
Collapse
Affiliation(s)
- Gianluca Figlia
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Sandra Müller
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, Heidelberg, Germany
| | - Susanne Kleber
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mykola Roiuk
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jan-Philipp Quast
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Nora Ten Bosch
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Carvajal Ibañez
- Heidelberg University, Heidelberg, Germany.,Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
80
|
Yuskaitis CJ, Modasia JB, Schrötter S, Rossitto LA, Groff KJ, Morici C, Mithal DS, Chakrabarty RP, Chandel NS, Manning BD, Sahin M. DEPDC5-dependent mTORC1 signaling mechanisms are critical for the anti-seizure effects of acute fasting. Cell Rep 2022; 40:111278. [PMID: 36044864 PMCID: PMC9508617 DOI: 10.1016/j.celrep.2022.111278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Caloric restriction and acute fasting are known to reduce seizures but through unclear mechanisms. mTOR signaling has been suggested as a potential mechanism for seizure protection from fasting. We demonstrate that brain mTORC1 signaling is reduced after acute fasting of mice and that neuronal mTORC1 integrates GATOR1 complex-mediated amino acid and tuberous sclerosis complex (TSC)-mediated growth factor signaling. Neuronal mTORC1 is most sensitive to withdrawal of leucine, arginine, and glutamine, which are dependent on DEPDC5, a component of the GATOR1 complex. Metabolomic analysis reveals that Depdc5 neuronal-specific knockout mice are resistant to sensing significant fluctuations in brain amino acid levels after fasting. Depdc5 neuronal-specific knockout mice are resistant to the protective effects of fasting on seizures or seizure-induced death. These results establish that acute fasting reduces seizure susceptibility in a DEPDC5-dependent manner. Modulation of nutrients upstream of GATOR1 and mTORC1 could offer a rational therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinita B Modasia
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Schrötter
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Leigh-Ana Rossitto
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karenna J Groff
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Morici
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Divakar S Mithal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Section of Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
81
|
Zhao Q, Shi L, He W, Li J, You S, Chen S, Lin J, Wang Y, Zhang L, Yang G, Vasseur L, You M. Genomic Variation in the Tea Leafhopper Reveals the Basis of Adaptive Evolution. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1092-1105. [PMID: 36041663 DOI: 10.1016/j.gpb.2022.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Tea green leafhopper (TGL), Empoasca onukii, is of biological and economic interest. Despite numerous studies, the mechanisms underlying its adaptation and evolution remain enigmatic. Here, we use previously untapped genome and population genetics approaches to examine how the pest adapted to different environmental variables and thus has expanded geographically. We complete a chromosome-level assembly and annotation of the E. onukii genome, showing notable expansions of gene families associated with adaptation to chemoreception and detoxification. Genomic signals indicating balancing selection highlight metabolic pathways involved in adaptation to a wide range of tea varieties grown across ecologically diverse regions. Patterns of genetic variations among 54 E. onukii samples unveil the population structure and evolutionary history across different tea-growing regions in China. Our results demonstrate that the genomic changes in key pathways, including those linked to metabolism, circadian rhythms, and immune system functions, may underlie the successful spread and adaptation of E. onukii. This work highlights the genetic and molecular bases underlying the evolutionary success of a species with broad economic impacts, and provides insights into insect adaptation to host plants, which will ultimately facilitate more sustainable pest management.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longqing Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Chen
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
82
|
Yang S, Yang LM, Liao HM, Fang HJ, Ning ZS, Liao CS, Wu LW. Genetic analysis of developmental and epileptic encephalopathy caused by novel biallelic SZT2 gene mutations in three Chinese Han infants: a case series and literature review. Neurol Sci 2022; 43:5039-5048. [DOI: 10.1007/s10072-022-06038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
|
83
|
