51
|
iNEXT: a European facility network to stimulate translational structural biology. FEBS Lett 2018; 592:1909-1917. [DOI: 10.1002/1873-3468.13062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
52
|
Manjula R, Wright GSA, Strange RW, Padmanabhan B. Assessment of ligand binding at a site relevant to
SOD
1 oxidation and aggregation. FEBS Lett 2018; 592:1725-1737. [DOI: 10.1002/1873-3468.13055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ramu Manjula
- Department of Biophysics National Institute of Mental Health and Neurosciences (NIMHANS) Bangalore India
| | - Gareth S. A. Wright
- Molecular Biophysics Group Institute of Integrative Biology Faculty of Health and Life Sciences University of Liverpool UK
| | | | - Balasundaram Padmanabhan
- Department of Biophysics National Institute of Mental Health and Neurosciences (NIMHANS) Bangalore India
| |
Collapse
|
53
|
The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat Commun 2018; 9:1693. [PMID: 29703933 PMCID: PMC5923229 DOI: 10.1038/s41467-018-04114-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase-1 (SOD1) mutants, including those with unaltered enzymatic activity, are known to cause amyotrophic lateral sclerosis (ALS). Several destabilizing factors contribute to pathogenicity including a reduced ability to complete the normal maturation process which comprises folding, metal cofactor acquisition, intra-subunit disulphide bond formation and dimerization. Immature SOD1 forms toxic oligomers and characteristic large insoluble aggregates within motor system cells. Here we report that the cysteine-reactive molecule ebselen efficiently confers the SOD1 intra-subunit disulphide and directs correct SOD1 folding, depopulating the globally unfolded precursor associated with aggregation and toxicity. Assisted formation of the unusual SOD1 cytosolic disulphide bond could have potential therapeutic applications. In less reducing environments, ebselen forms a selenylsulphide with Cys111 and restores the monomer–dimer equilibrium of A4V SOD1 to wild-type. Ebselen is therefore a potent bifunctional pharmacological chaperone for SOD1 that combines properties of the SOD1 chaperone hCCS and the recently licenced antioxidant drug, edaravone. Mutations in superoxide dismutase-1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Here the authors present the SOD1 crystal structure bound to the small cysteine-reactive molecule ebselen and show that ebselen is a chaperone for SOD1.
Collapse
|
54
|
New structural and functional insights from in-cell NMR. Emerg Top Life Sci 2018; 2:29-38. [PMID: 33525780 DOI: 10.1042/etls20170136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
In recent years, it has become evident that structural characterization would gain significantly in terms of biological relevance if framed within a cellular context, while still maintaining the atomic resolution. Therefore, major efforts have been devoted to developing Cellular Structural Biology approaches. In this respect, in-cell NMR can provide and has provided relevant contributions to the field, not only to investigate the structural and dynamical properties of macromolecules in solution but, even more relevant, to understand functional processes directly in living cells and the factors that modulate them, such as exogenous molecules, partner proteins, and oxidative stress. In this commentary, we review and discuss some of the main contributions to the understanding of protein structural and functional properties achieved by in-cell NMR.
Collapse
|
55
|
Large SOD1 aggregates, unlike trimeric SOD1, do not impact cell viability in a model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2018; 115:4661-4665. [PMID: 29666246 DOI: 10.1073/pnas.1800187115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aberrant accumulation of misfolded Cu, Zn superoxide dismutase (SOD1) is a hallmark of SOD1-associated amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disease. While recent discovery of nonnative trimeric SOD1-associated neurotoxicity has suggested a potential pathway for motor neuron impairment, it is yet unknown whether large, insoluble aggregates are cytotoxic. Here we designed SOD1 mutations that specifically stabilize either the fibrillar form or the trimeric state of SOD1. The designed mutants display elevated populations of fibrils or trimers correspondingly, as demonstrated by gel filtration chromatography and electron microscopy. The trimer-stabilizing mutant, G147P, promoted cell death, even more potently in comparison with the aggressive ALS-associated mutants A4V and G93A. In contrast, the fibril-stabilizing mutants, N53I and D101I, positively impacted the survival of motor neuron-like cells. Hence, we conclude the SOD1 oligomer and not the mature form of aggregated fibril is critical for the neurotoxic effects in the model of ALS. The formation of large aggregates is in competition with trimer formation, suggesting that aggregation may be a protective mechanism against formation of toxic oligomeric intermediates.
