51
|
Mariano NC, Rusin SF, Nasa I, Kettenbach AN. Inducible protein degradation as a strategy to identify Phosphoprotein Phosphatase 6 substrates in RAS-mutant colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534211. [PMID: 36993243 PMCID: PMC10055397 DOI: 10.1101/2023.03.25.534211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation SITES and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent phosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.
Collapse
|
52
|
A Virus-Packageable CRISPR System Identifies Host Dependency Factors Co-Opted by Multiple HIV-1 Strains. mBio 2023; 14:e0000923. [PMID: 36744886 PMCID: PMC9973025 DOI: 10.1128/mbio.00009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
At each stage of the HIV life cycle, host cellular proteins are hijacked by the virus to establish and enhance infection. We adapted the virus packageable HIV-CRISPR screening technology at a genome-wide scale to comprehensively identify host factors that affect HIV replication in a human T cell line. Using a smaller, targeted HIV Dependency Factor (HIVDEP) sublibrary, we then performed screens across HIV strains representing different clades and with different biological properties to define which T cell host factors are important across multiple HIV strains. Nearly 90% of the genes selected across various host pathways validated in subsequent assays as bona fide host dependency factors, including numerous proteins not previously reported to play roles in HIV biology, such as UBE2M, MBNL1, FBXW7, PELP1, SLC39A7, and others. Our ranked list of screen hits across diverse HIV-1 strains form a resource of HIV dependency factors for future investigation of host proteins involved in HIV biology. IMPORTANCE With a small genome of ~9.2 kb that encodes 14 major proteins, HIV must hijack host cellular machinery to successfully establish infection. These host proteins necessary for HIV replication are called "dependency factors." Whole-genome, and then targeted screens were done to try to comprehensively identify all dependency factors acting throughout the HIV replication cycle. Many host processes were identified and validated as critical for HIV replication across multiple HIV strains.
Collapse
|
53
|
Matsushita N, Kato S, Nishizawa K, Sugawara M, Takeuchi K, Miyasaka Y, Mashimo T, Kobayashi K. Highly selective transgene expression through the flip-excision switch system by using a unilateral spacer sequence. CELL REPORTS METHODS 2023; 3:100393. [PMID: 36936079 PMCID: PMC10014282 DOI: 10.1016/j.crmeth.2022.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
The flip-excision switch (FLEX) system with an adeno-associated viral (AAV) vector allows expression of transgenes in specific cell populations having Cre recombinase. A significant issue with this system is non-specific expression of transgenes in tissues after vector injection. We show here that Cre-independent recombination events in the AAV genome carrying the FLEX sequence occur mainly during the production of viral vectors in packaging cells, which results in transgene expression in off-target populations. Introduction of a relatively longer nucleotide sequence between two recognition sites at the unilateral side of the transgene cassette, termed a unilateral spacer sequence (USS), is useful to suppress the recombination in the viral genome, leading to the protection of non-specific transgene expression with enhanced gene expression selectivity. Our FLEX/USS system offers a powerful strategy for highly specific Cre-dependent transgene expression, aiming at various applications for structural and functional analyses of target cell populations.
Collapse
Affiliation(s)
- Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masateru Sugawara
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosei Takeuchi
- Department of Medical Cell Biology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, Suita 565-0871, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
54
|
A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells. Nat Commun 2023; 14:939. [PMID: 36805596 PMCID: PMC9941109 DOI: 10.1038/s41467-023-36294-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Alternative Lengthening of Telomeres (ALT) is an aberrant DNA recombination pathway which grants replicative immortality to approximately 10% of all cancers. Despite this high prevalence of ALT in cancer, the mechanism and genetics by which cells activate this pathway remain incompletely understood. A major challenge in dissecting the events that initiate ALT is the extremely low frequency of ALT induction in human cell systems. Guided by the genetic lesions that have been associated with ALT from cancer sequencing studies, we genetically engineered primary human pluripotent stem cells to deterministically induce ALT upon differentiation. Using this genetically defined system, we demonstrate that disruption of the p53 and Rb pathways in combination with ATRX loss-of-function is sufficient to induce all hallmarks of ALT and results in functional immortalization in a cell type-specific manner. We further demonstrate that ALT can be induced in the presence of telomerase, is neither dependent on telomere shortening nor crisis, but is rather driven by continuous telomere instability triggered by the induction of differentiation in ATRX-deficient stem cells.
Collapse
|
55
|
Berzanskyte I, Riccio F, Machado CB, Bradbury EJ, Lieberam I. Enrichment of human embryonic stem cell-derived V3 interneurons using an Nkx2-2 gene-specific reporter. Sci Rep 2023; 13:2008. [PMID: 36737643 PMCID: PMC9898512 DOI: 10.1038/s41598-023-29165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
V3 spinal interneurons are a key element of the spinal circuits, which control motor function. However, to date, there are no effective ways of deriving a pure V3 population from human pluripotent stem cells. Here, we report a method for differentiation and isolation of spinal V3 interneurons, combining extrinsic factor-mediated differentiation and magnetic activated cell sorting. We found that differentiation of V3 progenitors can be enhanced with a higher concentration of Sonic Hedgehog agonist, as well as culturing cells in 3D format. To enable V3 progenitor purification from mixed differentiation cultures, we developed a transgene reporter, with a part of the regulatory region of V3-specific gene Nkx2-2 driving the expression of a membrane marker CD14. We found that in human cells, NKX2-2 initially exhibited co-labelling with motor neuron progenitor marker, but V3 specificity emerged as the differentiation culture progressed. At these later differentiation timepoints, we were able to enrich V3 progenitors labelled with CD14 to ~ 95% purity, and mature them to postmitotic V3 interneurons. This purification tool for V3 interneurons will be useful for in vitro disease modeling, studies of normal human neural development and potential cell therapies for disorders of the spinal cord.
Collapse
Affiliation(s)
- Ieva Berzanskyte
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK.
- The Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | - Federica Riccio
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK
| | - Carolina Barcellos Machado
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK
| | | | - Ivo Lieberam
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
56
|
Huang S, Baskin JM. Adding a Chemical Biology Twist to CRISPR Screening. Isr J Chem 2023; 63:e202200056. [PMID: 37588264 PMCID: PMC10427134 DOI: 10.1002/ijch.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 11/09/2022]
Abstract
In less than a decade, CRISPR screening has revolutionized forward genetics and cell and molecular biology. Advances in screening technologies, including sgRNA libraries, Cas9-expressing cell lines, and streamlined sequencing pipelines, have democratized pooled CRISPR screens at genome-wide scale. Initially, many such screens were survival-based, identifying essential genes in physiological or perturbed processes. With the application of new chemical biology tools to CRISPR screening, the phenotypic space is no longer limited to live/dead selection or screening for levels of conventional fluorescent protein reporters. Further, the resolution has been increased from cell populations to single cells or even the subcellular level. We highlight advances in pooled CRISPR screening, powered by chemical biology, that have expanded phenotypic space, resolution, scope, and scalability as well as strengthened the CRISPR/Cas enzyme toolkit to enable biological hypothesis generation and discovery.
Collapse
Affiliation(s)
- Shiying Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
57
|
A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene. Nat Commun 2023; 14:381. [PMID: 36693839 PMCID: PMC9873647 DOI: 10.1038/s41467-023-35802-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, genome instability-associated disease characterized by a deficiency in repairing DNA crosslinks, which are known to perturb several cellular processes, including DNA transcription, replication, and repair. Formaldehyde, a by-product of metabolism, is thought to drive FA by generating DNA interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs). However, the impact of formaldehyde on global cellular pathways has not been investigated thoroughly. Herein, using a pangenomic CRISPR-Cas9 screen, we identify EXO1 as a critical regulator of formaldehyde-induced DNA lesions. We show that EXO1 knockout cell lines exhibit formaldehyde sensitivity leading to the accumulation of replicative stress, DNA double-strand breaks, and quadriradial chromosomes, a typical feature of FA. After formaldehyde exposure, EXO1 is recruited to chromatin, protects DNA replication forks from degradation, and functions in parallel with the FA pathway to promote cell survival. In vitro, EXO1-mediated exonuclease activity is proficient in removing DPCs. Collectively, we show that EXO1 limits replication stress and DNA damage to counteract formaldehyde-induced genome instability.
