51
|
Chen K, Wu Y, You L, Wu W, Wang X, Zhang D, Elman JF, Ahmed M, Wang H, Zhao K, Mei J. Printing dynamic color palettes and layered textures through modeling-guided stacking of electrochromic polymers. MATERIALS HORIZONS 2022; 9:425-432. [PMID: 34775506 DOI: 10.1039/d1mh01098k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In printable electrochromic polymer (ECP) displays, a wide color gamut, precise patterning, and controllable color switching are important. However, it is a significant challenge to achieve such features synergistically. Here, we present a solution-processable ECP stacking scheme, where a crosslinker is co-processed with three primary ECPs (ECP-Cyan, ECP-Magenta, and ECP-Yellow), which endows the primary ECPs with solvent-resistant properties and allows them to be sequentially deposited. Via varying the film thickness of each ECP layer, a full-color palette can be constructed. The ECP stacking strategy is further integrated with photolithography. Delicate multilayer patterns with overhang and undercut textures can be generated, allowing information displays with spatial dimensionality. In addition, via modulating the stacking sequence, the electrochemical onset potentials of the ECP components can be synchronized to reduce unwanted intermediate colors that are often found in co-processed ECPs. Should specific color properties be desired, COMSOL modeling could be applied to guide the stacking. We believe that this ECP stacking strategy opens a new avenue for electrochromic printing and displays.
Collapse
Affiliation(s)
- Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yukun Wu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Wenting Wu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaokang Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Di Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - James F Elman
- Filmetrics, Inc., A KLA Company, 250 Packett's Landing Fairport, NY 14450, USA
| | - Mustafa Ahmed
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Kejie Zhao
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
52
|
Shahabuddin M, Wilson AK, Koech AC, Noginova N. Probing Charge Transport Kinetics in a Plasmonic Environment with Cyclic Voltammetry. ACS OMEGA 2021; 6:34294-34300. [PMID: 34963915 PMCID: PMC8697001 DOI: 10.1021/acsomega.1c03794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Possible modifications in electrochemical reaction kinetics are explored in a nanostructured plasmonic environment with and without additional light illumination using a cyclic voltammetry (CV) method. In nanostructured gold, the effect of light on anodic and cathodic currents is much pronounced than that in a flat system. The electron-transfer rate shows a 3-fold increase under photoexcitation. The findings indicate a possibility of using plasmonic excitations for controlling electrochemical reactions.
Collapse
|
53
|
Chavan HS, Hou B, Jo Y, Inamdar AI, Im H, Kim H. Optimal Rule-of-Thumb Design of Nickel-Vanadium Oxides as an Electrochromic Electrode with Ultrahigh Capacity and Ultrafast Color Tunability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57403-57410. [PMID: 34806376 DOI: 10.1021/acsami.1c18613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of electrodes capable of functioning as both electrochromic windows and energy storage devices has been extended from green building development to various electronics and displays to promote more efficient energy consumption. Herein, we report the electrochromic energy storage of bimetallic NiV oxide (NiVO) thin films fabricated using chemical bath deposition. The best optimized NiVO electrode with a Ni/V ratio of 3 exhibits superior electronic conductivity and a large electrochemical surface area, which are beneficial for enhancing electrochemical performance. The color switches between semitransparent (a discharged state) and dark brown (a charged state) with excellent reproducibility because of the intercalation and deintercalation of OH- ions in an alkaline KOH electrolyte. A specific capacity of 2403 F g-1, a coloration efficiency of 63.18 cm2 C-1, and an outstanding optical modulation of 68% are achieved. The NiVO electrode also demonstrates ultrafast coloration and bleaching behavior (1.52 and 4.79 s, respectively), which are considerably faster than those demonstrated by the NiO electrode (9.03 and 38.87 s). It retains 91.95% capacity after 2000 charge-discharge cycles, much higher than that of the NiO electrode (83.47%), indicating that it has significant potential for use in smart energy storage applications. The superior electrochemical performance of the best NiVO compound electrode with an optimum Ni/V compositional ratio is due to the synergetic effect between the high electrochemically active surface area induced by V-doping-improved redox kinetics (low charge-transfer resistance) and fast ion diffusion, which provides a facile charge transport pathway at the electrolyte/electrode interface.
Collapse
Affiliation(s)
- Harish S Chavan
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Bo Hou
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Yongcheol Jo
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Akbar I Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Hyungsang Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| |
Collapse
|
54
|
Sreekanth KV, Medwal R, Srivastava YK, Manjappa M, Rawat RS, Singh R. Dynamic Color Generation with Electrically Tunable Thin Film Optical Coatings. NANO LETTERS 2021; 21:10070-10075. [PMID: 34802245 DOI: 10.1021/acs.nanolett.1c03817] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin film optical coatings have a wide range of industrial applications from displays and lighting to photovoltaic cells. The realization of electrically tunable thin film optical coatings in the visible wavelength range is particularly important to develop energy efficient and dynamic color filters. Here, we experimentally demonstrate dynamic color generation using electrically tunable thin film optical coatings that consist of two different phase change materials (PCMs). The proposed active thin film nanocavity excites the Fano resonance that results from the coupling of a broadband and a narrowband absorber made up of phase change materials. The Fano resonance is then electrically tuned by structural phase switching of PCM layers to demonstrate active color filters covering the entire visible spectrum. In contrast to existing thin film optical coatings, the developed electrically tunable PCM based Fano resonant thin optical coatings have several advantages in tunable displays and active nanophotonic applications.
Collapse
Affiliation(s)
- Kandammathe Valiyaveedu Sreekanth
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Rohit Medwal
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| | - Yogesh Kumar Srivastava
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Manukumara Manjappa
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Rajdeep Singh Rawat
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| | - Ranjan Singh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
55
|
Rossi S, Olsson O, Chen S, Shanker R, Banerjee D, Dahlin A, Jonsson MP. Dynamically Tuneable Reflective Structural Coloration with Electroactive Conducting Polymer Nanocavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105004. [PMID: 34626028 PMCID: PMC11469130 DOI: 10.1002/adma.202105004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Dynamic control of structural colors across the visible spectrum with high brightness has proven to be a difficult challenge. Here, this is addressed with a tuneable reflective nano-optical cavity that uses an electroactive conducting polymer (poly(thieno[3,4-b]thiophene)) as spacer layer. Electrochemical doping and dedoping of the polymer spacer layer provides reversible tuning of the cavity's structural color throughout the entire visible range and beyond. Furthermore, the cavity provides high peak reflectance that varies only slightly between the reduced and oxidized states of the polymer. The results indicate that the polymer undergoes large reversible thickness changes upon redox tuning, aided by changes in optical properties and low visible absorption. The electroactive cavity concept may find particular use in reflective displays, by opening for tuneable monopixels that eliminate limitations in brightness of traditional subpixel-based systems.
Collapse
Affiliation(s)
- Stefano Rossi
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Oliver Olsson
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Shangzhi Chen
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Ravi Shanker
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Debashree Banerjee
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Magnus P. Jonsson
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| |
Collapse
|
56
|
He X, Li G, Wu D. Self-driving dynamic plasmonic colors based on needle steering for simultaneous control of transition direction and time on metallic nanogroove metasurfaces. NANOSCALE 2021; 13:18356-18362. [PMID: 34729577 DOI: 10.1039/d1nr05804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamically tunable plasmonic colors hold great promise for a wide range of applications including color displays, colorimetric sensing, and information encryption. However, dynamic control speed of plasmonic colors is still slow to date. Herein, we propose to use a needle to direct the flow of water and gas pressure to drive water, realizing a simultaneous direction-controllable and fast plasmonic color transition. The highly reflected background light of the metallic nanogroove metasurface is suppressed to generate high-purity plasmonic colors through the cross-polarized input and output configuration. When the environment is changed from air to water, a giant color change from cyan to red (a wavelength shift of 156 nm) is experimentally observed. More importantly, by utilizing a needle to steer the flow of water, direction-controllable and fast plasmonic color transition is achieved by controlling gas pressure to drive water. Compared with current state-of-the-art plasmonic color scanning technology, the color transition time via water driven by gas pressure decreases by three orders of magnitude for the same scanning length. The multi-degrees of freedom dynamic structural colors could have potential applications in dynamic displays, anti-counterfeiting, and information security.