Collapse
|
56
|
Kumar V, Prakash A, Lynn AM. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Biopolymers 2018; 109:e23102. [DOI: 10.1002/bip.23102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Amresh Prakash
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
57
|
Mitri E, Barbieri L, Vaccari L, Luchinat E. 15N isotopic labelling for in-cell protein studies by NMR spectroscopy and single-cell IR synchrotron radiation FTIR microscopy: a correlative study. Analyst 2018; 143:1171-1181. [DOI: 10.1039/c7an01464c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of 15N-enrichment on human cells analyzed by correlative in-cell NMR and single-cell SR-FTIR experiments.
Collapse
Affiliation(s)
- E. Mitri
- Elettra – Sincrotrone Trieste S.C.p.A
- SISSI Beamline – Chemical and Life Sciences Branch
- 34149, Basovizza
- Italy
| | - L. Barbieri
- Magnetic Resonance Centre (CERM)
- University of Florence
- 50019 Sesto Fiorentino
- Italy
- Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP)
| | - L. Vaccari
- Elettra – Sincrotrone Trieste S.C.p.A
- SISSI Beamline – Chemical and Life Sciences Branch
- 34149, Basovizza
- Italy
| | - E. Luchinat
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”
- University of Florence
- 50134 Florence
- Italy
- Magnetic Resonance Centre (CERM)
| |
Collapse
|
58
|
Luchinat E, Barbieri L, Banci L. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants. Sci Rep 2017; 7:17433. [PMID: 29234142 PMCID: PMC5727297 DOI: 10.1038/s41598-017-17815-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.
Collapse
Affiliation(s)
- Enrico Luchinat
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy.,Department of Biomedical, Clinical and Experimental Sciences, University of Florence, 50134, Florence, Italy
| | - Letizia Barbieri
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy.,Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Centre (CERM), University of Florence, 50019, Sesto Fiorentino, Italy. .,Department of Chemistry, University of Florence, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
59
|
Barbieri L, Luchinat E, Banci L. Intracellular metal binding and redox behavior of human DJ-1. J Biol Inorg Chem 2017; 23:61-69. [DOI: 10.1007/s00775-017-1509-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022]
|
60
|
Hou MM, Polykretis P, Luchinat E, Wang X, Chen SN, Zuo HH, Yang Y, Chen JL, Ye Y, Li C, Banci L, Su XC. Solution structure and interaction with copper in vitro and in living cells of the first BIR domain of XIAP. Sci Rep 2017; 7:16630. [PMID: 29192194 PMCID: PMC5709467 DOI: 10.1038/s41598-017-16723-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
The X-chromosome linked inhibitor of apoptosis (XIAP) is a multidomain metalloprotein involved in caspase inhibition and in copper homeostasis. It contains three zinc-binding baculoviral IAP repeats (BIR) domains, which are responsible for caspase interaction. Recently, it has been suggested that the BIR domains can bind copper, however high resolution data on such interaction is missing. Here we characterize by NMR the structural properties of BIR1 in solution, and the effects of its interaction with copper both in vitro and in physiological environments. BIR1 is dimeric in solution, consistent with the X-ray structure. Cysteine 12, located in the unfolded N-terminal region, has a remarkably low redox potential, and is prone to oxidation even in reducing physiological environments. Interaction of BIR1 with copper(II) results in the oxidation of cysteine 12, with the formation of either an intermolecular disulfide bond between two BIR1 molecules or a mixed disulfide bond with glutathione, whereas the zinc binding site is not affected by the interaction.
Collapse
Affiliation(s)
- Meng-Meng Hou
- State Key Laboratory and Research Institute of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Panagis Polykretis
- Magnetic Resonance Center - CERM, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Enrico Luchinat
- Magnetic Resonance Center - CERM, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
- Department of Biomedical, Clinical and Experimental Sciences, University of Florence, 50134, Florence, Italy
| | - Xiao Wang
- State Key Laboratory and Research Institute of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Shen-Na Chen
- State Key Laboratory and Research Institute of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Hui-Hui Zuo
- State Key Laboratory and Research Institute of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yin Yang
- State Key Laboratory and Research Institute of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Jia-Liang Chen
- State Key Laboratory and Research Institute of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yansheng Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, 50019, Sesto Fiorentino, Florence, Italy.