Collapse
|
58
|
Wang M, Yang L, Zhu X, Yang L, Song Z. Influence of Enzymes on the In Vitro Degradation Behavior of Pure Zn in Simulated Gastric and Intestinal Fluids. ACS OMEGA 2023; 8:1331-1342. [PMID: 36643457 PMCID: PMC9835524 DOI: 10.1021/acsomega.2c06752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 05/26/2023]
Abstract
Zinc (Zn) alloys are being developed as the degradable biomaterial. However, the corrosion mechanism of Zn in the gastrointestinal environment is seldom investigated and needs to be addressed. In this study, the impacts of enzymes on the degradation of pure Zn via electrochemical measurements and immersion were investigated. Pepsin and pancreatin affected the degradation of pure Zn. In contrast with the solutions without enzymes, the degradation rates declined with the addition of enzymes in solutions. However, localized corrosion was observed because the adsorption of pepsin was not a perfect barrier to prevent corrosion. The adsorbed pancreatin protected the samples from corrosion mainly at the initial stage of immersion. With immersion in the simulated intestinal fluid, adsorption and desorption of pancreatin occurred simultaneously on the sample surface. These findings allow the development of Zn alloy-implanted devices for the digestive tract as well as the understanding of the Zn corrosion mechanism in the gastrointestinal environment.
Collapse
Affiliation(s)
- Manli Wang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Lingbo Yang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Xinglong Zhu
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Lijing Yang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Zhenlun Song
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| |
Collapse
|
59
|
Nakajima I, Tsukimura T, Ono T, Shiga T, Shitara H, Togawa T, Sakuraba H, Miyaoka Y. In Vivo Delivery of Therapeutic Molecules by Transplantation of Genome-Edited Induced Pluripotent Stem Cells. Cell Transplant 2023; 32:9636897231173734. [PMID: 37183961 DOI: 10.1177/09636897231173734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have already been used in transplantation therapies. Currently, cells from healthy people are transplanted into patients with diseases. With the rapid evolution of genome editing technology, genetic modification could be applied to enhance the therapeutic effects of iPSCs, such as the introduction of secreted molecules to make the cells a drug delivery system. Here, we addressed this possibility by utilizing a Fabry disease mouse model, as a proof of concept. Fabry disease is caused by the lack of α-galactosidase A (GLA). We previously developed an immunotolerant therapeutic molecule, modified α-N-acetylgalactosaminidase (mNAGA). We confirmed that secreted mNAGA from genome-edited iPSCs compensated for the GLA activity in GLA-deficient cells using an in vitro co-culture system. Moreover, iPSCs transplanted into Fabry model mice secreted mNAGA and supplied GLA activity to the liver. This study demonstrates the great potential of genome-edited iPSCs secreting therapeutic molecules.
Collapse
Affiliation(s)
- Ittetsu Nakajima
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo, Japan
| | - Terumi Ono
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Shiga
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yuichiro Miyaoka
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
60
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
61
|
Viana MP, Chen J, Knijnenburg TA, Vasan R, Yan C, Arakaki JE, Bailey M, Berry B, Borensztejn A, Brown EM, Carlson S, Cass JA, Chaudhuri B, Cordes Metzler KR, Coston ME, Crabtree ZJ, Davidson S, DeLizo CM, Dhaka S, Dinh SQ, Do TP, Domingus J, Donovan-Maiye RM, Ferrante AJ, Foster TJ, Frick CL, Fujioka G, Fuqua MA, Gehring JL, Gerbin KA, Grancharova T, Gregor BW, Harrylock LJ, Haupt A, Hendershott MC, Hookway C, Horwitz AR, Hughes HC, Isaac EJ, Johnson GR, Kim B, Leonard AN, Leung WW, Lucas JJ, Ludmann SA, Lyons BM, Malik H, McGregor R, Medrash GE, Meharry SL, Mitcham K, Mueller IA, Murphy-Stevens TL, Nath A, Nelson AM, Oluoch SA, Paleologu L, Popiel TA, Riel-Mehan MM, Roberts B, Schaefbauer LM, Schwarzl M, Sherman J, Slaton S, Sluzewski MF, Smith JE, Sul Y, Swain-Bowden MJ, Tang WJ, Thirstrup DJ, Toloudis DM, Tucker AP, Valencia V, Wiegraebe W, Wijeratna T, Yang R, Zaunbrecher RJ, Labitigan RLD, Sanborn AL, Johnson GT, Gunawardane RN, Gaudreault N, Theriot JA, Rafelski SM. Integrated intracellular organization and its variations in human iPS cells. Nature 2023; 613:345-354. [PMID: 36599983 PMCID: PMC9834050 DOI: 10.1038/s41586-022-05563-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduced this complexity by focusing on cellular organization-a key readout and driver of cell behaviour3,4-at the level of major cellular structures that represent distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning 25 key cellular structures. The scale and quality of this dataset permitted the creation of a generalizable analysis framework to convert raw image data of cells and their structures into dimensionally reduced, quantitative measurements that can be interpreted by humans, and to facilitate data exploration. This framework embraces the vast cell-to-cell variability that is observed within a normal population, facilitates the integration of cell-by-cell structural data and allows quantitative analyses of distinct, separable aspects of organization within and across different cell populations. We found that the integrated intracellular organization of interphase cells was robust to the wide range of variation in cell shape in the population; that the average locations of some structures became polarized in cells at the edges of colonies while maintaining the 'wiring' of their interactions with other structures; and that, by contrast, changes in the location of structures during early mitotic reorganization were accompanied by changes in their wiring.
Collapse
Affiliation(s)
| | - Jianxu Chen
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Ritvik Vasan
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Calysta Yan
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Matte Bailey
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Ben Berry
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Eva M Brown
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Sara Carlson
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Julie A Cass
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | - Thao P Do
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Amanda Haupt
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | - Eric J Isaac
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Brian Kim
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | | | - Haseeb Malik
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | | | | | - Aditya Nath
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Youngmee Sul
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - W Joyce Tang
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | | | | | - Ruian Yang
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Ramon Lorenzo D Labitigan
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Adrian L Sanborn
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | | | | | | | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
62
|
Benati D, Leung A, Perdigao P, Toulis V, van der Spuy J, Recchia A. Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders. Int J Mol Sci 2022; 23:ijms232315276. [PMID: 36499601 PMCID: PMC9735568 DOI: 10.3390/ijms232315276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal disorders (IRDs) affect millions of people worldwide and are a major cause of irreversible blindness. Therapies based on drugs, gene augmentation or transplantation approaches have been widely investigated and proposed. Among gene therapies for retinal degenerative diseases, the fast-evolving genome-editing CRISPR/Cas technology has emerged as a new potential treatment. The CRISPR/Cas system has been developed as a powerful genome-editing tool in ophthalmic studies and has been applied not only to gain proof of principle for gene therapies in vivo, but has also been extensively used in basic research to model diseases-in-a-dish. Indeed, the CRISPR/Cas technology has been exploited to genetically modify human induced pluripotent stem cells (iPSCs) to model retinal disorders in vitro, to test in vitro drugs and therapies and to provide a cell source for autologous transplantation. In this review, we will focus on the technological advances in iPSC-based cellular reprogramming and gene editing technologies to create human in vitro models that accurately recapitulate IRD mechanisms towards the development of treatments for retinal degenerative diseases.
Collapse
Affiliation(s)
- Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Amy Leung
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Pedro Perdigao
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (J.v.d.S.); (A.R.)
| |
Collapse
|
63
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
64
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
65
|
Qin Y, Li S, Li XJ, Yang S. CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy. Neurosci Bull 2022; 38:1397-1408. [PMID: 35608753 PMCID: PMC9672252 DOI: 10.1007/s12264-022-00880-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases. Clustered regularly-interspaced short palindromic repeats (CRISPR) is the latest technology for genome editing. Being simple to use and highly efficient, CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment. Here, we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.