Collapse
Affiliation(s)
- Xiaoping He
- School of Data and Computer Science, Guangdong Peizheng College, Guangzhou 510830, China
| | - Guozhou Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Dong Wu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| |
Collapse
|
57
|
Liu Y, Lu W, Cheng X, Wang J, Wong WY. A new cobalt(II) complex nanosheet as an electroactive medium for plasmonic switching on Au nanoparticles. Dalton Trans 2021; 50:15900-15905. [PMID: 34709273 DOI: 10.1039/d1dt02780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D metal-organic complex nanosheets with the merits of high stability and structure tunability are an emerging topic in recent years. To extend the promising ultrathin architectures, a new Co(II) complex nanosheet (Co-nanosheet) is designed and prepared via a readily operated interface-assisted coordination reaction between the ligand 4,4'',4'''-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2,2':6',2''-terpyridyl) (L) and Co2+ ions. The as-formed Co(II) complex nanosheet exhibits both a uniform layered structure and good thermostability as proposed, which were verified by various chemical and physical analytical methods. Moreover, it is first utilized as an electroresponsive medium to tune the surface plasmon resonance behavior of Au nanoparticles, expanding the applicable fields of this type of 2D materials.
Collapse
Affiliation(s)
- Yurong Liu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China. .,Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P.R. China
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, P.R. China.
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, P.R. China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, P.R. China.
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China. .,Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P.R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P.R. China
| |
Collapse
|
58
|
Karst J, Floess M, Ubl M, Dingler C, Malacrida C, Steinle T, Ludwigs S, Hentschel M, Giessen H. Electrically switchable metallic polymer nanoantennas. Science 2021; 374:612-616. [PMID: 34709910 DOI: 10.1126/science.abj3433] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Julian Karst
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Moritz Floess
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Monika Ubl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Carsten Dingler
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Claudia Malacrida
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tobias Steinle
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
59
|
Xiong K, Olsson O, Svirelis J, Palasingh C, Baumberg J, Dahlin A. Video Speed Switching of Plasmonic Structural Colors with High Contrast and Superior Lifetime. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103217. [PMID: 34448507 PMCID: PMC11468514 DOI: 10.1002/adma.202103217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Reflective displays or "electronic paper" technologies provide a solution to the high energy consumption of emissive displays by simply utilizing ambient light. However, it has proven challenging to develop electronic paper with competitive image quality and video speed capabilities. Here, the first technology that provides video speed switching of structural colors with high contrast over the whole visible is shown. Importantly, this is achieved with a broadband-absorbing polarization-insensitive electrochromic polymer instead of liquid crystals, which makes it possible to maintain high reflectivity. It is shown that promoting electrophoretic ion transport (drift motion) improves the switch speed. In combination with new nanostructures that have high surface curvature, this enables video speed switching (20 ms) at high contrast (50% reflectivity change). A detailed analysis of the optical signal during switching shows that the polaron formation starts to obey first order reaction kinetics in the video speed regime. Additionally, the system still operates at ultralow power consumption during video speed switching (<1 mW cm-2 ) and has negligible power consumption (<1 µW cm-2 ) in bistability mode. Finally, the fast switching increases device lifetime to at least 107 cycles, an order of magnitude more than state-of-the-art.
Collapse
Affiliation(s)
- Kunli Xiong
- NanoPhotonics CentreCavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - Oliver Olsson
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Justas Svirelis
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Chonnipa Palasingh
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Jeremy Baumberg
- NanoPhotonics CentreCavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - Andreas Dahlin
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| |
Collapse
|
60
|
Wu Q, Wang X, Sun P, Wang Z, Chen J, Chen Z, Song G, Liu C, Mu X, Cong S, Zhao Z. Electrochromic Metamaterials of Metal-Dielectric Stacks for Multicolor Displays with High Color Purity. NANO LETTERS 2021; 21:6891-6897. [PMID: 34355916 DOI: 10.1021/acs.nanolett.1c02030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic electrochromic (EC) materials with vibrant multicolor change that are compatible with large-scale processing have been at the forefront of EC technology and are crucial in a wide range of applications, such as displays and camouflage. However, limited strategies are available to realize such inorganic materials, and challenges such as low color purity are yet to be overcome. Here, we demonstrate multilayered metal-dielectric metamaterials (MMDMs) as a new family of inorganics-based EC materials to achieve dynamic alternation among multicolors with high contrast and high color purity, which are structurally realized by significantly enhancing the confinement of the incident light in specific optical frequencies. This multilayer structure renders high reflectivity (75%), high quality factor (7.4), and a full width at half-maximum of 60 nm before coloration and presents a color gamut at least 40% wider than that of previously reported metamaterials after coloration, indicating good color quality.
Collapse
Affiliation(s)
- Qi Wu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230000, China
| | - Xiaoyu Wang
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Peiyan Sun
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Zhen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jian Chen
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Zhigang Chen
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Ge Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Chenglong Liu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xinyang Mu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230000, China
| | - Shan Cong
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 330200 Nanchang, China
| | - Zhigang Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 330200 Nanchang, China
| |
Collapse
|
61
|
Zhao J, Zhou Y, Huo Y, Gao B, Ma Y, Yu Y. Flexible dynamic structural color based on an ultrathin asymmetric Fabry-Perot cavity with phase-change material for temperature perception. OPTICS EXPRESS 2021; 29:23273-23281. [PMID: 34614594 DOI: 10.1364/oe.431906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dynamic structural color has attracted considerable attentions due to its good tunable characteristics. Here, an ultrathin asymmetric Fabry-Perot (FP)-type structural color with phase-change material VO2 cavity is proposed. The color-switching performance can be realized by temperature regulation due to the reversible monoclinic-rutile phase transition of VO2. The various, vivid structural color can be generated by simply changing the thickness of VO2 and Ag layers. Moreover, the simple structural configuration enables a large-scale, low-cost preparation on both rigid and flexible substrates. Accordingly, a flexible dynamic structural color membrane is adhered on a cup with a curved surface to be used for temperature perception. The proposed dynamic structural color has potential applications in anti-counterfeiting, temperature perception, camouflage coatings among other flexible optoelectronic devices.
Collapse
|
62
|
Kim Y, Cha S, Kim JH, Oh JW, Nam JM. Electrochromic response and control of plasmonic metal nanoparticles. NANOSCALE 2021; 13:9541-9552. [PMID: 34019053 DOI: 10.1039/d1nr01055g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic electrochromism, the dependence of the colour of plasmonic materials on the applied electrical potential, has been under the spotlight recently as a key element for the development of optoelectronic devices and spectroscopic tools. In this review, we focus on the electrochromic behaviour and underlying mechanistic principles of plasmonic metal nanoparticles, whose localised surface plasmon resonance occurs in the visible part of the electromagnetic spectrum, and present a comprehensive review on the recent progress in understanding and controlling plasmonic electrochromism. The mechanisms underlying the electrochromism of plasmonic metal nanoparticles could be divided into four categories, based on the origin of the LSPR shift: (1) capacitive charging model accompanying variation in the Fermi level, (2) faradaic reactions, (3) non-faradaic reactions, and (4) electrochemically active functional molecule-mediated mechanism. We also review recent attempts to synchronise the simulation with the experimental results and the strategies to overcome the intrinsically diminutive LSPR change of the plasmonic metal nanoparticles. A better understanding and controllability of plasmonic electrochromism provides new insights into and means of the connection between photoelectrochemistry and plasmonics as well as future directions for producing advanced optoelectronic materials and devices.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | | | | | | | | |
Collapse
|
63
|
Kaissner R, Li J, Lu W, Li X, Neubrech F, Wang J, Liu N. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. SCIENCE ADVANCES 2021; 7:7/19/eabd9450. [PMID: 33952513 PMCID: PMC8099187 DOI: 10.1126/sciadv.abd9450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/16/2021] [Indexed: 05/28/2023]
Abstract
Recently in nanophotonics, a rigorous evolution from passive to active metasurfaces has been witnessed. This advancement not only brings forward interesting physical phenomena but also elicits opportunities for practical applications. However, active metasurfaces operating at visible frequencies often exhibit low performance due to design and fabrication restrictions at the nanoscale. In this work, we demonstrate electrochemically controlled metasurfaces with high intensity contrast, fast switching rate, and excellent reversibility at visible frequencies. We use a conducting polymer, polyaniline (PANI), that can be locally conjugated on preselected gold nanorods to actively control the phase profiles of the metasurfaces. The optical responses of the metasurfaces can be in situ monitored and optimized by controlling the PANI growth of subwavelength dimension during the electrochemical process. We showcase electrochemically controlled anomalous transmission and holography with good switching performance. Such electrochemically powered optical metasurfaces lay a solid basis to develop metasurface devices for real-world optical applications.