- Department of Chemistry, University of Florence, 50019, Sesto Fiorentino, Florence, Italy.
| | - Xun-Cheng Su
- State Key Laboratory and Research Institute of Elemento-organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
61
|
Lai YT, Yang Y, Hu L, Cheng T, Chang YY, Koohi-Moghadam M, Wang Y, Xia J, Wang J, Li H, Sun H. Integration of fluorescence imaging with proteomics enables visualization and identification of metallo-proteomes in living cells. Metallomics 2017; 9:38-47. [PMID: 27830853 DOI: 10.1039/c6mt00169f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metalloproteins account for nearly one-third of proteins in proteomes. To date, the identification of metalloproteins relies mainly on protein purification and the subsequent characterization of bound metals, which often leads to losses of metal ions bound weakly and transiently. Herein, we developed a strategy to visualize and subsequently identify endogenous metalloproteins and metal-binding proteins in living cells via integration of fluorescence imaging with proteomics. We synthesized a "metal-tunable" fluorescent probe (denoted as Mn+-TRACER) that rapidly enters cells to target proteins with 4-40 fold fluorescence enhancements. By using Ni2+-TRACER as an example, we demonstrate the feasibility of tracking Ni2+-binding proteins in vitro, while cellular small molecules exhibit negligible interference on the labeling. We identified 44 Ni2+-binding proteins from microbes using Helicobacter pylori as a showcase. We further applied Cu2+-TRACER to mammalian cells and found 54 Cu2+-binding proteins. The strategy we report here provides a great opportunity to track various endogenous metallo-proteomes and to mine potential targets of metallodrugs.
Collapse
Affiliation(s)
- Yau-Tsz Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Ya Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Ligang Hu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Yuen-Yan Chang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Mohamad Koohi-Moghadam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Yuchuan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Junwen Wang
- Center for Individualized Medicine & Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259 USA and Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259 USA
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| |
Collapse
|
62
|
Pauwels K, Lebrun P, Tompa P. To be disordered or not to be disordered: is that still a question for proteins in the cell? Cell Mol Life Sci 2017; 74:3185-3204. [PMID: 28612216 PMCID: PMC11107661 DOI: 10.1007/s00018-017-2561-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022]
Abstract
There is ample evidence that many proteins or regions of proteins lack a well-defined folded structure under native-like conditions. These are called intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). Whether this intrinsic disorder is also their main structural characteristic in living cells has been a matter of intense debate. The structural analysis of IDPs became an important challenge also because of their involvement in a plethora of human diseases, which made IDPs attractive targets for therapeutic development. Therefore, biophysical approaches are increasingly being employed to probe the structural and dynamical state of proteins, not only in isolation in a test tube, but also in a complex biological environment and even within intact cells. Here, we survey direct and indirect evidence that structural disorder is in fact the physiological state of many proteins in the proteome. The paradigmatic case of α-synuclein is used to illustrate the controversial nature of this topic.
Collapse
Affiliation(s)
- Kris Pauwels
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pierre Lebrun
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium.
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
63
|
The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Molecules 2017; 22:molecules22091429. [PMID: 28850080 PMCID: PMC6151412 DOI: 10.3390/molecules22091429] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1) associated to amyotrophic lateral sclerosis (ALS). SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.
Collapse
|
64
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
65
|
Rogawski R, McDermott AE. New NMR tools for protein structure and function: Spin tags for dynamic nuclear polarization solid state NMR. Arch Biochem Biophys 2017; 628:102-113. [PMID: 28623034 PMCID: PMC5815514 DOI: 10.1016/j.abb.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
Magic angle spinning solid state NMR studies of biological macromolecules [1-3] have enabled exciting studies of membrane proteins [4,5], amyloid fibrils [6], viruses, and large macromolecular assemblies [7]. Dynamic nuclear polarization (DNP) provides a means to enhance detection sensitivity for NMR, particularly for solid state NMR, with many recent biological applications and considerable contemporary efforts towards elaboration and optimization of the DNP experiment. This review explores precedents and innovations in biological DNP experiments, especially highlighting novel chemical biology approaches to introduce the radicals that serve as a source of polarization in DNP experiments.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Chemistry, Columbia University, NY, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, NY, NY 10027, United States.