Collapse
Affiliation(s)
- Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
66
|
Song J, Anderson W, Hu A, Obata-Ninomiya K, Ziegler SF, Rawlings DJ, Buckner JH. CBLBDeficiency in Human CD4 +T Cells Results in Resistance to T Regulatory Suppression through Multiple Mechanisms. THE JOURNAL OF IMMUNOLOGY 2022; 209:1260-1271. [DOI: 10.4049/jimmunol.2200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/16/2022] [Indexed: 11/06/2022]
|
67
|
Appleby SJ, Misica‐Turner P, Oback FC, Dhali A, McLean ZL, Oback B. Double cytoplast embryonic cloning improves in vitro but not in vivo development from mitotic pluripotent cells in cattle. Front Genet 2022; 13:933534. [PMID: 36246653 PMCID: PMC9563626 DOI: 10.3389/fgene.2022.933534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Cloning multiple animals from genomically selected donor embryos is inefficient but would accelerate genetic gain in dairy cattle breeding. To improve embryo cloning efficiency, we explored the idea that epigenetic reprogramming improves when donor cells are in mitosis. We derived primary cultures from bovine inner cell mass (ICM) cells of in vitro fertilized (IVF) embryos. Cells were grown feeder-free in a chemically defined medium with increased double kinase inhibition (2i+). Adding recombinant bovine interleukin 6 to 2i+ medium improved plating efficiency, outgrowth expansion, and expression of pluripotency-associated epiblast marker genes (NANOG, FGF4, SOX2, and DPPA3). For genotype multiplication by embryonic cell transfer (ECT) cloning, primary colonies were treated with nocodazole, and single mitotic donors were harvested by mechanical shake-off. Immunofluorescence against phosphorylated histone 3 (P-H3) showed 37% of nocodazole-treated cells in metaphase compared to 6% in DMSO controls (P < 1 × 10−5), with an average of 53% of P-H3-positive cells expressing the pluripotency marker SOX2. We optimized several parameters (fusion buffer, pronase treatment, and activation timing) for ECT with mitotic embryonic donors. Sequential double cytoplast ECT, whereby another cytoplast was fused to the first cloned reconstruct, doubled cloned blastocyst development and improved morphological embryo quality. However, in situ karyotyping revealed that over 90% of mitotic ECT-derived blastocysts were tetraploid or aneuploid with extra chromosomes, compared to less than 2% in the original ICM donor cells. Following the transfer of single vs. double cytoplast embryos, there was no difference between the two methods in pregnancy establishment at D35 (1/22 = 5% vs. 4/53 = 8% for single vs. double ECT, respectively). Overall, post-implantation development was drastically reduced from embryonic mitotic clones when compared to somatic interphase clones and IVF controls. We conclude that mitotic donors cause ploidy errors during in vitro development that cannot be rescued by enhanced epigenetic reprogramming through double cytoplast cloning.
Collapse
Affiliation(s)
- Sarah Jane Appleby
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | | | | | - Zachariah Louis McLean
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Björn Oback
- Animal Biotech, AgResearch, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Björn Oback,
| |
Collapse
|
68
|
Vazquez-Lombardi R, Jung JS, Schlatter FS, Mei A, Mantuano NR, Bieberich F, Hong KL, Kucharczyk J, Kapetanovic E, Aznauryan E, Weber CR, Zippelius A, Läubli H, Reddy ST. High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. Immunity 2022; 55:1953-1966.e10. [PMID: 36174557 DOI: 10.1016/j.immuni.2022.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.
Collapse
Affiliation(s)
- Rodrigo Vazquez-Lombardi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Engimmune Therapeutics AG, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland.
| | - Johanna S Jung
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fabrice S Schlatter
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anna Mei
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Erik Aznauryan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
69
|
Li H, Busquets O, Verma Y, Syed KM, Kutnowski N, Pangilinan GR, Gilbert LA, Bateup HS, Rio DC, Hockemeyer D, Soldner F. Highly efficient generation of isogenic pluripotent stem cell models using prime editing. eLife 2022; 11:e79208. [PMID: 36069759 PMCID: PMC9584603 DOI: 10.7554/elife.79208] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
The recent development of prime editing (PE) genome engineering technologies has the potential to significantly simplify the generation of human pluripotent stem cell (hPSC)-based disease models. PE is a multicomponent editing system that uses a Cas9-nickase fused to a reverse transcriptase (nCas9-RT) and an extended PE guide RNA (pegRNA). Once reverse transcribed, the pegRNA extension functions as a repair template to introduce precise designer mutations at the target site. Here, we systematically compared the editing efficiencies of PE to conventional gene editing methods in hPSCs. This analysis revealed that PE is overall more efficient and precise than homology-directed repair of site-specific nuclease-induced double-strand breaks. Specifically, PE is more effective in generating heterozygous editing events to create autosomal dominant disease-associated mutations. By stably integrating the nCas9-RT into hPSCs we achieved editing efficiencies equal to those reported for cancer cells, suggesting that the expression of the PE components, rather than cell-intrinsic features, limit PE in hPSCs. To improve the efficiency of PE in hPSCs, we optimized the delivery modalities for the PE components. Delivery of the nCas9-RT as mRNA combined with synthetically generated, chemically-modified pegRNAs and nicking guide RNAs improved editing efficiencies up to 13-fold compared with transfecting the PE components as plasmids or ribonucleoprotein particles. Finally, we demonstrated that this mRNA-based delivery approach can be used repeatedly to yield editing efficiencies exceeding 60% and to correct or introduce familial mutations causing Parkinson's disease in hPSCs.
Collapse
Affiliation(s)
- Hanqin Li
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Oriol Busquets
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineThe BronxUnited States
| | - Yogendra Verma
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Khaja Mohieddin Syed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Nitzan Kutnowski
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Gabriella R Pangilinan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Luke A Gilbert
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Arc InstitutePalo AltoUnited States
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Frank Soldner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineThe BronxUnited States
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of MedicineThe BronxUnited States
| |
Collapse
|
70
|
Pellegrini S, Zamarian V, Sordi V. Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes. Transpl Int 2022; 35:10575. [PMID: 36090777 PMCID: PMC9448870 DOI: 10.3389/ti.2022.10575] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022]
Abstract
Allogeneic islet transplantation allows for the re-establishment of glycemic control with the possibility of insulin independence, but is severely limited by the scarcity of organ donors. However, a new source of insulin-producing cells could enable the widespread use of cell therapy for diabetes treatment. Recent breakthroughs in stem cell biology, particularly pluripotent stem cell (PSC) techniques, have highlighted the therapeutic potential of stem cells in regenerative medicine. An understanding of the stages that regulate β cell development has led to the establishment of protocols for PSC differentiation into β cells, and PSC-derived β cells are appearing in the first pioneering clinical trials. However, the safety of the final product prior to implantation remains crucial. Although PSC differentiate into functional β cells in vitro, not all cells complete differentiation, and a fraction remain undifferentiated and at risk of teratoma formation upon transplantation. A single case of stem cell-derived tumors may set the field back years. Thus, this review discusses four approaches to increase the safety of PSC-derived β cells: reprogramming of somatic cells into induced PSC, selection of pure differentiated pancreatic cells, depletion of contaminant PSC in the final cell product, and control or destruction of tumorigenic cells with engineered suicide genes.
Collapse
|
71
|
Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. NPJ Regen Med 2022; 7:39. [PMID: 35974011 PMCID: PMC9381579 DOI: 10.1038/s41536-022-00235-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP. We demonstrate here that RPE cells carrying PRPF31 mutations present important morphological and functional changes and that PRPF31-mutated retinal organoids recapitulate the human RP phenotype, with a rod photoreceptor cell death followed by a loss of cones. The low level of PRPF31 expression may explain the defective phenotypes of PRPF31-mutated RPE and photoreceptor cells, which were not observed in cells derived from asymptomatic patients or after correction of the pathogenic mutation by CRISPR/Cas9. Transcriptome profiles revealed differentially expressed and mis-spliced genes belonging to pathways in line with the observed defective phenotypes. The rescue of RPE and photoreceptor defective phenotypes by PRPF31 gene augmentation provide the proof of concept for future therapeutic strategies.