Collapse
Affiliation(s)
- Robin Kaissner
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jianxiong Li
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xin Li
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Frank Neubrech
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
64
|
Xuan Z, Li J, Liu Q, Yi F, Wang S, Lu W. Artificial Structural Colors and Applications. Innovation (N Y) 2021; 2:100081. [PMID: 34557736 PMCID: PMC8454771 DOI: 10.1016/j.xinn.2021.100081] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/13/2021] [Indexed: 10/25/2022] Open
Abstract
Structural colors are colors generated by the interaction between incident light and nanostructures. Structural colors have been studied for decades due to their promising advantages of long-term stability and environmentally friendly properties compared with conventional pigments and dyes. Previous studies have demonstrated many artificial structural colors inspired by naturally generated colors from plants and animals. Moreover, many strategies consisting of different principles have been reported to achieve dynamically tunable structural colors. Furthermore, the artificial structural colors can have multiple functions besides decoration, such as absorbing solar energy, anti-counterfeiting, and information encryption. In the present work, we reviewed the typical artificial structural colors generated by multilayer films, photonic crystals, and metasurfaces according to the type of structures, and discussed the approaches to achieve dynamically tunable structural colors.
Collapse
Affiliation(s)
- Zhiyi Xuan
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.,Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junyu Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingquan Liu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.,Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fei Yi
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaowei Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.,Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.,Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
65
|
Wang W, Guan Z, Xu H. A high speed electrically switching reflective structural color display with large color gamut. NANOSCALE 2021; 13:1164-1171. [PMID: 33403380 DOI: 10.1039/d0nr07347d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Structural colors, which originate from the interactions between light and nanometer-scale structured materials, have the advantages of durability and environmentally friendly display compared with pigments and dyes. A large color gamut, high-speed, electrically-switching reflective structural color display is critical to dynamically tunable reflective structural color devices. Here, we report a theoretical design of an electrically switching reflective structural color display device with a large color gamut (∼157% sRGB, standard red green blue) and high speed (>10 MHz). Benefiting from the electric-switchable Epsilon-Near-Zero material and 1D dielectric grating with guided-mode resonance, the reflective display device can be electrically turned on or turned off by switching between a narrow band reflector and a transparent film. This design provides a promising solution towards reflective color displays, optical switches, spatial light modulators and so on.
Collapse
Affiliation(s)
- Wenqiang Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Zhiqiang Guan
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China. and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
66
|
Peng J, Jeong H, Smith M, Chikkaraddy R, Lin Q, Liang H, De Volder MFL, Vignolini S, Kar‐Narayan S, Baumberg JJ. FullyPrinted Flexible Plasmonic Metafilms with Directional Color Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002419. [PMID: 33511008 PMCID: PMC7816707 DOI: 10.1002/advs.202002419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/22/2020] [Indexed: 05/29/2023]
Abstract
Plasmonic metafilms have been widely utilized to generate vivid colors, but making them both active and flexible simultaneously remains a great challenge. Here flexible active plasmonic metafilms constructed by printing electrochromic nanoparticles onto ultrathin metal films (<15 nm) are presented, offering low-power electricallydriven color switching. In conjunction with commercially available printing techniques, such flexible devices can be patterned using lithography-free approaches, opening up potential for fullyprinted electrochromic devices. Directional optical effects and dynamics show perceived upward and downward colorations can differ, arising from the dissimilar plasmonic mode excitation between nanoparticles and ultrathin metal films.
Collapse
Affiliation(s)
- Jialong Peng
- NanoPhotonics Centre, Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - Hyeon‐Ho Jeong
- NanoPhotonics Centre, Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
- Present address:
School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Michael Smith
- Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - Qianqi Lin
- NanoPhotonics Centre, Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - Hsin‐Ling Liang
- NanoPhotonics Centre, Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
- Institute for ManufacturingDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FSUK
| | - Michael F. L. De Volder
- Institute for ManufacturingDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FSUK
| | - Silvia Vignolini
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Sohini Kar‐Narayan
- Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Jeremy J. Baumberg
- NanoPhotonics Centre, Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| |
Collapse
|
67
|
D’Acunto M. Plasmonics, Vibrational Nanospectroscopy and Polymers. ENVIRONMENTAL NANOTECHNOLOGY VOLUME 5 2021:293-310. [DOI: 10.1007/978-3-030-73010-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
68
|
Li J, Wang X, Sun W, Maleski K, Shuck CE, Li K, Urbankowski P, Hantanasirisakul K, Wang X, Kent P, Wang H, Gogotsi Y. Intercalation‐Induced Reversible Electrochromic Behavior of Two‐Dimensional Ti
3
C
2
T
x
MXene in Organic Electrolytes. ChemElectroChem 2020. [DOI: 10.1002/celc.202001449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jianmin Li
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 PR China
| | - Xuehang Wang
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Weiwei Sun
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- SEU-FEI Nano-Pico Center Key Laboratory of MEMS of Ministry of Education Southeast University Nanjing 210096 China
| | - Kathleen Maleski
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Christopher E. Shuck
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Ke Li
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Patrick Urbankowski
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Kanit Hantanasirisakul
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Xiaofeng Wang
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Paul Kent
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Computational Sciences and Engineering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 PR China
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| |
Collapse
|
69
|
Popov A, Brasiunas B, Damaskaite A, Plikusiene I, Ramanavicius A, Ramanaviciene A. Electrodeposited Gold Nanostructures for the Enhancement of Electrochromic Properties of PANI-PEDOT Film Deposited on Transparent Electrode. Polymers (Basel) 2020; 12:E2778. [PMID: 33255495 PMCID: PMC7761354 DOI: 10.3390/polym12122778] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/16/2022] Open
Abstract
Conjugated polymers (CPs) are attractive materials for use in different areas; nevertheless, the enhancement of electrochromic stability and switching time is still necessary to expand the commercialization of electrochromic devices. To our best knowledge, this is the first study demonstrating the employment of electrodeposited gold nanostructures (AuNS) for the enhancement of CPs' electrochromic properties when a transparent electrode is used as a substrate. Polyaniline-poly(3,4-ethylenedioxythiophene) (PANI-PEDOT) films were electrodeposited on a transparent indium tin oxide glass electrode, which was pre-modified by two different methods. AuNS were electrodeposited at -0.2 V constant potential for 60 s using both the 1st method (synthesis solution consisted of 3 mM HAuCl4 and 0.1 M H2SO4) and 2nd method (15 mM HAuCl4 and 1 M KNO3) resulting in an improvement of optical contrast by 3% and 22%, respectively. Additionally, when using the 1st method, the coloration efficiency was improved by 50% while the switching time was reduced by 17%. Furthermore, in both cases, the employment of AuNS resulted in an enhancement of the electrochromic stability of the CPs layer. A further selection of AuNS pre-modification conditions with the aim to control their morphology and size can be a possible stepping stone for the further improvement of CPs electrochromic properties.
Collapse
Affiliation(s)
- Anton Popov
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| | - Benediktas Brasiunas
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| | - Anzelika Damaskaite
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| | - Ieva Plikusiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| | - Arunas Ramanavicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
- Division of Materials Science and Electronics, State Scientific Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| |
Collapse
|
70
|
Duan X, White ST, Cui Y, Neubrech F, Gao Y, Haglund RF, Liu N. Reconfigurable Multistate Optical Systems Enabled by VO 2 Phase Transitions. ACS PHOTONICS 2020; 7:2958-2965. [PMID: 33241075 PMCID: PMC7678723 DOI: 10.1021/acsphotonics.0c01241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 05/14/2023]
Abstract
Reconfigurable optical systems are the object of continuing, intensive research activities, as they hold great promise for realizing a new generation of compact, miniaturized, and flexible optical devices. However, current reconfigurable systems often tune only a single state variable triggered by an external stimulus, thus, leaving out many potential applications. Here we demonstrate a reconfigurable multistate optical system enabled by phase transitions in vanadium dioxide (VO2). By controlling the phase-transition characteristics of VO2 with simultaneous stimuli, the responses of the optical system can be reconfigured among multiple states. In particular, we show a quadruple-state dynamic plasmonic display that responds to both temperature tuning and hydrogen-doping. Furthermore, we introduce an electron-doping scheme to locally control the phase-transition behavior of VO2, enabling an optical encryption device encoded by multiple keys. Our work points the way toward advanced multistate reconfigurable optical systems, which substantially outperform current optical devices in both breadth of capabilities and functionalities.