| |
Collapse
|
66
|
Habibi M, Rottler J, Plotkin SS. The unfolding mechanism of monomeric mutant SOD1 by simulated force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28629863 DOI: 10.1016/j.bbapap.2017.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mechanical unfolding of mutated apo, disulfide-reduced, monomeric superoxide dismutase 1 protein (SOD1) has been simulated via force spectroscopy techniques, using both an all-atom (AA), explicit solvent model and a coarse-grained heavy-atom Gō (HA-Gō) model. The HA-Gō model was implemented at two different pulling speeds for comparison. The most-common sequence of unfolding in the AA model agrees well with the most-common unfolding sequence of the HA-Gō model, when the same normalized pulling rate was used. Clustering of partially-native structures as the protein unfolds shows that the AA and HA-Gō models both exhibit a dominant pathway for early unfolding, which eventually bifurcates repeatedly to multiple branches after the protein is about half-unfolded. The force-extension curve exhibits multiple force drops, which are concomitant with jumps in the local interaction potential energy between specific β-strands in the protein. These sudden jumps in the potential energy coincide with the dissociation of specific pairs of β-strands, and thus intermediate unfolding events. The most common sequence of β-strand dissociation in the unfolding pathway of the AA model is β-strands 5, 4, 8, 7, 1, 2, then finally β-strands 3 and 6. The observation that β-strand 5 is among the first to unfold here, but the last to unfold in simulations of loop-truncated SOD1, could imply the existence of an evolutionary compensation mechanism, which would stabilize β-strands flanking long loops against their entropic penalty by strengthening intramolecular interactions. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Mona Habibi
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Jörg Rottler
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
67
|
Fetherolf MM, Boyd SD, Taylor AB, Kim HJ, Wohlschlegel JA, Blackburn NJ, Hart PJ, Winge DR, Winkler DD. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J Biol Chem 2017; 292:12025-12040. [PMID: 28533431 DOI: 10.1074/jbc.m117.775981] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/09/2017] [Indexed: 11/06/2022] Open
Abstract
Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment.
Collapse
Affiliation(s)
- Morgan M Fetherolf
- Department of Medicine, University of Utah Health Sciences Center School of Medicine, Salt Lake City, Utah 84132-2408; Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Stefanie D Boyd
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Alexander B Taylor
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229; X-ray Crystallography Core Laboratory, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Hee Jong Kim
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Ninian J Blackburn
- Institute of Environmental Health, Oregon Health and Science University, Portland, Oregon 97239
| | - P John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229; X-ray Crystallography Core Laboratory, University of Texas Health Science Center, San Antonio, Texas 78229; Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Dennis R Winge
- Department of Medicine, University of Utah Health Sciences Center School of Medicine, Salt Lake City, Utah 84132-2408; Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Duane D Winkler
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080.
| |
Collapse
|
68
|
Hatori Y, Inouye S, Akagi R. Thiol-based copper handling by the copper chaperone Atox1. IUBMB Life 2017; 69:246-254. [PMID: 28294521 DOI: 10.1002/iub.1620] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Human antioxidant protein 1 (Atox1) plays a crucial role in cellular copper homeostasis. Atox1 captures cytosolic copper for subsequent transfer to copper pumps in trans Golgi network, thereby facilitating copper supply to various copper-dependent oxidereductases matured within the secretory vesicles. Atox1 and other copper chaperones handle cytosolic copper using Cys thiols which are ideal ligands for coordinating Cu(I). Recent studies demonstrated reversible oxidation of these Cys residues in copper chaperones, linking cellular redox state to copper homeostasis. Highlighted in this review are unique redox properties of Atox1 and other copper chaperones. Also, summarized are the redox nodes in the cytosol which potentially play dominant roles in the redox regulation of copper chaperones. © 2016 IUBMB Life, 69(4):246-254, 2017.