Tang X, Zhang Y, Wang G, Zhang C, Wang F, Shi J, Zhang T, Ding J. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling. SCIENCE ADVANCES 2022; 8:eabn3868. [PMID: 35776786 PMCID: PMC10883374 DOI: 10.1126/sciadv.abn3868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanistic target of rapamycin-mLST8-raptor complex (mTORC1) functions as a central regulator of cell growth and metabolism in response to changes in nutrient signals such as amino acids. SAMTOR is an S-adenosylmethionine (SAM) sensor, which regulates the mTORC1 activity through its interaction with the GTPase-activating protein activity toward Rags-1 (GATOR1)-KPTN, ITFG2, C12orf66 and SZT2-containing regulator (KICSTOR) complex. In this work, we report the crystal structures of Drosophila melanogaster SAMTOR in apo form and in complex with SAM. SAMTOR comprises an N-terminal helical domain and a C-terminal SAM-dependent methyltransferase (MTase) domain. The MTase domain contains the SAM-binding site and the potential GATOR1-KICSTOR-binding site. The helical domain functions as a molecular switch, which undergoes conformational change upon SAM binding and thereby modulates the interaction of SAMTOR with GATOR1-KICSTOR. The functional roles of the key residues and the helical domain are validated by functional assays. Our structural and functional data together reveal the molecular mechanism of the SAM sensing of SAMTOR and its functional role in mTORC1 signaling.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yifan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guanchao Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chunxiao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiawen Shi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Tianlong Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong 226011, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Road, Hangzhou 310024, China
| |
Collapse
|
84
|
Lv X, Zhou C, Yan Q, Tan Z, Kang J, Tang S. Elucidating the underlying mechanism of amino acids to regulate muscle protein synthesis: impact on human health. Nutrition 2022; 103-104:111797. [DOI: 10.1016/j.nut.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 10/31/2022]
|
85
|
Spead O, Zaepfel BL, Rothstein JD. Nuclear Pore Dysfunction in Neurodegeneration. Neurotherapeutics 2022; 19:1050-1060. [PMID: 36070178 PMCID: PMC9587172 DOI: 10.1007/s13311-022-01293-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 10/14/2022] Open
Abstract
The nuclear pore complex (NPC) is a large multimeric structure that is interspersed throughout the membrane of the nucleus and consists of at least 33 protein components. Individual components cooperate within the nuclear pore to facilitate selective passage of materials between the nucleus and cytoplasm while simultaneously performing pore-independent roles throughout the cell. NPC dysfunction is a hallmark of neurodegenerative disorders including Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). NPC components can become mislocalized or altered in expression in neurodegeneration. These alterations in NPC structure are often detrimental to the neuronal function and ultimately lead to neuronal loss. This review highlights the importance of nucleocytoplasmic transport and NPC integrity and how dysfunction of such may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin L Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
86
|
Valenstein ML, Rogala KB, Lalgudi PV, Brignole EJ, Gu X, Saxton RA, Chantranupong L, Kolibius J, Quast JP, Sabatini DM. Structure of the nutrient-sensing hub GATOR2. Nature 2022; 607:610-616. [PMID: 35831510 PMCID: PMC9464592 DOI: 10.1038/s41586-022-04939-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) controls growth by regulating anabolic and catabolic processes in response to environmental cues, including nutrients1,2. Amino acids signal to mTORC1 through the Rag GTPases, which are regulated by several protein complexes, including GATOR1 and GATOR2. GATOR2, which has five components (WDR24, MIOS, WDR59, SEH1L and SEC13), is required for amino acids to activate mTORC1 and interacts with the leucine and arginine sensors SESN2 and CASTOR1, respectively3-5. Despite this central role in nutrient sensing, GATOR2 remains mysterious as its subunit stoichiometry, biochemical function and structure are unknown. Here we used cryo-electron microscopy to determine the three-dimensional structure of the human GATOR2 complex. We found that GATOR2 adopts a large (1.1 MDa), two-fold symmetric, cage-like architecture, supported by an octagonal scaffold and decorated with eight pairs of WD40 β-propellers. The scaffold contains two WDR24, four MIOS and two WDR59 subunits circularized via two distinct types of junction involving non-catalytic RING domains and α-solenoids. Integration of SEH1L and SEC13 into the scaffold through β-propeller blade donation stabilizes the GATOR2 complex and reveals an evolutionary relationship to the nuclear pore and membrane-coating complexes6. The scaffold orients the WD40 β-propeller dimers, which mediate interactions with SESN2, CASTOR1 and GATOR1. Our work reveals the structure of an essential component of the nutrient-sensing machinery and provides a foundation for understanding the function of GATOR2 within the mTORC1 pathway.