Collapse
Affiliation(s)
- Xiaoyang Duan
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Samuel T. White
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Yuanyuan Cui
- School
of Materials Science and Engineering, Shanghai
University, Shanghai 200444, China
| | - Frank Neubrech
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Yanfeng Gao
- School
of Materials Science and Engineering, Shanghai
University, Shanghai 200444, China
- E-mail:
| | - Richard F. Haglund
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37212, United States
- Interdisciplinary
Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, United States
- E-mail:
| | - Na Liu
- Second
Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- E-mail:
| |
Collapse
|
71
|
Lu W, Chow TH, Lu Y, Wang J. Electrochemical coating of different conductive polymers on diverse plasmonic metal nanocrystals. NANOSCALE 2020; 12:21617-21623. [PMID: 33107884 DOI: 10.1039/d0nr05715k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conductive polymers are attracting much attention for realizing active plasmonics on conventional static plasmonic nanostructures because of their variable dielectric functions. Combining organic conductive polymers with inorganic plasmonic nanostructures allows for the creation of active devices, such as active metasurfaces, reconfigurable metalenses and dynamic plasmonic holography. However, the complexity of such a combination, together with the poor control in polymer thickness and morphology, has limited the advancement of active plasmonics. Herein we report on the electrochemical coating of conductive polymers on pre-grown metal nanocrystals. Robust control of the polymer thickness and morphology is accomplished through the variation of the applied electrochemical potential. Various types of conductive polymers are coated on different metal nanocrystals, including Au, Pd and Pt. Active plasmonic color switching and H2O2 sensing are demonstrated with polyaniline-coated Au nanorods.
Collapse
Affiliation(s)
- Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yao Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
72
|
Feng J, Liu T, Cao R. An Electrochromic Hydrogen‐Bonded Organic Framework Film. Angew Chem Int Ed Engl 2020; 59:22392-22396. [DOI: 10.1002/anie.202006926] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ji‐fei Feng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Tian‐Fu Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| |
Collapse
|
73
|
Feng J, Liu T, Cao R. An Electrochromic Hydrogen‐Bonded Organic Framework Film. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji‐fei Feng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Tian‐Fu Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| |
Collapse
|
74
|
Simultaneous polarization filtering and wavefront shaping enabled by localized polarization-selective interference. Sci Rep 2020; 10:14477. [PMID: 32879424 PMCID: PMC7468143 DOI: 10.1038/s41598-020-71508-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/04/2020] [Indexed: 11/15/2022] Open
Abstract
The ability of simultaneous polarization filter and wavefront shaping is very important for many applications, especially for polarization imaging. However, traditional methods rely on complex combinations of bulky optical components, which not only hinder the miniaturization and integration but also reduce the efficiency and imaging quality. Metasurfaces have shown extraordinary electromagnetic properties to manipulate the amplitude, polarization, and wavefront. Unfortunately, multi-layer metasurfaces with complex fabrication are often required to realize complex functions. Here, a platform of monolayer all-dielectric metasurfaces is proposed to simultaneously achieve polarization filtering and wavefront shaping, based on the principle of local polarization-selective constructive or destructive interference. The transmission efficiency surpassing 0.75 and polarization extinction ratio exceeding 11.6 dB are achieved by the proposed metasurface at the wavelength of 10.6 μm. These results are comparable to those of multi-layer metasurfaces. Considering these good performances, this work may prove new ideas for the generation of complex optical field and find wide applications in polarization imaging.
Collapse
|
75
|
Neubrech F, Duan X, Liu N. Dynamic plasmonic color generation enabled by functional materials. SCIENCE ADVANCES 2020; 6:6/36/eabc2709. [PMID: 32917622 PMCID: PMC7473667 DOI: 10.1126/sciadv.abc2709] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Displays are an indispensable medium to visually convey information in our daily life. Although conventional dye-based color displays have been rigorously advanced by world leading companies, critical issues still remain. For instance, color fading and wavelength-limited resolution restrict further developments. Plasmonic colors emerging from resonant interactions between light and metallic nanostructures can overcome these restrictions. With dynamic characteristics enabled by functional materials, dynamic plasmonic coloration may find a variety of applications in display technologies. In this review, we elucidate basic concepts for dynamic plasmonic color generation and highlight recent advances. In particular, we devote our review to a selection of dynamic controls endowed by functional materials, including magnesium, liquid crystals, electrochromic polymers, and phase change materials. We also discuss their performance in view of potential applications in current display technologies.
Collapse
Affiliation(s)
- Frank Neubrech
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Kirchoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Xiaoyang Duan
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Kirchoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Na Liu
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
76
|
Cui M, Li H, Ren X, Xia L, Deng D, Gu Y, Li D, Wang P. A FRET-based upconversion nanoprobe assembled with an electrochromic chromophore for sensitive detection of hydrogen sulfide in vitro and in vivo. NANOSCALE 2020; 12:17517-17529. [PMID: 32812601 DOI: 10.1039/d0nr03884a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) as an important gaseous signaling molecule is closely related to numerous biological processes in living systems. To further study the physiological and pathological roles of H2S, convenient and efficient detection techniques for endogenous H2S in vivo are still in urgent demand. In this study, an electrochromic chromophore, dicationic 1,1,4,4-tetra-aryl butadiene (EM1), was innovatively introduced into upconversion nanoparticles (UCNPs) and a nanoprobe, PAAO-UCNPs-EM1, was constructed for the detection of H2S. This nanosystem was made of core-shell upconversion nanoparticles (NaYF4:Yb,Tm@NaYF4:Yb,Er), EM1, and polyacrylic acid (PAA)-octylamine. The EM1 with strong absorption ranging from 500 to 850 nm could serve as an energy acceptor to quench the upconversion luminescence of UCNPs through the Förster resonance energy transfer (FRET) process. In the presence of H2S, the EM1 in the nanoprobe was reduced to a colorless diene (EM2), resulting in the linear enhancement of luminescence emissions at 660 nm and 800 nm under the excitation of 980 nm light because the FRET was switched off. The nanoprobe PAAO-UCNPs-EM1PAAO-UCNPs-EM1 exhibited fast response and high sensitivity to H2S with a LoD of 1.21 × 10-7 M. Moreover, it was successfully employed in detecting the endogenous and exogenous H2S in living cells with high selectivity and low cytotoxicity. Also, this nanoprobe could distinguish normal and tumor cells by an upconversion luminescence imaging of endogenous H2S. Furthermore, the nanoprobe could significantly monitor H2S in a tumor-bearing nude mouse model. Therefore, we anticipate that this novel nanoprobe assembled with an electrochromic chromophore for responding to H2S and for bioimaging this molecule would have a promising prospect in biological and clinical investigations.
Collapse
Affiliation(s)
- Mengyuan Cui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Xiangyu Ren
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Lili Xia
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
77
|
Lee Y, Yun J, Seo M, Kim SJ, Oh J, Kang CM, Sun HJ, Chung TD, Lee B. Full-Color-Tunable Nanophotonic Device Using Electrochromic Tungsten Trioxide Thin Film. NANO LETTERS 2020; 20:6084-6090. [PMID: 32603122 DOI: 10.1021/acs.nanolett.0c02097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Color generation based on strategically designed plasmonic nanostructures is a promising approach for display applications with unprecedented high-resolution. However, it is disadvantageous in that the optical response is fixed once the structure is determined. Therefore, obtaining high modulation depth with reversible optical properties while maintaining its fixed nanostructure is a great challenge in nanophotonics. In this work, dynamic color tuning and switching using tungsten trioxide (WO3), a representative electrochromic material, are demonstrated with reflection-type and transmission-type optical devices. Thin WO3 films incorporated in simple stacked configurations undergo dynamic color change by the adjustment of their dielectric constant through the electrochromic principle. A large resonance wavelength shift up to 107 nm under an electrochemical bias of 3.2 V could be achieved by the reflection-type device. For the transmission-type device, on/off switchable color pixels with improved purity are demonstrated of which transmittance is modulated by up to 4.04:1.