Collapse
|
72
|
Chong CM, Tan Y, Tong J, Ke M, Zhang K, Yan L, Cen X, Lu JH, Chen G, Su H, Qin D. Presenilin-1 F105C mutation leads to tau accumulation in human neurons via the Akt/mTORC1 signaling pathway. Cell Biosci 2022; 12:131. [PMID: 35965317 PMCID: PMC9375916 DOI: 10.1186/s13578-022-00874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) plays a critical role in controlling cellular homeostasis, and its dysregulation has been implicated in Alzheimer’s disease (AD). Presenilin-1 (PS1) mutations account for the most common causes of familial Alzheimer’s disease (FAD); however, whether PS1 mutation causes mTOR dysregulation in human neurons remains a key unresolved issue. Methods We generated heterozygotes and homozygotes of PS1 F105C knock-in mutation in human induced pluripotent stem cells (iPSCs) via CRISPR/Cas9/piggyback-based gene editing and differentiated them into human neurons. Secreted Aβ and tau accumulation were determined by ELISA assay, immunofluorescence staining, and western blotting analysis. mTOR signaling was evaluated by western blotting analysis, immunofluorescence staining, and co-immunoprecipitation. Autophagy/lysosome activities were determined by LC3-based assay, LysoTracker Red staining, and DQ-Red BSA staining. Results Through comparison among these isogenic neurons, PS1 F105C mutant neurons exhibited elevated Aβ and tau accumulation. In addition, we found that the response of mTORC1 to starvation decreases in PS1 F105C mutant neurons. The Akt/mTORC1/p70S6K signaling pathway remained active upon EBSS starvation, leading to the co-localization of the vast majority of mTOR with lysosomes. Consistently, PS1 F105C neurons displayed a significant decline in starvation-induced autophagy. Notably, Torin1, a mTOR inhibitor, could efficiently reduce prominent tau pathology that occurred in PS1 F105C neurons. Conclusion We demonstrate that Chinese PS1 F105C mutation causes dysregulation of mTORC1 signaling, contributing to tau accumulation in human neurons. This study on inherited FAD PS1 mutation provides unprecedented insights into our understanding of the molecular mechanisms of AD. It supports that pharmaceutical blocking of mTOR is a promising therapeutic strategy for the treatment of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00874-8.
Collapse
|
73
|
Gao K, Zhang X, Zhang Z, Wu X, Guo Y, Fu P, Sun A, Peng J, Zheng J, Yu P, Wang T, Ye Q, Jiang J, Wang H, Lin CP, Gao G. Transcription-coupled donor DNA expression increases homologous recombination for efficient genome editing. Nucleic Acids Res 2022; 50:e109. [PMID: 35929067 DOI: 10.1093/nar/gkac676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/14/2022] Open
Abstract
Genomes can be edited by homologous recombination stimulated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated peptide 9]-induced DNA double-strand breaks. However, this approach is inefficient for inserting or deleting long fragments in mammalian cells. Here, we describe a simple genome-editing method, termed transcription-coupled Cas9-mediated editing (TEd), that can achieve higher efficiencies than canonical Cas9-mediated editing (CEd) in deleting genomic fragments, inserting/replacing large DNA fragments and introducing point mutations into mammalian cell lines. We also found that the transcription on DNA templates is crucial for the promotion of homology-directed repair, and that tethering transcripts from TEd donors to targeted sites further improves editing efficiency. The superior efficiency of TEd for the insertion and deletion of long DNA fragments expands the applications of CRISPR for editing mammalian genomes.
Collapse
Affiliation(s)
- Kaixuan Gao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuedi Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenwu Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangyu Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Guo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengchong Fu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Angyang Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ju Peng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jie Zheng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengfei Yu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tengfei Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingwei Jiang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haopeng Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guanjun Gao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
74
|
Chupradit K, Thongsin N, Tayapiwatana C, Wattanapanitch M. A precise gene delivery approach for human induced pluripotent stem cells using Cas9 RNP complex and recombinant AAV6 donor vectors. PLoS One 2022; 17:e0270963. [PMID: 35797389 PMCID: PMC9262223 DOI: 10.1371/journal.pone.0270963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Genome editing in human induced pluripotent stem cells (hiPSCs) offers a potential tool for studying gene functions in disease models and correcting genetic mutations for cell-based therapy. Precise transgene insertion in hiPSCs represents a significant challenge. In the past decade, viral transduction has been widely used due to its high transduction efficiency; however, it can result in random transgene integration and variable transgene copy numbers. Non-viral-based strategies are generally safer but limited by their low transfection efficiency in hiPSCs. Recently, genome engineering using adeno-associated virus (AAV) vectors has emerged as a promising gene delivery approach due to AAVs’ low immunogenicity, toxicity, and ability to infect a broad range of cells. The following protocol describes the workflow for genome editing in hiPSCs using the CRISPR/Cas9 ribonucleoprotein (RNP) complex combined with the recombinant AAV serotype 6 (AAV6) donor vectors to introduce a gene of interest (GOI) fused with mCherry fluorescent reporter gene into the AAVS1 safe harbor site. This approach leads to efficient transgene insertion and is applicable to precise genome editing of hiPSCs or other types of stem cells for research purposes.
Collapse
Affiliation(s)
- Koollawat Chupradit
- Research Department, Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nontaphat Thongsin
- Research Department, Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchai Tayapiwatana
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Methichit Wattanapanitch
- Research Department, Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
75
|
Sudarshan D, Avvakumov N, Lalonde ME, Alerasool N, Joly-Beauparlant C, Jacquet K, Mameri A, Lambert JP, Rousseau J, Lachance C, Paquet E, Herrmann L, Thonta Setty S, Loehr J, Bernardini MQ, Rouzbahman M, Gingras AC, Coulombe B, Droit A, Taipale M, Doyon Y, Côté J. Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci. Genes Dev 2022; 36:664-683. [PMID: 35710139 DOI: 10.1101/gad.348982.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.
Collapse
Affiliation(s)
- Deepthi Sudarshan
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nikita Avvakumov
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marie-Eve Lalonde
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Joly-Beauparlant
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Amel Mameri
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jean-Philippe Lambert
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Justine Rousseau
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Catherine Lachance
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Eric Paquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Lara Herrmann
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Samarth Thonta Setty
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marcus Q Bernardini
- Department of Gynecologic Oncology, Princess Margaret Cancer Center, University Health Network, Sinai Health System, Toronto, Ontario M5B 2M9, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
76
|
Fehér A, Schnúr A, Muenthaisong S, Bellák T, Ayaydin F, Várady G, Kemter E, Wolf E, Dinnyés A. Establishment and characterization of a novel human induced pluripotent stem cell line stably expressing the iRFP720 reporter. Sci Rep 2022; 12:9874. [PMID: 35701501 PMCID: PMC9198085 DOI: 10.1038/s41598-022-12956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Stem cell therapy has great potential for replacing beta-cell loss in diabetic patients. However, a key obstacle to cell therapy’s success is to preserve viability and function of the engrafted cells. While several strategies have been developed to improve engrafted beta-cell survival, tools to evaluate the efficacy within the body by imaging are limited. Traditional labeling tools, such as GFP-like fluorescent proteins, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent this limitation, a near-infrared fluorescent mutant version of the DrBphP bacteriophytochrome, iRFP720, has been developed for in vivo imaging and stem/progenitor cell tracking. Here, we present the generation and characterization of an iRFP720 expressing human induced pluripotent stem cell (iPSC) line, which can be used for real-time imaging in various biological applications. To generate the transgenic cells, the CRISPR/Cas9 technology was applied. A puromycin resistance gene was inserted into the AAVS1 locus, driven by the endogenous PPP1R12C promoter, along with the CAG-iRFP720 reporter cassette, which was flanked by insulator elements. Proper integration of the transgene into the targeted genomic region was assessed by comprehensive genetic analysis, verifying precise genome editing. Stable expression of iRFP720 in the cells was confirmed and imaged by their near-infrared fluorescence. We demonstrated that the reporter iPSCs exhibit normal stem cell characteristics and can be efficiently differentiated towards the pancreatic lineage. As the genetically modified reporter cells show retained pluripotency and multilineage differentiation potential, they hold great potential as a cellular model in a variety of biological and pharmacological applications.