Collapse
Affiliation(s)
- Yuta Hatori
- Department of Pharmacy, Yasuda Women's University, Yasuhigashi, Asaminami-ku, Hiroshima, Japan
| | - Sachiye Inouye
- Department of Pharmacy, Yasuda Women's University, Yasuhigashi, Asaminami-ku, Hiroshima, Japan
| | - Reiko Akagi
- Department of Pharmacy, Yasuda Women's University, Yasuhigashi, Asaminami-ku, Hiroshima, Japan
| |
Collapse
|
69
|
Luchinat E, Banci L. In-cell NMR: a topical review. IUCRJ 2017; 4:108-118. [PMID: 28250949 PMCID: PMC5330521 DOI: 10.1107/s2052252516020625] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/29/2016] [Indexed: 05/18/2023]
Abstract
Classical structural biology approaches allow structural characterization of biological macromolecules in vitro, far from their physiological context. Nowadays, thanks to the wealth of structural data available and to technological and methodological advances, the interest of the research community is gradually shifting from pure structural determination towards the study of functional aspects of biomolecules. Therefore, a cellular structural approach is ideally needed to characterize biological molecules, such as proteins, in their native cellular environment and the functional processes that they are involved in. In-cell NMR is a new application of high-resolution nuclear magnetic resonance spectroscopy that allows structural and dynamical features of proteins and other macromolecules to be analyzed directly in living cells. Owing to its challenging nature, this methodology has shown slow, but steady, development over the past 15 years. To date, several in-cell NMR approaches have been successfully applied to both bacterial and eukaryotic cells, including several human cell lines, and important structural and functional aspects have been elucidated. In this topical review, the major advances of in-cell NMR are summarized, with a special focus on recent developments in eukaryotic and mammalian cells.
Collapse
Affiliation(s)
- Enrico Luchinat
- Magnetic Resonance Center – CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Biomedical, Clinical and Experimental Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center – CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
70
|
Towards understanding cellular structure biology: In-cell NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:547-557. [PMID: 28257994 DOI: 10.1016/j.bbapap.2017.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
To watch biological macromolecules perform their functions inside the living cells is the dream of any biologists. In-cell nuclear magnetic resonance is a branch of biomolecular NMR spectroscopy that can be used to observe the structures, interactions and dynamics of these molecules in the living cells at atomic level. In principle, in-cell NMR can be applied to different cellular systems to achieve biologically relevant structural and functional information. In this review, we summarize the existing approaches in this field and discuss its applications in protein interactions, folding, stability and post-translational modifications. We hope this review will emphasize the effectiveness of in-cell NMR for studies of intricate biological processes and for structural analysis in cellular environments.
Collapse
|
71
|
Pastore A, Temussi PA. The Emperor's new clothes: Myths and truths of in-cell NMR. Arch Biochem Biophys 2017; 628:114-122. [PMID: 28259514 DOI: 10.1016/j.abb.2017.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
Abstract
In-cell NMR is a technique developed to study the structure and dynamical behavior of biological macromolecules in their natural environment, circumventing all isolation and purification steps. In principle, the potentialities of the technique are enormous, not only for the possibility of bypassing all purification steps but, even more importantly, for the wealth of information that can be gained from directly monitoring interactions among biological macromolecules in a natural cell. Here, we review critically the promises, successes and limits of this technique as it stands now. Interestingly, many of the problems of NMR in bacterial cells stem from the artificially high concentration of the protein under study whose overexpression is anyway necessary to select it from the background. This has, as a consequence, that when overexpressed, most globular proteins, do not show an NMR spectrum, limiting the applicability of the technique to intrinsically unfolded or specifically behaving proteins. The outlook for in-cell NMR of eukaryotic cells is more promising and is possibly the most attracting aspect for the future.