Collapse
Affiliation(s)
- Max L Valenstein
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Kacper B Rogala
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Pranav V Lalgudi
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Edward J Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT.nano, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Gu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Saxton
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lynne Chantranupong
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonas Kolibius
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | |
Collapse
|
87
|
Calhoun JD, Aziz MC, Happ HC, Gunti J, Gleason C, Mohamed N, Zeng K, Hiller M, Bryant E, Mithal DS, Bellinski I, Kinsley L, Grimmel M, Schwaibold EMC, Smith-Hicks C, Chassevent A, Scala M, Accogli A, Torella A, Striano P, Capra V, Bird LM, Ben-Sahra I, Ekhilevich N, Hershkovitz T, Weiss K, Millichap J, Gerard EE, Carvill GL. mTORC1 functional assay reveals SZT2 loss-of-function variants and a founder in-frame deletion. Brain 2022; 145:1939-1948. [PMID: 35773235 PMCID: PMC9630660 DOI: 10.1093/brain/awab451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
Biallelic pathogenic variants in SZT2 result in a neurodevelopmental disorder with shared features, including early-onset epilepsy, developmental delay, macrocephaly, and corpus callosum abnormalities. SZT2 is as a critical scaffolding protein in the amino acid sensing arm of the mTORC1 signalling pathway. Due to its large size (3432 amino acids), lack of crystal structure, and absence of functional domains, it is difficult to determine the pathogenicity of SZT2 missense and in-frame deletions, but these variants are increasingly detected and reported by clinical genetic testing in individuals with epilepsy. To exemplify this latter point, here we describe a cohort of 12 individuals with biallelic SZT2 variants and phenotypic overlap with SZT2-related neurodevelopmental disorders. However, the majority of individuals carried one or more SZT2 variants of uncertain significance (VUS), highlighting the need for functional characterization to determine, which, if any, of these VUS were pathogenic. Thus, we developed a novel individualized platform to identify SZT2 loss-of-function variants in the context of mTORC1 signalling and reclassify VUS. Using this platform, we identified a recurrent in-frame deletion (SZT2 p.Val1984del) which was determined to be a loss-of-function variant and therefore likely pathogenic. Haplotype analysis revealed that this single in-frame deletion is a founder variant in those of Ashkenazi Jewish ancestry. Moreover, this approach allowed us to tentatively reclassify all of the VUS in our cohort of 12 individuals, identifying five individuals with biallelic pathogenic or likely pathogenic variants. Clinical features of these five individuals consisted of early-onset seizures (median 24 months), focal seizures, developmental delay and macrocephaly similar to previous reports. However, we also show a widening of the phenotypic spectrum, as none of the five individuals had corpus callosum abnormalities, in contrast to previous reports. Overall, we present a rapid assay to resolve VUS in SZT2, identify a founder variant in individuals of Ashkenazi Jewish ancestry, and demonstrate that corpus callosum abnormalities is not a hallmark feature of this condition. Our approach is widely applicable to other mTORopathies including the most common causes of the focal genetic epilepsies, DEPDC5, TSC1/2, MTOR and NPRL2/3.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Miriam C Aziz
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Hannah C Happ
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Jonathan Gunti
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Colleen Gleason
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Najma Mohamed
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Kristy Zeng
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Meredith Hiller
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Emily Bryant
- Ann and Robert H. Lurie Children’s Hospital of Chicago Epilepsy Center and Division of Neurology, Chicago, IL 60610, USA
| | - Divakar S Mithal
- Ann and Robert H. Lurie Children’s Hospital of Chicago Epilepsy Center and Division of Neurology, Chicago, IL 60610, USA
| | - Irena Bellinski
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Lisa Kinsley
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Mona Grimmel
- Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Epilepsy Center and Division of Neurology, Chicago, IL 60610, USA
| | - Eva M C Schwaibold
- Institute of Human Genetics, Heidelberg University, Heidelberg 69120, Germany