Collapse
Affiliation(s)
- Yohan Lee
- Inter-University Semiconductor Research Center and School of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jeongse Yun
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Minjee Seo
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sun-Je Kim
- Inter-University Semiconductor Research Center and School of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jaehyun Oh
- Department of Material Science and Engineering, Kunsan National University, Kunsan 54151, South Korea
| | - Chung Mu Kang
- Advanced Institute of Convergence Technology, Suwon 16229, South Korea
| | - Ho-Jung Sun
- Department of Material Science and Engineering, Kunsan National University, Kunsan 54151, South Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Advanced Institute of Convergence Technology, Suwon 16229, South Korea
| | - Byoungho Lee
- Inter-University Semiconductor Research Center and School of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
78
|
Label-free optical detection of bioelectric potentials using electrochromic thin films. Proc Natl Acad Sci U S A 2020; 117:17260-17268. [PMID: 32632007 DOI: 10.1073/pnas.2002352117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding how a network of interconnected neurons receives, stores, and processes information in the human brain is one of the outstanding scientific challenges of our time. The ability to reliably detect neuroelectric activities is essential to addressing this challenge. Optical recording using voltage-sensitive fluorescent probes has provided unprecedented flexibility for choosing regions of interest in recording neuronal activities. However, when recording at a high frame rate such as 500 to 1,000 Hz, fluorescence-based voltage sensors often suffer from photobleaching and phototoxicity, which limit the recording duration. Here, we report an approach called electrochromic optical recording (ECORE) that achieves label-free optical recording of spontaneous neuroelectrical activities. ECORE utilizes the electrochromism of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films, whose optical absorption can be modulated by an applied voltage. Being based on optical reflection instead of fluorescence, ECORE offers the flexibility of an optical probe without suffering from photobleaching or phototoxicity. Using ECORE, we optically recorded spontaneous action potentials in cardiomyocytes, cultured hippocampal and dorsal root ganglion neurons, and brain slices. With minimal perturbation to cells, ECORE allows long-term optical recording over multiple days.
Collapse
|
79
|
Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states. Proc Natl Acad Sci U S A 2020; 117:13350-13358. [PMID: 32493745 PMCID: PMC7306820 DOI: 10.1073/pnas.2001435117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional nanomaterials will enable the next generation of displays, detectors, and photovoltaic devices by interacting with light at subwavelength length scales. However, performance and practical integration with current electronic systems remain a scientific and engineering challenge. Here, we report the wafer-scale self-assembly/growth of nanoparticles which reproduce the cyan, magenta, and yellow color space. We explore the physics of the optical resonances and the advantageous properties they manifest for color filter technology, such as angle insensitivity and high saturation. The versatile formation process then enables integration with commercial devices to realize a hybrid, nanoparticle–liquid crystal reflective display. Nanostructured plasmonic materials can lead to the extremely compact pixels and color filters needed for next-generation displays by interacting with light at fundamentally small length scales. However, previous demonstrations suffer from severe angle sensitivity, lack of saturated color, and absence of black/gray states and/or are impractical to integrate with actively addressed electronics. Here, we report a vivid self-assembled nanostructured system which overcomes these challenges via the multidimensional hybridization of plasmonic resonances. By exploiting the thin-film growth mechanisms of aluminum during ultrahigh vacuum physical vapor deposition, dense arrays of particles are created in near-field proximity to a mirror. The sub-10-nm gaps between adjacent particles and mirror lead to strong multidimensional coupling of localized plasmonic modes, resulting in a singular resonance with negligible angular dispersion and ∼98% absorption of incident light at a desired wavelength. The process is compatible with arbitrarily structured substrates and can produce wafer-scale, diffusive, angle-independent, and flexible plasmonic materials. We then demonstrate the unique capabilities of the strongly coupled plasmonic system via integration with an actively addressed reflective liquid crystal display with control over black states. The hybrid display is readily programmed to display images and video.
Collapse
|
80
|
Lu W, Chow TH, Lai SN, Zheng B, Wang J. Electrochemical Switching of Plasmonic Colors Based on Polyaniline-Coated Plasmonic Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17733-17744. [PMID: 32195574 DOI: 10.1021/acsami.0c01562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic color generation has attracted much research interest because of the unique optical properties of plasmonic nanocrystals that are promising for chromatic applications, such as flat-panel displays, smart windows, and wearable devices. Low-cost, monodisperse plasmonic nanocrystals supporting strong localized surface plasmon resonances are favorable for the generation of plasmonic colors. However, many implementations so far have either a single static state or complexities in the particle alignment and switching mechanism for generating multiple displaying states. Herein, we report on a facile and robust approach for realizing the electrochemical switching of plasmonic colors out of colloidal plasmonic nanocrystals. The metal nanocrystals are coated with a layer of polyaniline, whose refractive index and optical absorption are reversibly switched through the variation of an applied electrochemical potential. The change in refractive index and optical absorption results in the modulation of the plasmonic scattering intensity with a depth of 11 dB. The electrochemical switching process is fast (∼5 ms) and stable (over 1000 switching cycles). A device configuration is further demonstrated for switching plasmonic color patterns in a transparent electrochemical device, which is made from indium tin oxide electrodes and a polyvinyl alcohol solid electrolyte. Our control of plasmonic colors provides a favorable platform for engineering low-cost and high-performance miniaturized optical devices.
Collapse
Affiliation(s)
- Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sze Nga Lai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
81
|
Hopmann E, Elezzabi AY. Plasmochromic Nanocavity Dynamic Light Color Switching. NANO LETTERS 2020; 20:1876-1882. [PMID: 32049542 DOI: 10.1021/acs.nanolett.9b05088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Static plasmonic metal-insulator-nanohole (MIN) cavities have been shown to create high chromaticity spectral colors for display applications. While on-off switching of said devices has been demonstrated, introducing active control over the spectral color of a single cavity is an ongoing challenge. Electrochromic oxides such as tungsten oxide (WO3) offer the possibility to tune their refractive index (2.1-1.8) and extinction (0-0.5) upon ion insertion, allowing active control over resonance conditions for MIN based devices. In combination with the dynamic change in the WO3 layer, the utilization of a plasmonic superstructure allows creation of well-defined spectral reflection of the nanocavity. Here, we employ inorganic, electrochromic WO3 as the tunable dielectric in a MIN nanocavity, resulting in a theoretically achievable resonance wavelength modulation from 601 to 505 nm, while maintaining 35% of reflectance intensity. Experimental values for the spectral modulation result in a 64 nm shift of peak wavelength with high reproducibility and fast switching speed. Remarkably, the introduced device shows electrochemical stability over 100 switching cycles while most of the intercalated charge can be regained (91.1%), leading to low power consumption (5.6 mW/cm-2).
Collapse
Affiliation(s)
- Eric Hopmann
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Abdulhakem Y Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
82
|
Ishigaki Y, Harimoto T, Sugimoto K, Wu L, Zeng W, Ye D, Suzuki T. Hexaarylbutadiene: A Versatile Scaffold with Tunable Redox Properties towards Organic Near-Infrared Electrochromic Material. Chem Asian J 2020; 15:1147-1155. [PMID: 32030909 DOI: 10.1002/asia.201901816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/20/2020] [Indexed: 12/21/2022]
Abstract
When the 1,1,4,4-tetraanilinobutadiene skeleton is attached with two halogenated aryl units at the 2,3-positions, they undergo facile two-electron oxidation to give stable dicationic dyes which exhibit a near-infrared (NIR) absorption whereas the neutral dienes show only pale color. Therefore, a distinct electrochromic response with an absorption change in the NIR region is achieved, which is attracting considerable recent attention from the viewpoint of bioimaging. Herein, we demonstrate that the redox potentials of the 1,1,4,4-tetraanilinobutadiene can be precisely controlled by the donating properties of the amino group on the aniline unit as well as the number of halogen atoms on the aryl units at 2,3-positions on the butadiene. In contrast, the NIR absorption bands mainly depend on the number of halogen atoms irrespective to the donating properties of aniline unit. Thus, the hexaarylbutadiene skeleton is proven to be a versatile scaffold to develop less-explored organic NIR electrochromic materials, whose redox and spectroscopic properties can be finely tuned by modifying/attaching the proper substituents.