Collapse
Affiliation(s)
- Anita Fehér
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Andrea Schnúr
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | | | - Tamás Bellák
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary.,Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6724, Hungary
| | - Ferhan Ayaydin
- Functional Cell Biology and Immunology Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, University of Szeged (HCEMM-USZ), Szeged, 6720, Hungary.,Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, 1117, Hungary
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - András Dinnyés
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary. .,HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, 6723, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary.
| |
Collapse
|
77
|
Volodina OV, Smirnikhina SA. The Choice of a Donor Molecule in Genome Editing Experiments in Animal Cells. Mol Biol 2022. [DOI: 10.1134/s002689332203013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Oh SA, Senger K, Madireddi S, Akhmetzyanova I, Ishizuka IE, Tarighat S, Lo JH, Shaw D, Haley B, Rutz S. High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. J Exp Med 2022; 219:213176. [PMID: 35452075 PMCID: PMC9040063 DOI: 10.1084/jem.20211530] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Genome engineering of T lymphocytes, the main effectors of antitumor adaptive immune responses, has the potential to uncover unique insights into their functions and enable the development of next-generation adoptive T cell therapies. Viral gene delivery into T cells, which is currently used to generate CAR T cells, has limitations in regard to targeting precision, cargo flexibility, and reagent production. Nonviral methods for effective CRISPR/Cas9-mediated gene knock-out in primary human T cells have been developed, but complementary techniques for nonviral gene knock-in can be cumbersome and inefficient. Here, we report a convenient and scalable nonviral method that allows precise gene edits and transgene integration in primary human T cells, using plasmid donor DNA template and Cas9-RNP. This method is highly efficient for single and multiplex gene manipulation, without compromising T cell function, and is thus valuable for use in basic and translational research.
Collapse
Affiliation(s)
- Soyoung A Oh
- Cancer Immunology, Genentech, South San Francisco, CA
| | - Kate Senger
- Molecular Biology, Genentech, South San Francisco, CA
| | | | | | | | - Somayeh Tarighat
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA
| | - Jerry H Lo
- Oncology Bioinformatics, Genentech, South San Francisco, CA
| | - David Shaw
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA
| | | | - Sascha Rutz
- Cancer Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
79
|
The Genetic and Molecular Analyses of RAD51C and RAD51D Identifies Rare Variants Implicated in Hereditary Ovarian Cancer from a Genetically Unique Population. Cancers (Basel) 2022; 14:cancers14092251. [PMID: 35565380 PMCID: PMC9104874 DOI: 10.3390/cancers14092251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
To identify candidate variants in RAD51C and RAD51D ovarian cancer (OC) predisposing genes by investigating French Canadians (FC) exhibiting unique genetic architecture. Candidates were identified by whole exome sequencing analysis of 17 OC families and 53 early-onset OC cases. Carrier frequencies were determined by the genetic analysis of 100 OC or HBOC families, 438 sporadic OC cases and 1025 controls. Variants of unknown function were assayed for their biological impact and/or cellular sensitivity to olaparib. RAD51C c.414G>C;p.Leu138Phe and c.705G>T;p.Lys235Asn and RAD51D c.137C>G;p.Ser46Cys, c.620C>T;p.Ser207Leu and c.694C>T;p.Arg232Ter were identified in 17.6% of families and 11.3% of early-onset cases. The highest carrier frequency was observed in OC families (1/44, 2.3%) and sporadic cases (15/438, 3.4%) harbouring RAD51D c.620C>T versus controls (1/1025, 0.1%). Carriers of c.620C>T (n = 7), c.705G>T (n = 2) and c.137C>G (n = 1) were identified in another 538 FC OC cases. RAD51C c.705G>T affected splicing by skipping exon four, while RAD51D p.Ser46Cys affected protein stability and conferred olaparib sensitivity. Genetic and functional assays implicate RAD51C c.705G>T and RAD51D c.137C>G as likely pathogenic variants in OC. The high carrier frequency of RAD51D c.620C>T in FC OC cases validates previous findings. Our findings further support the role of RAD51C and RAD51D in hereditary OC.
Collapse
|
80
|
Vojnits K, Nakanishi M, Porras D, Kim Y, Feng Z, Golubeva D, Bhatia M. Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Molecules 2022; 27:molecules27082434. [PMID: 35458632 PMCID: PMC9025795 DOI: 10.3390/molecules27082434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Application of the CRISPR/Cas9 system to knock in fluorescent proteins to endogenous genes of interest in human pluripotent stem cells (hPSCs) has the potential to facilitate hPSC-based disease modeling, drug screening, and optimization of transplantation therapy. To evaluate the capability of fluorescent reporter hPSC lines for high-content screening approaches, we targeted EGFP to the endogenous OCT4 locus. Resulting hPSC–OCT4–EGFP lines generated expressed EGFP coincident with pluripotency markers and could be adapted to multi-well formats for high-content screening (HCS) campaigns. However, after long-term culture, hPSCs transiently lost their EGFP expression. Alternatively, through EGFP knock-in to the AAVS1 locus, we established a stable and consistent EGFP-expressing hPSC–AAVS1–EGFP line that maintained EGFP expression during in vitro hematopoietic and neural differentiation. Thus, hPSC–AAVS1–EGFP-derived sensory neurons could be adapted to a high-content screening platform that can be applied to high-throughput small-molecule screening and drug discovery campaigns. Our observations are consistent with recent findings indicating that high-frequency on-target complexities appear following CRISPR/Cas9 genome editing at the OCT4 locus. In contrast, we demonstrate that the AAVS1 locus is a safe genomic location in hPSCs with high gene expression that does not impact hPSC quality and differentiation. Our findings suggest that the CRISPR/Cas9-integrated AAVS1 system should be applied for generating stable reporter hPSC lines for long-term HCS approaches, and they underscore the importance of careful evaluation and selection of the applied reporter cell lines for HCS purposes.
Collapse
|
81
|
Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM, Moses EJ. Utilization of CRISPR-Mediated Tools for Studying Functional Genomics in Hematological Malignancies: An Overview on the Current Perspectives, Challenges, and Clinical Implications. Front Genet 2022; 12:767298. [PMID: 35154242 PMCID: PMC8834884 DOI: 10.3389/fgene.2021.767298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Hematological malignancies (HM) are a group of neoplastic diseases that are usually heterogenous in nature due to the complex underlying genetic aberrations in which collaborating mutations enable cells to evade checkpoints that normally safeguard it against DNA damage and other disruptions of healthy cell growth. Research regarding chromosomal structural rearrangements and alterations, gene mutations, and functionality are currently being carried out to understand the genomics of these abnormalities. It is also becoming more evident that cross talk between the functional changes in transcription and proteins gives the characteristics of the disease although specific mutations may induce unique phenotypes. Functional genomics is vital in this aspect as it measures the complete genetic change in cancerous cells and seeks to integrate the dynamic changes in these networks to elucidate various cancer phenotypes. The advent of CRISPR technology has indeed provided a superfluity of benefits to mankind, as this versatile technology enables DNA editing in the genome. The CRISPR-Cas9 system is a precise genome editing tool, and it has revolutionized methodologies in the field of hematology. Currently, there are various CRISPR systems that are used to perform robust site-specific gene editing to study HM. Furthermore, experimental approaches that are based on CRISPR technology have created promising tools for developing effective hematological therapeutics. Therefore, this review will focus on diverse applications of CRISPR-based gene-editing tools in HM and its potential future trajectory. Collectively, this review will demonstrate the key roles of different CRISPR systems that are being used in HM, and the literature will be a representation of a critical step toward further understanding the biology of HM and the development of potential therapeutic approaches.
Collapse
Affiliation(s)
- Maheswaran Solayappan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Adam Azlan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Kang Zi Khor
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Mot Yee Yik
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Matiullah Khan
- Department of Pathology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Emmanuel Jairaj Moses
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
82
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
83
|
Yoshimatsu S, Nakajima M, Qian E, Sanosaka T, Sato T, Okano H. Homologous Recombination-Enhancing Factors Identified by Comparative Transcriptomic Analyses of Pluripotent Stem Cell of Human and Common Marmoset. Cells 2022; 11:cells11030360. [PMID: 35159172 PMCID: PMC8834151 DOI: 10.3390/cells11030360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
A previous study assessing the efficiency of the genome editing technology CRISPR-Cas9 for knock-in gene targeting in common marmoset (marmoset; Callithrix jacchus) embryonic stem cells (ESCs) unexpectedly identified innately enhanced homologous recombination activity in marmoset ESCs. Here, we compared gene expression in marmoset and human pluripotent stem cells using transcriptomic and quantitative PCR analyses and found that five HR-related genes (BRCA1, BRCA2, RAD51C, RAD51D, and RAD51) were upregulated in marmoset cells. A total of four of these upregulated genes enhanced HR efficiency with CRISPR-Cas9 in human pluripotent stem cells. Thus, the present study provides a novel insight into species-specific mechanisms for the choice of DNA repair pathways.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Mayutaka Nakajima
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Emi Qian
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Correspondence:
| |
Collapse
|
84
|
Chakravarti R, Lenka SK, Gautam A, Singh R, Ravichandiran V, Roy S, Ghosh D. A Review on CRISPR-Mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer. Curr Drug Targets 2022; 23:836-853. [DOI: 10.2174/1389450123666220117105531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Recent studies have shed light on the role of epigenetic marks in certain diseases like cancer, type II diabetes mellitus (T2DM), obesity, and cardiovascular dysfunction, to name a few. Epigenetic marks like DNA methylation and histone acetylation are randomly altered in the disease state. It has been seen that methylation of DNA and histones can result in down-regulation of gene expression, whereas histone acetylation, ubiquitination, and phosphorylation are linked to enhanced expression of genes. How can we precisely target such epigenetic aberrations to prevent the advent of diseases? The answer lies in the amalgamation of the efficient genome editing technique, CRISPR, with certain effector molecules that can alter the status of epigenetic marks as well as employ certain transcriptional activators or repressors. In this review, we have discussed the rationale of epigenetic editing as a therapeutic strategy and how CRISPR-Cas9 technology coupled with epigenetic effector tags can efficiently edit epigenetic targets. In the later part, we have discussed how certain epigenetic effectors are tagged with dCas9 to elicit epigenetic changes in cancer. Increased interest in exploring the epigenetic background of cancer and non-communicable diseases like type II diabetes mellitus and obesity accompanied with technological breakthroughs has made it possible to perform large-scale epigenome studies.