| | - Constance Smith-Hicks
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Marcello Scala
- Giannina Gaslini Children’s Hospital, Genova, GE 16147, Italy
- Medical Genetic Unit, IRCCS Istituto G.Gaslini, 16147 Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Annalaura Torella
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, H4A 3J1, Canada
| | - Pasquale Striano
- Giannina Gaslini Children’s Hospital, Genova, GE 16147, Italy
- Medical Genetic Unit, IRCCS Istituto G.Gaslini, 16147 Genoa, Italy
| | - Valeria Capra
- Giannina Gaslini Children’s Hospital, Genova, GE 16147, Italy
- Medical Genetic Unit, IRCCS Istituto G.Gaslini, 16147 Genoa, Italy
| | - Lynne M Bird
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Issam Ben-Sahra
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA 80078, Italy
| | - Nina Ekhilevich
- San Diego Department of Pediatrics and Rady Children’s Hospital Division of Dysmorphology/Genetics, University of California, San Diego, CA 92161, USA
| | - Tova Hershkovitz
- San Diego Department of Pediatrics and Rady Children’s Hospital Division of Dysmorphology/Genetics, University of California, San Diego, CA 92161, USA
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Karin Weiss
- San Diego Department of Pediatrics and Rady Children’s Hospital Division of Dysmorphology/Genetics, University of California, San Diego, CA 92161, USA
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL 60610, USA
| | - John Millichap
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
- Ann and Robert H. Lurie Children’s Hospital of Chicago Epilepsy Center and Division of Neurology, Chicago, IL 60610, USA
| | - Elizabeth E Gerard
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60610, USA
- Genetics Institute, Rambam Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
88
|
Yue S, Li G, He S, Li T. The central role of mTORC1 in amino acid sensing. Cancer Res 2022; 82:2964-2974. [PMID: 35749594 DOI: 10.1158/0008-5472.can-21-4403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth that controls cell homeostasis in response to nutrients, growth factors, and other environmental cues. Recent studies have emphasized the importance of lysosomes as a hub for nutrient sensing, especially amino acid sensing by mTORC1. This review highlights recent advances in understanding the amino acid-mTORC1 signaling axis and the role of mTORC1 in cancer.
Collapse
|
89
|
mTOR substrate phosphorylation in growth control. Cell 2022; 185:1814-1836. [PMID: 35580586 DOI: 10.1016/j.cell.2022.04.013] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022]
Abstract
The target of rapamycin (TOR), discovered 30 years ago, is a highly conserved serine/threonine protein kinase that plays a central role in regulating cell growth and metabolism. It is activated by nutrients, growth factors, and cellular energy. TOR forms two structurally and functionally distinct complexes, TORC1 and TORC2. TOR signaling activates cell growth, defined as an increase in biomass, by stimulating anabolic metabolism while inhibiting catabolic processes. With emphasis on mammalian TOR (mTOR), we comprehensively reviewed the literature and identified all reported direct substrates. In the context of recent structural information, we discuss how mTORC1 and mTORC2, despite having a common catalytic subunit, phosphorylate distinct substrates. We conclude that the two complexes recruit different substrates to phosphorylate a common, minimal motif.
Collapse
|
90
|
Egri SB, Ouch C, Chou HT, Yu Z, Song K, Xu C, Shen K. Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism. Mol Cell 2022; 82:1836-1849.e5. [PMID: 35338845 PMCID: PMC9133170 DOI: 10.1016/j.molcel.2022.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
mTORC1 controls cellular metabolic processes in response to nutrient availability. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which are localized on the lysosomal surface by the Ragulator complex. The Rag GTPases receive amino acid signals from multiple upstream regulators. One negative regulator, GATOR1, is a GTPase activating protein (GAP) for RagA. GATOR1 binds to the Rag GTPases via two modes: an inhibitory mode and a GAP mode. How these two binding interactions coordinate to process amino acid signals is unknown. Here, we resolved three cryo-EM structural models of the GATOR1-Rag-Ragulator complex, with the Rag-Ragulator subcomplex occupying the inhibitory site, the GAP site, and both binding sites simultaneously. When the Rag GTPases bind to GATOR1 at the GAP site, both Rag subunits contact GATOR1 to coordinate their nucleotide loading states. These results reveal a potential GAP mechanism of GATOR1 during the mTORC1 inactivation process.