Collapse
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemisry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Takashi Harimoto
- Department of Chemisry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Keisuke Sugimoto
- Department of Chemisry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Takanori Suzuki
- Department of Chemisry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| |
Collapse
|
83
|
Zhang C, Jing J, Wu Y, Fan Y, Yang W, Wang S, Song Q, Xiao S. Stretchable All-Dielectric Metasurfaces with Polarization-Insensitive and Full-Spectrum Response. ACS NANO 2020; 14:1418-1426. [PMID: 31877022 DOI: 10.1021/acsnano.9b08228] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical stretching has been an effective way to achieve widely tunable optical response in artificial nanostructures. However, the typical stretchable optical devices produce exactly the reverse effects for two orthogonal linear polarizations, significantly hindering their practical applications in many emerging systems. Herein, we demonstrate an approach for a mechanically tunable all-dielectric metasurface with polarization insensitivity and full-spectrum response in the visible range from 450 to 650 nm. By embedding a TiO2 metasurface in a polydimethylsiloxane substrate and stretching it in one direction, we find that the distinct reflection colors of two orthogonal linear polarizations can be tuned across the entire visible spectrum simultaneously. Encryption and display of information have also been realized with the same technique. The corresponding calculations show that the spectral responses of light with polarizations perpendicular and parallel to the strain are determined by two different mechanisms, that is, the near-field mutual interaction and the grating effects. This research shall shed light on stretchable and wearable photonics.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Jixiang Jing
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Yunkai Wu
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Yubin Fan
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Wenhong Yang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Shuai Wang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
| | - Qinghai Song
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , P.R. China
| | - Shumin Xiao
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School , Harbin Institute of Technology , Shenzhen 518055 , P.R. China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , P.R. China
| |
Collapse
|
84
|
Chen Y, Yin Y, Xing X, Fang D, Zhao Y, Zhu Y, Ali MU, Shi Y, Bai J, Wu P, Shen CK, Meng H. The Effect of Oligo(Ethylene Oxide) Side Chains: A Strategy to Improve Contrast and Switching Speed in Electrochromic Polymers. Chemphyschem 2020; 21:321-327. [DOI: 10.1002/cphc.201901047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Youquan Chen
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuyang Yin
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xing Xing
- Research & Development Institute of Northwestern Polytechnical University (Shenzhen)Northwestern Polytechnical University Shenzhen 518057 China
| | - Daqi Fang
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yang Zhao
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yanan Zhu
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Muhammad Umair Ali
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuhao Shi
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Junwu Bai
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| | - Peiheng Wu
- Shenzhen ZSZ Construction Group Co., Ltd Chinese Cha Gong 82 Jingtian Road North Shenzhen China
| | - Clifton Kwang‐Fu Shen
- Guangdong Leputai New Material Technology Co., Ltd Songshan Lake High-tech Industrial Development Zone, Dongguan China
| | - Hong Meng
- School of Advanced MaterialsPeking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
85
|
Huo P, Song M, Zhu W, Zhang C, Chen L, Lezec HJ, Lu Y, Agrawal A, Xu T. Photorealistic full-color nanopainting enabled by low-loss metasurface. OPTICA 2020; 7:10.1364/optica.403092. [PMID: 33655018 PMCID: PMC7919752 DOI: 10.1364/optica.403092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 05/22/2023]
Abstract
We realize a dielectric metasurface that enables full-color generation and ultrasmooth brightness variation. The reproduced artwork "Girl with a Pearl Earring" features photorealistic color representation and stereoscopic image impression, mimicking the texture of an oil-painting.
Collapse
Affiliation(s)
- Pengcheng Huo
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Maowen Song
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Wenqi Zhu
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20877, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20877, USA
| | - Cheng Zhang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Chen
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20877, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20877, USA
| | - Henri J. Lezec
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20877, USA
| | - Yanqing Lu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20877, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20877, USA
| | - Ting Xu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Corresponding author:
| |
Collapse
|
86
|
Li Y, van de Groep J, Talin AA, Brongersma ML. Dynamic Tuning of Gap Plasmon Resonances Using a Solid-State Electrochromic Device. NANO LETTERS 2019; 19:7988-7995. [PMID: 31560552 DOI: 10.1021/acs.nanolett.9b03143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic antennas and metasurfaces can effectively control light-matter interactions, and this facilitates a deterministic design of optical materials properties, including structural color. However, these optical properties are generally fixed after synthesis and fabrication, while many modern-day optics applications require active, low-power, and nonvolatile tuning. These needs have spurred broad research activities aimed at identifying materials and resonant structures capable of achieving large, dynamic changes in optical properties, especially in the challenging visible spectral range. In this work, we demonstrate dynamic tuning of polarization-dependent gap plasmon resonators that contain the electrochromic oxide WO3. Its refractive index in the visible changes continuously from n = 2.1 to 1.9 upon electrochemical lithium insertion and removal in a solid-state device. By incorporating WO3 into a gap plasmon resonator, the resonant wavelength can be shifted continuously and reversibly by up to 58 nm with less than 2 V electrochemical bias voltage. The resonator can remain in a tuned state for tens of minutes under open circuit conditions.
Collapse
Affiliation(s)
- Yiyang Li
- Sandia National Laboratories , Livermore , California 94550 , United States
- Department of Materials Science and Engineering , Stanford University , Stanford , California 94305 , United States
| | - Jorik van de Groep
- Geballe Laboratory of Advanced Materials , Stanford University , Stanford , California 94305 , United States
| | - A Alec Talin
- Sandia National Laboratories , Livermore , California 94550 , United States
| | - Mark L Brongersma
- Geballe Laboratory of Advanced Materials , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
87
|
Self-healing dynamically cross linked versatile polymer electrolyte: A novel approach towards high performance, flexible electrochromic devices. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
88
|
Dai Q, Deng L, Deng J, Tao J, Yang Y, Chen M, Li Z, Li Z, Zheng G. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces. OPTICS EXPRESS 2019; 27:27927-27935. [PMID: 31684553 DOI: 10.1364/oe.27.027927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Since the electromagnetic resonance that happens in dielectric nanobricks can be meticulously designed to control both amplitude and polarization of light, an ultracompact, high-resolution and continuous grayscale image display method based on resonant dielectric metasurfaces is proposed. Magnetic resonance occurs in dielectric nanobricks can yield unusual high reflectivity depending on the polarization state of incident light, which paves a new way for ultracompact image display when the resonant metasurfaces consisting of nano-polarizer arrays operate. Governed by Malus's law, nano-polarizer arrays featured with different orientations have been demonstrated to continuously manipulate the intensity of linearly polarized light cell-by-cell. Hence, it can practically enable recording a high fidelity grayscale image right at the sample surface with resolution as high as 84,667 dpi (dots per inch). This proposed resonant metasurface image (meta-image) display enjoys the advantages including continuous grayscale modulation, broadband working window, high-stability and high-density, which can easily find promising applications in ultracompact displays, high-end anti-counterfeiting, high-density optical information storage and information encryption, etc.
Collapse
|
89
|
Lattice and electronic structure variations in critical lithium doped nickel oxide thin film for superior anode electrochromism. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
90
|
Hai Z, Karbalaei Akbari M, Wei Z, Zuallaert J, De Neve W, Xue C, Xu H, Verpoort F, Zhuiykov S. Electrochromic Photodetectors: Toward Smarter Glasses and Nano Reflective Displays via an Electrolytic Mechanism. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27997-28004. [PMID: 31302998 DOI: 10.1021/acsami.9b06555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochromic devices, serving as smart glasses, have not yet been intelligent enough to regulate lighting conditions independent of external photosensing devices. On the other hand, their bulky sandwich structures have been suffering setbacks utilized for reflective displays in an effort to compete with mature emissive displays. The key to resolve both problems lies in incorporating the photosensing function into electrochromic devices while simplifying their configuration via replacing ionic electrolytes. However, so far it has not yet been achieved because of the essential operating difference between the optoelectronic devices and the ionic devices. Herein, a concept of a smarter and thinner device: "electrochromic photodetector" is proposed to solve such problems. It is all-solid-state and electrolyte-free and operates with a simple thin metal-semiconductor-metal structure via an electrolytic mechanism. As a proof of concept, a configuration of the electrochromic photodetector is presented in this work based on a tungsten trioxide (WO3) thin film deposited on Au electrodes via facile, low-cost solution processes. The electrochromic photodetector switches between its photosensing and electrochromic functions via voltage modulation within 5 V, which is the result of the semiconductor-metal transition. The transition mechanism is further analyzed to be the voltage-triggered reversible oxygen/water vapor adsorption/intercalation from ambient air.