Collapse
Affiliation(s)
- Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Swadhin Kumar Lenka
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Syamal Roy
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
85
|
Scarborough AM, Govindan A, Conrad NK. Genome-Wide CRISPR Screening to Identify Mammalian Factors that Regulate Intron Retention. Methods Mol Biol 2022; 2537:263-284. [PMID: 35895270 DOI: 10.1007/978-1-0716-2521-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intron retention (IR) regulates gene expression to control fundamental biological processes like metabolism, differentiation, and cell cycle. Despite a wide variety of genes controlled by IR, few techniques are available to identify regulators of IR in an unbiased manner. Here, we describe a CRISPR knockout screening method that can be applied to uncover regulators of IR. This method uses GFP reporter constructs containing a retained intron from a gene of interest such that GFP signal is regulated by IR in the same fashion as the endogenous gene. The GFP levels are then used as a readout for genome-wide CRISPR screening. We have successfully used this approach to identify novel regulator of IR of the MAT2A transcript and propose that similar screens will be broadly applicable for the identification of novel factors that control IR of specific transcripts.
Collapse
Affiliation(s)
- Anna M Scarborough
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ashwin Govindan
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
86
|
Gene Editing in Pluripotent Stem Cells and Their Derived Organoids. Stem Cells Int 2021; 2021:8130828. [PMID: 34887928 PMCID: PMC8651378 DOI: 10.1155/2021/8130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
With the rapid rise in gene-editing technology, pluripotent stem cells (PSCs) and their derived organoids have increasingly broader and practical applications in regenerative medicine. Gene-editing technologies, from large-scale nucleic acid endonucleases to CRISPR, have ignited a global research and development boom with significant implications in regenerative medicine. The development of regenerative medicine technologies, regardless of whether it is PSCs or gene editing, is consistently met with controversy. Are the tools for rewriting the code of life a boon to humanity or a Pandora's box? These technologies raise concerns regarding ethical issues, unexpected mutations, viral infection, etc. These concerns remain even as new treatments emerge. However, the potential negatives cannot obscure the virtues of PSC gene editing, which have, and will continue to, benefit mankind at an unprecedented rate. Here, we briefly introduce current gene-editing technology and its application in PSCs and their derived organoids, while addressing ethical concerns and safety risks and discussing the latest progress in PSC gene editing. Gene editing in PSCs creates visualized in vitro models, providing opportunities for examining mechanisms of known and unknown mutations and offering new possibilities for the treatment of cancer, genetic diseases, and other serious or refractory disorders. From model construction to treatment exploration, the important role of PSCs combined with gene editing in basic and clinical medicine studies is illustrated. The applications, characteristics, and existing challenges are summarized in combination with our lab experiences in this field in an effort to help gene-editing technology better serve humans in a regulated manner. Current preclinical and clinical trials have demonstrated initial safety and efficacy of PSC gene editing; however, for better application in clinical settings, additional investigation is warranted.
Collapse
|
87
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
88
|
Kues WA, Kumar D, Selokar NL, Talluri TR. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Curr Stem Cell Res Ther 2021; 17:267-279. [PMID: 34819011 DOI: 10.2174/1574888x16666211124095527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Precise and site specific genome editing through application of emerging and modern gene engineering techniques, namely zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) have swiftly progressed the application and use of the stem cell technology in the sphere of in-vitro disease modelling and regenerative medicine. Genome editing tools facilitate the manipulating of any gene in various types of cells with target specific nucleases. These tools aid in elucidating the genetics and etiology behind different diseases and have immense promise as novel therapeutics for correcting the genetic mutations, make alterations and cure diseases permanently that are not responding and resistant to traditional therapies. These genome engineering tools have evolved in the field of biomedical research and have also shown to have a significant improvement in clinical trials. However, their widespread use in research revealed potential safety issues, which need to be addressed before implementing such techniques in clinical purposes. Significant and valiant attempts are being made in order to surpass those hurdles. The current review outlines the advancements of several genome engineering tools and describes suitable strategies for their application towards regenerative medicine.
Collapse
Affiliation(s)
- Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Biotechnology, Stem Cell Physiology, Höltystr 10, 31535 Neustadt. Germany
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana. India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana. India
| | - Thirumala Rao Talluri
- Equine Production Campus, ICAR- National Research Centre on Equines, Bikaner-334001, Rajasthan. India
| |
Collapse
|
89
|
Tang SY, Zha S, Du Z, Zeng J, Zhu D, Luo Y, Wang S. Targeted integration of EpCAM-specific CAR in human induced pluripotent stem cells and their differentiation into NK cells. Stem Cell Res Ther 2021; 12:580. [PMID: 34802459 PMCID: PMC8607711 DOI: 10.1186/s13287-021-02648-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Background Redirection of natural killer (NK) cells with chimeric antigen receptors (CAR) is attractive in developing off-the-shelf CAR therapeutics for cancer treatment. However, the site-specific integration of a CAR gene into NK cells remains challenging. Methods In the present study, we genetically modified human induced pluripotent stem cells (iPSCs) with a zinc finger nuclease (ZFN) technology to introduce a cDNA encoding an anti-EpCAM CAR into the adeno-associated virus integration site 1, a “safe harbour” for transgene insertion into human genome, and next differentiated the modified iPSCs into CAR-expressing iNK cells. Results We detected the targeted integration in 4 out of 5 selected iPSC clones, 3 of which were biallelically modified. Southern blotting analysis revealed no random integration events. iNK cells were successfully derived from the modified iPSCs with a 47-day protocol, which were morphologically similar to peripheral blood NK cells, displayed NK phenotype (CD56+CD3-), and expressed NK receptors. The CAR expression of the iPSC-derived NK cells was confirmed with RT-PCR and flow cytometry analysis. In vitro cytotoxicity assay further confirmed their lytic activity against NK cell-resistant, EpCAM-positive cancer cells, but not to EpCAM-positive normal cells, demonstrating the retained tolerability of the CAR-iNK cells towards normal cells. Conclusion Looking ahead, the modified iPSCs generated in the current study hold a great potential as a practically unlimited source to generate anti-EpCAM CAR iNK cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02648-4.