Collapse
Affiliation(s)
- Shawn B Egri
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA 01605, USA
| | - Christna Ouch
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Hui-Ting Chou
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
91
|
Meng D, Yang Q, Jeong MH, Curukovic A, Tiwary S, Melick CH, Lama-Sherpa TD, Wang H, Huerta-Rosario M, Urquhart G, Zacharias LG, Lewis C, DeBerardinis RJ, Jewell JL. SNAT7 regulates mTORC1 via macropinocytosis. Proc Natl Acad Sci U S A 2022; 119:e2123261119. [PMID: 35561222 PMCID: PMC9171778 DOI: 10.1073/pnas.2123261119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.
Collapse
Affiliation(s)
- Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qianmei Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mi-Hyeon Jeong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adna Curukovic
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Shweta Tiwary
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tshering D. Lama-Sherpa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Huanyu Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mariela Huerta-Rosario
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Greg Urquhart
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lauren G. Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ralph J. DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
92
|
Wang G, Chen L, Qin S, Zhang T, Yao J, Yi Y, Deng L. Mechanistic Target of Rapamycin Complex 1: From a Nutrient Sensor to a Key Regulator of Metabolism and Health. Adv Nutr 2022; 13:1882-1900. [PMID: 35561748 PMCID: PMC9526850 DOI: 10.1093/advances/nmac055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a multi-protein complex widely found in eukaryotes. It serves as a central signaling node to coordinate cell growth and metabolism by sensing diverse extracellular and intracellular inputs, including amino acid-, growth factor-, glucose-, and nucleotide-related signals. It is well documented that mTORC1 is recruited to the lysosomal surface, where it is activated and, accordingly, modulates downstream effectors involved in regulating protein, lipid, and glucose metabolism. mTORC1 is thus the central node for coordinating the storage and mobilization of nutrients and energy across various tissues. However, emerging evidence indicated that the overactivation of mTORC1 induced by nutritional disorders leads to the occurrence of a variety of metabolic diseases, including obesity and type 2 diabetes, as well as cancer, neurodegenerative disorders, and aging. That the mTORC1 pathway plays a crucial role in regulating the occurrence of metabolic diseases renders it a prime target for the development of effective therapeutic strategies. Here, we focus on recent advances in our understanding of the regulatory mechanisms underlying how mTORC1 integrates metabolic inputs as well as the role of mTORC1 in the regulation of nutritional and metabolic diseases.
Collapse
Affiliation(s)
- Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, China
| | - Senlin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tingting Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanglei Yi
- Address correspondence to YLY (e-mail: )
| | - Lu Deng
- Address correspondence to LD (e-mail: )
| |
Collapse
|
93
|
Buddham R, Chauhan S, Narad P, Mathur P. Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach. J Microbiol Biotechnol 2022; 32:365-377. [PMID: 35001007 PMCID: PMC9628786 DOI: 10.4014/jmb.2108.08007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.
Collapse
Affiliation(s)
- Richa Buddham
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Sweety Chauhan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Priyanka Narad
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Puniti Mathur
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India,Corresponding author Phone: +91-120-4392204 E-mail:
| |
Collapse
|
94
|
Gonzalez P, Lozano P, Solano F. Unraveling the Metabolic Hallmarks for the Optimization of Protein Intake in Pre-Dialysis Chronic Kidney Disease Patients. Nutrients 2022; 14:nu14061182. [PMID: 35334840 PMCID: PMC8954715 DOI: 10.3390/nu14061182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The daily amount and quality of protein that should be administered by enteral nutrition in pre-dialysis chronic kidney disease (CKD) patients is a widely studied but still controversial issue. This is due to a compromise between the protein necessary to maintain muscular proteostasis avoiding sarcopenia, and the minimal amount required to prevent uremia and the accumulation of nitrogenous toxic substances in blood because of the renal function limitations. This review underlines some intracellular and extracellular features that should be considered to reconcile those two opposite factors. On one hand, the physiological conditions and usual side effects associated with CKD, mTOR and other proteins and nutrients involved in the regulation of protein synthesis in the muscular tissue are discussed. On the other hand, the main digestive features of the most common proteins used for enteral nutrition formulation (i.e., whey, casein and soy protein) are highlighted, due to the importance of supplying key amino acids to serum and tissues to maintain their concentration above the anabolic threshold needed for active protein synthesis, thereby minimizing the catabolic pathways leading to urea formation.