Collapse
Affiliation(s)
- Zhenyin Hai
- Department of Green Chemistry and Technology , Ghent University , Ghent 9000 , Belgium
| | | | - Zihan Wei
- Department of Green Chemistry and Technology , Ghent University , Ghent 9000 , Belgium
| | - Jasper Zuallaert
- IDLab, Department for Electronics and Information Systems , Ghent University , Ghent 9000 , Belgium
| | - Wesley De Neve
- IDLab, Department for Electronics and Information Systems , Ghent University , Ghent 9000 , Belgium
| | | | | | - Francis Verpoort
- National Research Tomsk Polytechnic University , Tomsk 634050 , Russian Federation
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , P. R. China
| | - Serge Zhuiykov
- Department of Green Chemistry and Technology , Ghent University , Ghent 9000 , Belgium
| |
Collapse
|
91
|
Peng J, Jeong HH, Lin Q, Cormier S, Liang HL, De Volder MFL, Vignolini S, Baumberg JJ. Scalable electrochromic nanopixels using plasmonics. SCIENCE ADVANCES 2019; 5:eaaw2205. [PMID: 31093530 PMCID: PMC6510554 DOI: 10.1126/sciadv.aaw2205] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 05/21/2023]
Abstract
Plasmonic metasurfaces are a promising route for flat panel display applications due to their full color gamut and high spatial resolution. However, this plasmonic coloration cannot be readily tuned and requires expensive lithographic techniques. Here, we present scalable electrically driven color-changing metasurfaces constructed using a bottom-up solution process that controls the crucial plasmonic gaps and fills them with an active medium. Electrochromic nanoparticles are coated onto a metallic mirror, providing the smallest-area active plasmonic pixels to date. These nanopixels show strong scattering colors and are electrically tunable across >100-nm wavelength ranges. Their bistable behavior (with persistence times exceeding hundreds of seconds) and ultralow energy consumption (9 fJ per pixel) offer vivid, uniform, nonfading color that can be tuned at high refresh rates (>50 Hz) and optical contrast (>50%). These dynamics scale from the single nanoparticle level to multicentimeter scale films in subwavelength thickness devices, which are a hundredfold thinner than current displays.
Collapse
Affiliation(s)
- Jialong Peng
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hyeon-Ho Jeong
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Qianqi Lin
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Sean Cormier
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hsin-Ling Liang
- NanoManufacturing Group, Department of Engineering, University of Cambridge, Cambridge CB3 0FS, UK
| | - Michael F. L. De Volder
- NanoManufacturing Group, Department of Engineering, University of Cambridge, Cambridge CB3 0FS, UK
| | - Silvia Vignolini
- Bio-inspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jeremy J. Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
- Corresponding author.
| |
Collapse
|
92
|
Najafi-Ashtiani H, Akhavan B, Jing F, Bilek MM. Transparent Conductive Dielectric-Metal-Dielectric Structures for Electrochromic Applications Fabricated by High-Power Impulse Magnetron Sputtering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14871-14881. [PMID: 30924631 DOI: 10.1021/acsami.9b00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The growing applications of electrochromic (EC) devices have generated great interest in bifunctional materials that can serve as both transparent conductive (TC) and EC coatings. WO3/Ag/WO3 (WAW) heterostructures, in principle, facilitate this extension of EC technology without reliance on an indium tin oxide (ITO) substrate. However, these structures synthesized using traditional methods have shown significant performance deficiencies. Thermally evaporated WAW structures show weak adhesion to the substrate with rapid degradation of coloration efficiency. Improved EC durability can be obtained using magnetron sputtering deposition, but this requires the insertion of an extra tungsten (W) sacrificial layer beneath the external WO3 layer to prevent oxidation and associated loss of conductivity of the silver film. Here, we demonstrate for the first time that a new method, known as high-power impulse magnetron sputtering (HiPIMS), can produce trilayer bifunctional EC and TC devices, eliminating the need for the additional protective layer. X-ray photoelectron spectroscopy and X-ray diffraction data provided evidence that oxidation of the silver layer can be avoided, whilst stoichiometric WO3 structures are achieved. To achieve optimum WAW structures, we tuned the partial pressure of oxygen in the HiPIMS atmosphere applied for the deposition of WO3 layers. Our optimized WO3 (30 nm)/Ag (10 nm)/WO3 (50 nm) structure had a sheet resistance of 23.0 ± 0.4 Ω/□ and a luminous transmittance of 80.33 ± 0.07%. The HiPIMS coatings exhibited excellent long-term cycling stability for at least 2500 cycles, decent switching times (bleaching: 22.4 s, coloring: 15 s), and luminescence transmittance modulation (Δ T) of 34.5%. The HiPIMS strategy for the fabrication of ITO-free EC coatings for smart windows holds great promise to be extended to producing other metal-dielectric composite coatings for modern applications such as organic light-emitting diodes (OLEDs), liquid crystals, and wearable displays.
Collapse
Affiliation(s)
- Hamed Najafi-Ashtiani
- Department of Physics, Faculty of Science , Velayat University , Iranshahr 99111-31411 , Iran
| | | | - Fengjuan Jing
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | | |
Collapse
|
93
|
Greybush NJ, Charipar K, Geldmeier JA, Bauman SJ, Johns P, Naciri J, Charipar N, Park K, Vaia RA, Fontana J. Dynamic Plasmonic Pixels. ACS NANO 2019; 13:3875-3883. [PMID: 30794377 DOI: 10.1021/acsnano.9b00905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Information display utilizing plasmonic color generation has recently emerged as an alternative paradigm to traditional printing and display technologies. However, many implementations so far have either presented static pixels with a single display state or rely on relatively slow switching mechanisms such as chemical transformations or liquid crystal transitions. Here, we demonstrate spatial, spectral, and temporal control of light using dynamic plasmonic pixels that function through the electric-field-induced alignment of plasmonic nanorods in organic suspensions. By tailoring the geometry and composition (Au and Au@Ag) of the nanorods, we illustrate light modulation across a significant portion of the visible and infrared spectrum (600-2400 nm). The fast (∼30 μs), reversible nanorod alignment is manifested as distinct color changes, characterized by shifts of observed chromaticity and luminance. Integration into larger device architectures is showcased by the fabrication of a seven-segment numerical indicator. The control of light on demand achieved in these dynamic plasmonic pixels establishes a favorable platform for engineering high-performance optical devices.
Collapse
Affiliation(s)
- Nicholas J Greybush
- United States Naval Research Laboratory , 4555 Overlook Ave, SW , Washington , DC 20375 , United States
| | - Kristin Charipar
- United States Naval Research Laboratory , 4555 Overlook Ave, SW , Washington , DC 20375 , United States
| | - Jeffrey A Geldmeier
- United States Naval Research Laboratory , 4555 Overlook Ave, SW , Washington , DC 20375 , United States
| | - Stephen J Bauman
- University of Arkansas Fayetteville , 3189 Bell, 1 University of Arkansas, 800 West Dickson , Fayetteville , Arkansas 72701 , United States
| | - Paul Johns
- United States Naval Research Laboratory , 4555 Overlook Ave, SW , Washington , DC 20375 , United States
| | - Jawad Naciri
- United States Naval Research Laboratory , 4555 Overlook Ave, SW , Washington , DC 20375 , United States
| | - Nicholas Charipar
- United States Naval Research Laboratory , 4555 Overlook Ave, SW , Washington , DC 20375 , United States
| | - Kyoungweon Park
- Air Force Research Laboratory , AFRL 2941 Hobson Way , Wright-Patterson AFB , Ohio 45433 , United States
| | - Richard A Vaia
- Air Force Research Laboratory , AFRL 2941 Hobson Way , Wright-Patterson AFB , Ohio 45433 , United States
| | - Jake Fontana
- United States Naval Research Laboratory , 4555 Overlook Ave, SW , Washington , DC 20375 , United States
| |
Collapse
|
94
|
Zhang Q, Tsai CY, Li LJ, Liaw DJ. Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nat Commun 2019; 10:1239. [PMID: 30886136 PMCID: PMC6423275 DOI: 10.1038/s41467-019-09054-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/13/2019] [Indexed: 11/13/2022] Open
Abstract
Colorless-to-colorful switching electrochromic polymers with very high contrast ratio are unattainable and attractive for the applications of smart wearable electronics. Here we report a facile strategy in developing colorless-to-colorful switching electrochromic polyimides by incorporating with alicyclic nonlinear, twisted structures and adjusted conjugated electrochromophores, which minimize the charge transfer complex formation. It is noted that, by controlling the conjugation length of electrochromophore, the colorless-to-black switching electrochromic polymer film (PI-1a) exhibites an ultrahigh integrated contrast ratio up to 91.4% from 380 to 780 nm, especially up to 96.8% at 798 nm. In addition, PI-1a film with asymmetric structure also demonstrates fast electrochemical and electrochromic behaviors (a switching and bleaching time of 1.3 s and 1.1 s, respectively) due to the loose chain stacking, which provides more pathways for the penetration of counterion. Moreover, the colorless-to-black EC device based on PI-1a reveals an overall integrated contrast ratio up to 80%. Electrochromic polymers (ECPs) receive great attention due to their facile colour tunablility, however colourless-to-black ECPs with high contrast ratio are still unattainable. Here the authors develop high contrast colourless-to-black switching polyimides by following specific molecular design criteria.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 10607, Taipei, Taiwan
| | - Chou-Yi Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 10607, Taipei, Taiwan
| | - Lain-Jong Li
- School of Materials Science and Engineering, University of New South Wales, 2052, NSW, Australia
| | - Der-Jang Liaw
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 10607, Taipei, Taiwan.