Collapse
Affiliation(s)
- Annalisa Pastore
- The Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; University of Pavia, Department of Molecular Medicine, Pavia, Italy.
| | - Piero Andrea Temussi
- The Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; University of Naples "Federico II", Department of Chemical Sciences, Naples, Italy
| |
Collapse
|
72
|
Anzai I, Tokuda E, Mukaiyama A, Akiyama S, Endo F, Yamanaka K, Misawa H, Furukawa Y. A misfolded dimer of Cu/Zn-superoxide dismutase leading to pathological oligomerization in amyotrophic lateral sclerosis. Protein Sci 2017; 26:484-496. [PMID: 27977888 DOI: 10.1002/pro.3094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Misfolding of mutant Cu/Zn-superoxide dismutase (SOD1) is a pathological hallmark in a familial form of amyotrophic lateral sclerosis. Pathogenic mutations have been proposed to monomerize SOD1 normally adopting a homodimeric configuration and then trigger abnormal oligomerization of SOD1 proteins. Despite this, a misfolded conformation of SOD1 leading to the oligomerization at physiological conditions still remains ambiguous. Here, we show that, around the body temperature (∼37°C), mutant SOD1 maintains a dimeric configuration but lacks most of its secondary structures. Also, such an abnormal SOD1 dimer with significant structural disorder was prone to irreversibly forming the oligomers crosslinked via disulfide bonds. The disulfide-crosslinked oligomers of SOD1 were detected in the spinal cords of the diseased mice expressing mutant SOD1. We hence propose an alternative pathway of mutant SOD1 misfolding that is responsible for oligomerization in the pathologies of the disease.
Collapse
Affiliation(s)
- Itsuki Anzai
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Atsushi Mukaiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, NINS, Okazaki, 444-8585, Japan.,Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, NINS, Okazaki, 444-8585, Japan.,Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | | |
Collapse
|
73
|
Antinone SE, Ghadge GD, Ostrow LW, Roos RP, Green WN. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects. Sci Rep 2017; 7:41141. [PMID: 28120938 PMCID: PMC5264640 DOI: 10.1038/srep41141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 11/09/2022] Open
Abstract
Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.
Collapse
Affiliation(s)
- Sarah E Antinone
- University of Chicago, Department of Neurobiology, Chicago, 60637, USA
| | | | - Lyle W Ostrow
- Johns Hopkins University, Department of Neurology, Baltimore, 21205, USA
| | - Raymond P Roos
- University of Chicago, Department of Neurology, Chicago, 60637, USA
| | - William N Green
- University of Chicago, Department of Neurobiology, Chicago, 60637, USA
| |
Collapse
|
74
|
Tokuda E, Anzai I, Nomura T, Toichi K, Watanabe M, Ohara S, Watanabe S, Yamanaka K, Morisaki Y, Misawa H, Furukawa Y. Immunochemical characterization on pathological oligomers of mutant Cu/Zn-superoxide dismutase in amyotrophic lateral sclerosis. Mol Neurodegener 2017; 12:2. [PMID: 28057013 PMCID: PMC5216565 DOI: 10.1186/s13024-016-0145-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Background Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS) with accumulation of misfolded SOD1 proteins as intracellular inclusions in spinal motor neurons. Oligomerization of SOD1 via abnormal disulfide crosslinks has been proposed as one of the misfolding pathways occurring in mutant SOD1; however, the pathological relevance of such oligomerization in the SOD1-ALS cases still remains obscure. Methods We prepared antibodies exclusively recognizing the SOD1 oligomers cross-linked via disulfide bonds in vitro. By using those antibodies, immunohistochemical examination and ELISA were mainly performed on the tissue samples of transgenic mice expressing mutant SOD1 proteins and also of human SOD1-ALS cases. Results We showed the recognition specificity of our antibodies exclusively toward the disulfide-crosslinked SOD1 oligomers by ELISA using various forms of purified SOD1 proteins in conformationally distinct states in vitro. Furthermore, the epitope of those antibodies was buried and inaccessible in the natively folded structure of SOD1. The antibodies were then found to specifically detect the pathological SOD1 species in the spinal motor neurons of the SOD1-ALS patients as well as the transgenic model mice. Conclusions Our findings here suggest that the SOD1 oligomerization through the disulfide-crosslinking associates with exposure of the SOD1 structural interior and is a pathological process occurring in the SOD1-ALS cases. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0145-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Itsuki Anzai
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Takao Nomura
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Keisuke Toichi
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuta Morisaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
75
|
Eiamphungporn W, Yainoy S, Prachayasittikul V. Enhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:243-249. [PMID: 28959342 PMCID: PMC5434994 DOI: 10.15171/ijb.1465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity. OBJECTIVES The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic activity of hSOD1 in E. coli was investigated in the presence and absence of Cu2+. MATERIALS AND METHODS pETDuet-1-hSOD1 and pETDuet-1-hCCS-hSOD1 were constructed and individually transformed into E. coli strain BL21(DE3). The recombinant hSOD1 was expressed and purified using immobilized metal affinity chromatography. The yield and specific activity of hSOD1 in all conditions were studied. RESULTS Co-expression with hCCS increased hSOD1 solubility at 37°C, but this effect was not observed at 25°C. Notably, the specific activity of hSOD1 was enhanced by 1.5 fold and greater than 3 fold when co-expressed with hCCS at 25°C with and without Cu2+ supplement, respectively. However, the chaperone co-expression did not significantly increase the yield of hSOD1 comparable to the expression of hSOD1 alone. CONCLUSIONS This study is the first report demonstrating a potential use of hCCS for heterologous production of hSOD1 with high enzymatic activity.