Collapse
Affiliation(s)
- Patricia Gonzalez
- Project Manager, Fresenius Kabi España, Sociedad Anonima Unipersonal, Marina 16-18, 08005 Barcelona, Spain
- Correspondence: (P.G.); (F.S.)
| | - Pedro Lozano
- Department of Biochemistry and Molecular Biology “B” and Immunology, Faculty of Chemistry, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology “B” and Immunology, IMIB (Murcian Institute of Health Research), Faculty of Medicine, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
- Correspondence: (P.G.); (F.S.)
| |
Collapse
|
95
|
Nowosad A, Besson A. Lysosomes at the Crossroads of Cell Metabolism, Cell Cycle, and Stemness. Int J Mol Sci 2022; 23:ijms23042290. [PMID: 35216401 PMCID: PMC8879101 DOI: 10.3390/ijms23042290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Initially described as lytic bodies due to their degradative and recycling functions, lysosomes play a critical role in metabolic adaptation to nutrient availability. More recently, the contribution of lysosomal proteins to cell signaling has been established, and lysosomes have emerged as signaling hubs that regulate diverse cellular processes, including cell proliferation and cell fate. Deciphering these signaling pathways has revealed an extensive crosstalk between the lysosomal and cell cycle machineries that is only beginning to be understood. Recent studies also indicate that a number of lysosomal proteins are involved in the regulation of embryonic and adult stem cell fate and identity. In this review, we will focus on the role of the lysosome as a signaling platform with an emphasis on its function in integrating nutrient sensing with proliferation and cell cycle progression, as well as in stemness-related features, such as self-renewal and quiescence.
Collapse
Affiliation(s)
- Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France;
- Department of Oncology, KULeuven, Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France;
- Correspondence: ; Tel.: +33-561558486
| |
Collapse
|
96
|
Li L, Chen Z, von Scheidt M, Li S, Steiner A, Güldener U, Koplev S, Ma A, Hao K, Pan C, Lusis AJ, Pang S, Kessler T, Ermel R, Sukhavasi K, Ruusalepp A, Gagneur J, Erdmann J, Kovacic JC, Björkegren JLM, Schunkert H. Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Res Cardiol 2022; 117:6. [PMID: 35175464 PMCID: PMC8852935 DOI: 10.1007/s00395-022-00917-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibility genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e-6) was observed for 114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN, in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.
Collapse
Affiliation(s)
- Ling Li
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Fakultät für Informatik, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Zhifen Chen
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Moritz von Scheidt
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Shuangyue Li
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andrea Steiner
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ulrich Güldener
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Angela Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shichao Pang
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raili Ermel
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Arno Ruusalepp
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Julien Gagneur
- Fakultät für Informatik, Technische Universität München, Munich, Germany
| | - Jeanette Erdmann
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029-6574, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Clinical Gene Networks AB, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany.
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
97
|
Hasegawa J, Tokuda E, Yao Y, Sasaki T, Inoki K, Weisman LS. PP2A-dependent TFEB activation is blocked by PIKfyve-induced mTORC1 activity. Mol Biol Cell 2022; 33:ar26. [PMID: 35020443 PMCID: PMC9250387 DOI: 10.1091/mbc.e21-06-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcriptional factor EB (TFEB) is a master regulator of genes required for autophagy and lysosomal function. The nuclear localization of TFEB is blocked by the mechanistic target of rapamycin complex 1 (mTORC1)-dependent phosphorylation of TFEB at multiple sites including Ser-211. Here we show that inhibition of PIKfyve, which produces phosphatidylinositol 3,5-bisphosphate on endosomes and lysosomes, causes a loss of Ser-211 phosphorylation and concomitant nuclear localization of TFEB. We found that while mTORC1 activity toward S6K1, as well as other major mTORC1 substrates, is not impaired, PIKfyve inhibition specifically impedes the interaction of TFEB with mTORC1. This suggests that mTORC1 activity on TFEB is selectively inhibited due to loss of mTORC1 access to TFEB. In addition, we found that TFEB activation during inhibition of PIKfyve relies on the ability of protein phosphatase 2A (PP2A) but not calcineurin/PPP3 to dephosphorylate TFEB Ser-211. Thus when PIKfyve is inhibited, PP2A is dominant over mTORC1 for control of TFEB phosphorylation at Ser-S211. Together these findings suggest that mTORC1 and PP2A have opposing roles on TFEB via phosphorylation and dephosphorylation of Ser-211, respectively, and further that PIKfyve inhibits TFEB activity by facilitating mTORC1-dependent phosphorylation of TFEB.