| |
Collapse
|
95
|
Xiong K, Tordera D, Jonsson MP, Dahlin AB. Active control of plasmonic colors: emerging display technologies. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:024501. [PMID: 30640724 DOI: 10.1088/1361-6633/aaf844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In recent years there has been a growing interest in the use of plasmonic nanostructures for color generation, a technology that dates back to ancient times. Plasmonic structural colors have several attractive features but once the structures are prepared the colors are normally fixed. Lately, several concepts have emerged for actively tuning the colors, which opens up for many new potential applications, the most obvious being novel color displays. In this review we summarize recent progress in active control of plasmonic colors and evaluate them with respect to performance criteria for color displays. It is suggested that actively controlled plasmonic colors are generally less interesting for emissive displays but could be useful for new types of electrochromic devices relying on ambient light (electronic paper). Furthermore, there are several other potential applications such as images to be revealed on demand and colorimetric sensors.
Collapse
Affiliation(s)
- Kunli Xiong
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | | | | | | |
Collapse
|
96
|
|
97
|
Jia H, Wu QJ, Jiang C, Wang H, Wang LQ, Jiang JZ, Zhang DX. High-transmission polarization-dependent active plasmonic color filters. APPLIED OPTICS 2019; 58:704-711. [PMID: 30694258 DOI: 10.1364/ao.58.000704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Plasmonic color filters, exhibiting great promise as an alternative for existing colorant-based filters, often only output one fixed color. Developing active color filters with controllable color output will lead to more compact color filter-based devices. In this paper, we present an approach to achieve active color filtering with a polarization-dependent plasmonic structural color filter, which comprises arrays of asymmetric cross-shaped nanoapertures in an ultrathin film of silver. A systematical study for aperture size, array period, and the thickness of silver film dependences of color filter properties is carried out, and strategies for polarization-dependent color filter designing are generated. A polarization-dependent and high tunability of color can be achieved by selecting the appropriate nanostructure parameters, which imply many potential applications.
Collapse
|
98
|
Luo X, Tsai D, Gu M, Hong M. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 2019; 48:2458-2494. [PMID: 30839959 DOI: 10.1039/c8cs00864g] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with the rapid development of micro/nanofabrication technology, the past few decades have seen the flourishing emergence of subwavelength-structured materials and interfaces for optical field engineering at the nanoscale. Three remarkable properties associated with these subwavelength-structured materials are the squeezed optical fields beyond the diffraction limit, gradient optical fields in the subwavelength scale, and enhanced optical fields that are orders of magnitude greater than the incident field. These engineered optical fields have inspired fundamental and practical advances in both engineering optics and modern chemistry. The first property is the basis of sub-diffraction-limited imaging, lithography, and dense data storage. The second property has led to the emergence of a couple of thin and planar functional optical devices with a reduced footprint. The third one causes enhanced radiation (e.g., fluorescence), scattering (e.g., Raman scattering), and absorption (e.g., infrared absorption and circular dichroism), offering a unique platform for single-molecule-level biochemical sensing, and high-efficiency chemical reaction and energy conversion. In this review, we summarize recent advances in subwavelength-structured materials that bear extraordinary squeezed, gradient, and enhanced optical fields, with a particular emphasis on their optical and chemical applications. Finally, challenges and outlooks in this promising field are discussed.
Collapse
Affiliation(s)
- Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
| | | | | | | |
Collapse
|
99
|
Wu L, Sun Y, Sugimoto K, Luo Z, Ishigaki Y, Pu K, Suzuki T, Chen HY, Ye D. Engineering of Electrochromic Materials as Activatable Probes for Molecular Imaging and Photodynamic Therapy. J Am Chem Soc 2018; 140:16340-16352. [PMID: 30384600 DOI: 10.1021/jacs.8b10176] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrochromic materials (EMs) are widely used color-switchable materials, but their applications as stimuli-responsive biomaterials to monitor and control biological processes remain unexplored. This study reports the engineering of an organic π-electron structure-based EM (dicationic 1,1,4,4-tetraarylbutadiene, 12+) as a unique hydrogen sulfide (H2S)-responsive chromophore amenable to build H2S-activatable fluorescent probes (12+-semiconducting polymer nanoparticles, 12+-SNPs) for in vivo H2S detection. We demonstrate that EM 12+, with a strong absorption (500-850 nm), efficiently quenches the fluorescence (580, 700, or 830 nm) of different fluorophores within 12+-SNPs, while the selective conversion into colorless diene 2 via H2S-mediated two-electron reduction significantly recovers fluorescence, allowing for non-invasive imaging of hepatic and tumor H2S in mice in real time. Strikingly, EM 12+ is further applied to design a near-infrared photosensitizer with tumor-targeting and H2S-activatable ability for effective photodynamic therapy (PDT) of H2S-related tumors in mice. This study demonstrates promise for applying EMs to build activatable probes for molecular imaging of H2S and selective PDT of tumors, which may lead to the development of new EMs capable of detecting and regulating essential biological processes in vivo.
Collapse
Affiliation(s)
- Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Keisuke Sugimoto
- Department of Chemistry, Faculty of Science , Hokkaido University , N10 W8, North-ward , Sapporo 060-0810 , Japan
| | - Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science , Hokkaido University , N10 W8, North-ward , Sapporo 060-0810 , Japan
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University , 637457 , Singapore
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science , Hokkaido University , N10 W8, North-ward , Sapporo 060-0810 , Japan
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China.,Research Center for Environmental Nanotechnology (ReCent) , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
100
|
Azam A, Kim J, Park J, Novak TG, Tiwari AP, Song SH, Kim B, Jeon S. Two-Dimensional WO 3 Nanosheets Chemically Converted from Layered WS 2 for High-Performance Electrochromic Devices. NANO LETTERS 2018; 18:5646-5651. [PMID: 30114368 DOI: 10.1021/acs.nanolett.8b02150] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two-dimensional (2D) transitional metal oxides (TMOs) are an attractive class of materials due to the combined advantages of high active surface area, enhanced electrochemical properties, and stability. Among the 2D TMOs, 2D tungsten oxide (WO3) nanosheets possess great potential in electrochemical applications, particularly in electrochromic (EC) devices. However, feasible production of 2D WO3 nanosheets is challenging due to the innate 3D crystallographic structure of WO3. Here we report a novel solution-phase synthesis of 2D WO3 nanosheets through simple oxidation from 2D tungsten disulfide (WS2) nanosheets exfoliated from bulk WS2 powder. The complete conversion from WS2 into WO3 was confirmed through crystallographic and elemental analyses, followed by validation of the 2D WO3 nanosheets applied in the EC device. The EC device showed color modulation of 62.57% at 700 nm wavelength, which is 3.43 times higher than the value of the conventional device using bulk WO3 powder, while also showing enhancement of ∼46.62% and ∼62.71% in switching response-time (coloration and bleaching). The mechanism of enhancement was rationalized through comparative analysis based on the thickness of the WO3 components. In the future, 2D WO3 nanosheets could also be used for other promising applications such as sensors, catalysis, thermoelectric, and energy conversion.
Collapse
Affiliation(s)
- Ashraful Azam
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury, Advanced Battery Center, KAIST , Daejeon 34141 , Republic of Korea
| | - Jungmo Kim
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury, Advanced Battery Center, KAIST , Daejeon 34141 , Republic of Korea
| | - Junyong Park
- School of Materials Science and Engineering , Kumoh National Institute of Technology , Gumi , Gyeongbuk 39177 , Republic of Korea
| | - Travis G Novak
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury, Advanced Battery Center, KAIST , Daejeon 34141 , Republic of Korea
| | - Anand P Tiwari
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury, Advanced Battery Center, KAIST , Daejeon 34141 , Republic of Korea
| | - Sung Ho Song
- Division of Advanced Materials Engineering , Kongju National University , Chungnam 330717 , Republic of Korea
| | - Bumsoo Kim
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury, Advanced Battery Center, KAIST , Daejeon 34141 , Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for The Nanocentury, Advanced Battery Center, KAIST , Daejeon 34141 , Republic of Korea
| |
Collapse
|