Collapse
Affiliation(s)
- Shin Yi Tang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.,Institute of Bioengineering and Nanotechnology, Singapore, 138669, Singapore
| | - Shijun Zha
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Zhicheng Du
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Jieming Zeng
- Institute of Bioengineering and Nanotechnology, Singapore, 138669, Singapore
| | - Detu Zhu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yumei Luo
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
90
|
Flores‐Bellver M, Mighty J, Aparicio‐Domingo S, Li KV, Shi C, Zhou J, Cobb H, McGrath P, Michelis G, Lenhart P, Bilousova G, Heissel S, Rudy MJ, Coughlan C, Goodspeed AE, Becerra SP, Redenti S, Canto‐Soler MV. Extracellular vesicles released by human retinal pigment epithelium mediate increased polarised secretion of drusen proteins in response to AMD stressors. J Extracell Vesicles 2021; 10:e12165. [PMID: 34750957 PMCID: PMC8575963 DOI: 10.1002/jev2.12165] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key contributors to the etiology of AMD and the ability to modulate drusen biogenesis could lead to therapeutic strategies to slow or halt AMD progression. The mechanisms underlying drusen biogenesis, however, remain mostly unknown. Here we demonstrate that under homeostatic conditions extracellular vesicles (EVs) secreted by retinal pigment epithelium (RPE) cells are enriched in proteins associated with mechanisms involved in AMD pathophysiology, including oxidative stress, immune response, inflammation, complement system and drusen composition. Furthermore, we provide first evidence that drusen-associated proteins are released as cargo of extracellular vesicles secreted by RPE cells in a polarised apical:basal mode. Notably, drusen-associated proteins exhibited distinctive directional secretion modes in homeostatic conditions and, differential modulation of this directional secretion in response to AMD stressors. These observations underpin the existence of a finely-tuned mechanism regulating directional apical:basal sorting and secretion of drusen-associated proteins via EVs, and its modulation in response to mechanisms involved in AMD pathophysiology. Collectively, our results strongly support an active role of RPE-derived EVs as a key source of drusen proteins and important contributors to drusen development and growth.
Collapse
Affiliation(s)
- Miguel Flores‐Bellver
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Jason Mighty
- Lehman CollegeBronxNew YorkUSA
- Biology Doctoral ProgramThe Graduate School and University CenterCity University of New YorkNew YorkNew YorkUSA
| | - Silvia Aparicio‐Domingo
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Kang V. Li
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Cui Shi
- Lehman CollegeBronxNew YorkUSA
- Biology Doctoral ProgramThe Graduate School and University CenterCity University of New YorkNew YorkNew YorkUSA
| | | | - Hannah Cobb
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Patrick McGrath
- Department of DermatologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - German Michelis
- Section of Protein Structure and FunctionNEINIHBethesdaMarylandUSA
| | - Patricia Lenhart
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Ganna Bilousova
- Department of DermatologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Charles C. Gates Center for Regenerative MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Søren Heissel
- Proteomics Resource CenterThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Michael J. Rudy
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Christina Coughlan
- University of Colorado Alzheimer's and Cognition CenterDepartment of NeurologyLinda Crnic Institute for Down SyndromeUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Andrew E. Goodspeed
- Department of PharmacologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- University of Colorado Cancer CenterUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Stephen Redenti
- Lehman CollegeBronxNew YorkUSA
- Biology Doctoral ProgramThe Graduate School and University CenterCity University of New YorkNew YorkNew YorkUSA
- Biochemistry Doctoral ProgramThe Graduate SchoolCity University of New YorkNew YorkNew YorkUSA
| | - M. Valeria Canto‐Soler
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
- Charles C. Gates Center for Regenerative MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
91
|
McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Front Genome Ed 2021; 3:630600. [PMID: 34713254 PMCID: PMC8525405 DOI: 10.3389/fgeed.2021.630600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Therapeutic advances for neurological disorders are challenging due to limited accessibility of the human central nervous system and incomplete understanding of disease mechanisms. Many neurological diseases lack precision treatments, leading to significant disease burden and poor outcome for affected patients. Induced pluripotent stem cell (iPSC) technology provides human neuronal cells that facilitate disease modeling and development of therapies. The use of genome editing, in particular CRISPR-Cas9 technology, has extended the potential of iPSCs, generating new models for a number of disorders, including Alzheimers and Parkinson Disease. Editing of iPSCs, in particular with CRISPR-Cas9, allows generation of isogenic pairs, which differ only in the disease-causing mutation and share the same genetic background, for assessment of phenotypic differences and downstream effects. Moreover, genome-wide CRISPR screens allow high-throughput interrogation for genetic modifiers in neuronal phenotypes, leading to discovery of novel pathways, and identification of new therapeutic targets. CRISPR-Cas9 has now evolved beyond altering gene expression. Indeed, fusion of a defective Cas9 (dCas9) nuclease with transcriptional repressors or activation domains allows down-regulation or activation of gene expression (CRISPR interference, CRISPRi; CRISPR activation, CRISPRa). These new tools will improve disease modeling and facilitate CRISPR and cell-based therapies, as seen for epilepsy and Duchenne muscular dystrophy. Genome engineering holds huge promise for the future understanding and treatment of neurological disorders, but there are numerous barriers to overcome. The synergy of iPSC-based model systems and gene editing will play a vital role in the route to precision medicine and the clinical translation of genome editing-based therapies.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Giada Rossignoli
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Arianna Ferrini
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
92
|
Vicente MM, Chaves-Ferreira M, Jorge JMP, Proença JT, Barreto VM. The Off-Targets of Clustered Regularly Interspaced Short Palindromic Repeats Gene Editing. Front Cell Dev Biol 2021; 9:718466. [PMID: 34604217 PMCID: PMC8484971 DOI: 10.3389/fcell.2021.718466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The repurposing of the CRISPR/Cas bacterial defense system against bacteriophages as simple and flexible molecular tools has revolutionized the field of gene editing. These tools are now widely used in basic research and clinical trials involving human somatic cells. However, a global moratorium on all clinical uses of human germline editing has been proposed because the technology still lacks the required efficacy and safety. Here we focus on the approaches developed since 2013 to decrease the frequency of unwanted mutations (the off-targets) during CRISPR-based gene editing.
Collapse
Affiliation(s)
- Manuel M Vicente
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - Miguel Chaves-Ferreira
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - João M P Jorge
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - João T Proença
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - Vasco M Barreto
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
93
|
Galloy M, Lachance C, Cheng X, Distéfano-Gagné F, Côté J, Fradet-Turcotte A. Approaches to Study Native Chromatin-Modifying Complex Activities and Functions. Front Cell Dev Biol 2021; 9:729338. [PMID: 34604228 PMCID: PMC8481805 DOI: 10.3389/fcell.2021.729338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The modification of histones-the structural components of chromatin-is a central topic in research efforts to understand the mechanisms regulating genome expression and stability. These modifications frequently occur through associations with multisubunit complexes, which contain active enzymes and additional components that orient their specificity and read the histone modifications that comprise epigenetic signatures. To understand the functions of these modifications it is critical to study the enzymes and substrates involved in their native contexts. Here, we describe experimental approaches to purify native chromatin modifiers complexes from mammalian cells and to produce recombinant nucleosomes that are used as substrates to determine the activity of the complex. In addition, we present a novel approach, similar to the yeast anchor-away system, to study the functions of essential chromatin modifiers by quickly inducing their depletion from the nucleus. The step-by-step protocols included will help standardize these approaches in the research community, enabling convincing conclusions about the specificities and functions of these crucial regulators of the eukaryotic genome.
Collapse
Affiliation(s)
- Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Félix Distéfano-Gagné
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Amelie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
94
|
Jung SB, Lee CY, Lee KH, Heo K, Choi SH. A cleavage-based surrogate reporter for the evaluation of CRISPR-Cas9 cleavage efficiency. Nucleic Acids Res 2021; 49:e85. [PMID: 34086942 PMCID: PMC8421217 DOI: 10.1093/nar/gkab467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
CRISPR-Cas9 is a powerful tool for genome engineering, but its efficiency largely depends on guide RNA (gRNA). There are multiple methods available to evaluate the efficiency of gRNAs, including the T7E1 assay, surveyor nuclease assay, deep sequencing, and surrogate reporter systems. In the present study, we developed a cleavage-based surrogate that we have named the LacI-reporter to evaluate gRNA cleavage efficiency. The LacI repressor, under the control of the EF-1α promoter, represses luciferase or EGFP reporter expression by binding to the lac operator. Upon CRISPR-Cas9 cleavage at a target site located between the EF-1α promoter and the lacI gene, repressor expression is disrupted, thereby triggering luciferase or EGFP expression. Using this system, we can quantitate gRNA cleavage efficiency by assessing luciferase activity or EGFP expression. We found a strong positive correlation between the cleavage efficiency of gRNAs measured using this reporter and mutation frequency, measured using surveyor and deep sequencing. The genome-editing efficiency of gRNAs was validated in human liver organoids. Our LacI-reporter system provides a useful tool to select efficient gRNAs for genome editing.