Collapse
Affiliation(s)
- Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
76
|
McAlary L, Aquilina JA, Yerbury JJ. Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity. Front Neurosci 2016; 10:499. [PMID: 27867347 PMCID: PMC5095133 DOI: 10.3389/fnins.2016.00499] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the rapid and progressive degeneration of upper and lower motor neurons in the spinal cord, brain stem and motor cortex. The first gene linked to ALS was the gene encoding the free radical scavenging enzyme superoxide dismutase-1 (SOD1) that currently has over 180, mostly missense, ALS-associated mutations identified. SOD1-associated fALS patients show remarkably broad mean survival times (<1 year to ~17 years death post-diagnosis) that are mutation dependent. A hallmark of SOD1-associated ALS is the deposition of SOD1 into large insoluble aggregates in motor neurons. This is thought to be a consequence of mutation induced structural destabilization and/or oxidative damage leading to the misfolding and aggregation of SOD1 into a neurotoxic species. Here we aim to understand the relationship between SOD1 variant toxicity, structural stability, and aggregation propensity using a combination of cell culture and purified protein assays. Cell based assays indicated that aggregation of SOD1 variants correlate closely to cellular toxicity. However, the relationship between cellular toxicity and disease severity was less clear. We next utilized mass spectrometry to interrogate the structural consequences of metal loss and disulfide reduction on fALS-associated SOD1 variant structure. All variants showed evidence of unfolded, intermediate, and compact conformations, with SOD1G37R, SOD1G93A and SOD1V148G having the greatest abundance of intermediate and unfolded SOD1. SOD1G37R was an informative outlier as it had a high propensity to unfold and form oligomeric aggregates, but it did not aggregate to the same extent as SOD1G93A and SOD1V148G in in vitro aggregation assays. Furthermore, seeding the aggregation of DTT/EDTA-treated SOD1G37R with preformed SOD1G93A fibrils elicited minimal aggregation response, suggesting that the arginine substitution at position-37 blocks the templating of SOD1 onto preformed fibrils. We propose that this difference may be explained by multiple strains of SOD1 aggregate and this may also help explain the slow disease progression observed in patients with SOD1G37R.
Collapse
Affiliation(s)
- Luke McAlary
- Lab 210, Illawarra Health and Medical Research InstituteWollongong, NSW, Australia; Science Medicine and Health Faculty, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| | - J Andrew Aquilina
- Science Medicine and Health Faculty, School of Biological Sciences, University of Wollongong Wollongong, NSW, Australia
| | - Justin J Yerbury
- Lab 210, Illawarra Health and Medical Research InstituteWollongong, NSW, Australia; Science Medicine and Health Faculty, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| |
Collapse
|
77
|
Fay JM, Zhu C, Proctor EA, Tao Y, Cui W, Ke H, Dokholyan NV. A Phosphomimetic Mutation Stabilizes SOD1 and Rescues Cell Viability in the Context of an ALS-Associated Mutation. Structure 2016; 24:1898-1906. [PMID: 27667694 PMCID: PMC5093072 DOI: 10.1016/j.str.2016.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023]
Abstract
The majority of amyotrophic lateral sclerosis (ALS)-related mutations in the enzyme Cu,Zn superoxide dismutase (SOD1), as well as a post-translational modification, glutathionylation, destabilize the protein and lead to a misfolded oligomer that is toxic to motor neurons. The biophysical role of another physiological SOD1 modification, T2-phosphorylation, has remained a mystery. Here, we find that a phosphomimetic mutation, T2D, thermodynamically stabilizes SOD1 even in the context of a strongly SOD1-destabilizing mutation, A4V, one of the most prevalent and aggressive ALS-associated mutations in North America. This stabilization protects against formation of toxic SOD oligomers and positively impacts motor neuron survival in cellular assays. We solve the crystal structure of T2D-SOD1 and explain its stabilization effect using discrete molecular dynamics (DMD) simulations. These findings imply that T2-phosphorylation may be a plausible innate cellular protection response against SOD1-induced cytotoxicity, and stabilizing the SOD1 native conformation might offer us viable pharmaceutical strategies against currently incurable ALS.