Collapse
Affiliation(s)
- Junya Hasegawa
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Emi Tokuda
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yao Yao
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 East Catherine Street, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical enter Drive, Ann Arbor, MI 48109, USA
| | - Lois S Weisman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109
| |
Collapse
|
98
|
Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 2022; 23:56-73. [PMID: 34518687 PMCID: PMC8692439 DOI: 10.1038/s41580-021-00411-4] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy.
| |
Collapse
|
99
|
Carosi JM, Fourrier C, Bensalem J, Sargeant TJ. The mTOR-lysosome axis at the centre of ageing. FEBS Open Bio 2021; 12:739-757. [PMID: 34878722 PMCID: PMC8972043 DOI: 10.1002/2211-5463.13347] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Age‐related diseases represent some of the largest unmet clinical needs of our time. While treatment of specific disease‐related signs has had some success (for example, the effect of statin drugs on slowing progression of atherosclerosis), slowing biological ageing itself represents a target that could significantly increase health span and reduce the prevalence of multiple age‐related diseases. Mechanistic target of rapamycin complex 1 (mTORC1) is known to control fundamental processes in ageing: inhibiting this signalling complex slows biological ageing, reduces age‐related disease pathology and increases lifespan in model organisms. How mTORC1 inhibition achieves this is still subject to ongoing research. However, one mechanism by which mTORC1 inhibition is thought to slow ageing is by activating the autophagy–lysosome pathway. In this review, we examine the special bidirectional relationship between mTORC1 and the lysosome. In cells, mTORC1 is located on lysosomes. From this advantageous position, it directly controls the autophagy–lysosome pathway. However, the lysosome also controls mTORC1 activity in numerous ways, creating a special two‐way relationship. We then explore specific examples of how inhibition of mTORC1 and activation of the autophagy–lysosome pathway slow the molecular hallmarks of ageing. This body of literature demonstrates that the autophagy–lysosome pathway represents an excellent target for treatments that seek to slow biological ageing and increase health span in humans.
Collapse
Affiliation(s)
- Julian M Carosi
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Julien Bensalem
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| |
Collapse
|
100
|
Zhang S, Lin X, Hou Q, Hu Z, Wang Y, Wang Z. Regulation of mTORC1 by amino acids in mammalian cells: A general picture of recent advances. ACTA ACUST UNITED AC 2021; 7:1009-1023. [PMID: 34738031 PMCID: PMC8536509 DOI: 10.1016/j.aninu.2021.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates various types of signal inputs, such as energy, growth factors, and amino acids to regulate cell growth and proliferation mainly through the 2 direct downstream targets, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and ribosomal protein S6 kinase 1 (S6K1). Most of the signal arms upstream of mTORC1 including energy status, stress signals, and growth factors converge on the tuberous sclerosis complex (TSC) - Ras homologue enriched in brain (Rheb) axis. Amino acids, however, are distinct from other signals and modulate mTORC1 using a unique pathway. In recent years, the transmission mechanism of amino acid signals upstream of mTORC1 has been gradually elucidated, and some sensors or signal transmission pathways for individual amino acids have also been discovered. With the help of these findings, we propose a general picture of recent advances, which demonstrates that various amino acids from lysosomes, cytoplasm, and Golgi are sensed by their respective sensors. These signals converge on mTORC1 and form a huge and complicated signal network with multiple synergies, antagonisms, and feedback mechanisms.
Collapse
Affiliation(s)
- Shizhe Zhang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Xueyan Lin
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Qiuling Hou
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Zhiyong Hu
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Yun Wang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| | - Zhonghua Wang
- Key Laboratory of Ruminant Nutrition and Physiology, College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong, China
| |
Collapse
|