Collapse
Affiliation(s)
- Soo Bin Jung
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Chae young Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Kwang-Ho Lee
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| |
Collapse
|
95
|
Bhardwaj A, Nain V. TALENs-an indispensable tool in the era of CRISPR: a mini review. J Genet Eng Biotechnol 2021; 19:125. [PMID: 34420096 PMCID: PMC8380213 DOI: 10.1186/s43141-021-00225-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Genome of an organism has always fascinated life scientists. With the discovery of restriction endonucleases, scientists were able to make targeted manipulations (knockouts) in any gene sequence of any organism, by the technique popularly known as genome engineering. Though there is a range of genome editing tools, but this era of genome editing is dominated by the CRISPR/Cas9 tool due to its ease of design and handling. But, when it comes to clinical applications, CRISPR is not usually preferred. In this review, we will elaborate on the structural and functional role of designer nucleases with emphasis on TALENs and CRISPR/Cas9 genome editing system. We will also present the unique features of TALENs and limitations of CRISPRs which makes TALENs a better genome editing tool than CRISPRs. MAIN BODY Genome editing is a robust technology used to make target specific DNA modifications in the genome of any organism. With the discovery of robust programmable endonucleases-based designer gene manipulating tools such as meganucleases (MN), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein (CRISPR/Cas9), the research in this field has experienced a tremendous acceleration giving rise to a modern era of genome editing with better precision and specificity. Though, CRISPR-Cas9 platform has successfully gained more attention in the scientific world, TALENs and ZFNs are unique in their own ways. Apart from high-specificity, TALENs are proven to target the mitochondrial DNA (mito-TALEN), where gRNA of CRISPR is difficult to import. This review talks about genome editing goals fulfilled by TALENs and drawbacks of CRISPRs. CONCLUSIONS This review provides significant insights into the pros and cons of the two most popular genome editing tools TALENs and CRISPRs. This mini review suggests that, TALENs provides novel opportunities in the field of therapeutics being highly specific and sensitive toward DNA modifications. In this article, we will briefly explore the special features of TALENs that makes this tool indispensable in the field of synthetic biology. This mini review provides great perspective in providing true guidance to the researchers working in the field of trait improvement via genome editing.
Collapse
Affiliation(s)
- Anuradha Bhardwaj
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Vikrant Nain
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
96
|
Sioson VA, Kim M, Joo J. Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomed Eng Lett 2021; 11:217-233. [PMID: 34350049 PMCID: PMC8316527 DOI: 10.1007/s13534-021-00199-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
The CRISPR-based genome editing technology has opened extremely useful strategies in biological research and clinical therapeutics, thus attracting great attention with tremendous progress in the past decade. Despite its robust potential in personalized and precision medicine, the CRISPR-based gene editing has been limited by inefficient in vivo delivery to the target cells and by safety concerns of viral vectors for clinical setting. In this review, recent advances in tailored nanoparticles as a means of non-viral delivery vector for CRISPR/Cas systems are thoroughly discussed. Unique characteristics of the nanoparticles including controllable size, surface tunability, and low immune response lead considerable potential of CRISPR-based gene editing as a translational medicine. We will present an overall view on essential elements in CRISPR/Cas systems and the nanoparticle-based delivery carriers including advantages and challenges. Perspectives to advance the current limitations are also discussed toward bench-to-bedside translation in engineering aspects.
Collapse
Affiliation(s)
- Victor Aaron Sioson
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Minjong Kim
- Department of Biological Science, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Jinmyoung Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| |
Collapse
|
97
|
Xu M, Weng Q, Ji J. Applications and advances of CRISPR/Cas9 in animal cancer model. Brief Funct Genomics 2021; 19:235-241. [PMID: 32124927 DOI: 10.1093/bfgp/elaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Indexed: 01/18/2023] Open
Abstract
The recent developments of clustered regularly interspaced short palindromic repeats(CRISPR)/-associate protein 9 (CRISPR/Cas9) have got scientific interests due to the straightforward, efficient and versatile talents of it. Furthermore, the CRISPR/Cas9 system has democratized access to gene editing in many biological fields, including cancer. Cancer development is a multistep process caused by innate and acquired mutations and leads to the initiation and progression of tumorigenesis. It is obvious that establishing appropriate animal cancer models which can simulate human cancers is crucial for cancer research currently. Since the emergence of CRISPR/Cas9, considerable efforts have been taken by researchers to apply this technology in generating animal cancer models. Although there is still a long way to go we are happy to see the achievements we have made and the promising future we have.
Collapse
|
98
|
Efficient Genetic Safety Switches for Future Application of iPSC-Derived Cell Transplants. J Pers Med 2021; 11:jpm11060565. [PMID: 34204193 PMCID: PMC8234706 DOI: 10.3390/jpm11060565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived cell products hold great promise as a potential cell source in personalized medicine. As concerns about the potential risk of graft-related severe adverse events, such as tumor formation from residual pluripotent cells, currently restrict their applicability, we established an optimized tool for therapeutic intervention that allows drug-controlled, specific and selective ablation of either iPSCs or the whole graft through genetic safety switches. To identify the best working system, different tools for genetic iPSC modification, promoters to express safety switches and different safety switches were combined. Suicide effects were slightly stronger when the suicide gene was delivered through lentiviral (LV) vectors compared to integration into the AAVS1 locus through TALEN technology. An optimized HSV-thymidine kinase and the inducible Caspase 9 both mediated drug-induced, efficient in vitro elimination of transgene-positive iPSCs. Choice of promoter allowed selective elimination of distinct populations within the graft: the hOct4 short response element restricted transgene expression to iPSCs, while the CAGs promoter ubiquitously drove expression in iPSCs and their progeny. Remarkably, both safety switches were able to prevent in vivo teratoma development and even effectively eliminated established teratomas formed by LV CAGs-transgenic iPSCs. These optimized tools to increase safety provide an important step towards clinical application of iPSC-derived transplants.
Collapse
|
99
|
Karpe Y, Chen Z, Li XJ. Stem Cell Models and Gene Targeting for Human Motor Neuron Diseases. Pharmaceuticals (Basel) 2021; 14:565. [PMID: 34204831 PMCID: PMC8231537 DOI: 10.3390/ph14060565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Motor neurons are large projection neurons classified into upper and lower motor neurons responsible for controlling the movement of muscles. Degeneration of motor neurons results in progressive muscle weakness, which underlies several debilitating neurological disorders including amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegias (HSP), and spinal muscular atrophy (SMA). With the development of induced pluripotent stem cell (iPSC) technology, human iPSCs can be derived from patients and further differentiated into motor neurons. Motor neuron disease models can also be generated by genetically modifying human pluripotent stem cells. The efficiency of gene targeting in human cells had been very low, but is greatly improved with recent gene editing technologies such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and CRISPR-Cas9. The combination of human stem cell-based models and gene editing tools provides unique paradigms to dissect pathogenic mechanisms and to explore therapeutics for these devastating diseases. Owing to the critical role of several genes in the etiology of motor neuron diseases, targeted gene therapies have been developed, including antisense oligonucleotides, viral-based gene delivery, and in situ gene editing. This review summarizes recent advancements in these areas and discusses future challenges toward the development of transformative medicines for motor neuron diseases.
Collapse
Affiliation(s)
- Yashashree Karpe
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
100
|
Transfer to the clinic: refining forward programming of hPSCs to megakaryocytes for platelet production in bioreactors. Blood Adv 2021; 5:1977-1990. [PMID: 33843988 DOI: 10.1182/bloodadvances.2020003236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
The production of in vitro-derived platelets has great potential for transfusion medicine. Here, we build on our experience in the forward programming (FoP) of human pluripotent stem cells (hPSCs) to megakaryocytes (MKs) and address several aspects of the complex challenges to bring this technology to the bedside. We first identify clinical-grade hPSC lines that generate MKs efficiently. We design a bespoke media to maximize both production and maturity of MKs and improve platelet output. Crucially, we transition the lentiviral-based FoP of hPSCs to a nonviral inducible system. We also show how small molecules promote a definitive hematopoiesis phenotype during the differentiation process, thereby increasing the quality of the final product. Finally, we generate platelets using a bioreactor designed to reproduce the physical cues that promote platelet production in the bone marrow. We show that these platelets are able to contribute to both thrombus formation in vitro and have a hemostatic effect in thrombocytopenic mice in vivo.
Collapse
|