Collapse
Affiliation(s)
- James M Fay
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cheng Zhu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth A Proctor
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yazhong Tao
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wenjun Cui
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
78
|
Sirangelo I, Vella FM, Irace G, Manco G, Iannuzzi C. Glycation in Demetalated Superoxide Dismutase 1 Prevents Amyloid Aggregation and Produces Cytotoxic Ages Adducts. Front Mol Biosci 2016; 3:55. [PMID: 27695694 PMCID: PMC5026054 DOI: 10.3389/fmolb.2016.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023] Open
Abstract
Superoxide dismutase 1 (SOD1) has been implicated with familial amyotrophic lateral sclerosis (fALS) through accumulation of protein amyloid aggregates in motor neurons of patients. Amyloid aggregates and protein inclusions are a common pathological feature of many neurological disorders in which protein aggregation seems to be directly related to neurotoxicity. Although, extensive studies performed on the aggregation process of several amyloidogenic proteins in vitro allowed the identification of many physiological factors involved, the molecular mechanisms underlying the formation of amyloid aggregates in vivo and in pathological conditions are still poorly understood. Post-translational modifications are known to affect protein structure and function and, recently, much attention has been devoted to the role played by non-enzymatic glycation in stimulating amyloid aggregation and cellular toxicity. In particular, glycation seems to have a determining role both in sporadic and familial forms of ALS and SOD1 has been shown to be glycated in vivo The aim of this study was to investigate the role of glycation on the amyloid aggregation process of both wild-type SOD1 and its ALS-related mutant G93A. To this aim, the glycation kinetics of both native and demetalated SOD have been followed using two different glycating agents, i.e., D-ribose and methylglyoxal. The effect of glycation on the structure and the amyloid aggregation propensity of native and ApoSOD has been also investigated using a combination of biophysical and biochemical techniques. In addition, the effect of SOD glycated species on cellular toxicity and reactive oxygen species (ROS) production has been evaluated in different cellular models. The results provided by this study contribute to clarify the role of glycation in amyloid aggregation and suggest a direct implication of glycation in the pathology of fALS.
Collapse
Affiliation(s)
- Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | - Filomena M Vella
- Institute of Agro-environmental and Forest Biology, Italian National Research Council Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, Italian National Research Council Naples, Italy
| | - Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Second University of NaplesNaples, Italy; Institute of Protein Biochemistry, Italian National Research CouncilNaples, Italy
| |
Collapse
|
79
|
Anzai I, Toichi K, Tokuda E, Mukaiyama A, Akiyama S, Furukawa Y. Screening of Drugs Inhibiting In vitro Oligomerization of Cu/Zn-Superoxide Dismutase with a Mutation Causing Amyotrophic Lateral Sclerosis. Front Mol Biosci 2016; 3:40. [PMID: 27556028 PMCID: PMC4977284 DOI: 10.3389/fmolb.2016.00040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene have been shown to cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS). A major pathological hallmark of this disease is abnormal accumulation of mutant SOD1 oligomers in the affected spinal motor neurons. While no effective therapeutics for SOD1-ALS is currently available, SOD1 oligomerization will be a good target for developing cures of this disease. Recently, we have reproduced the formation of SOD1 oligomers abnormally cross-linked via disulfide bonds in a test tube. Using our in vitro model of SOD1 oligomerization, therefore, we screened 640 FDA-approved drugs for inhibiting the oligomerization of SOD1 proteins, and three effective classes of chemical compounds were identified. Those hit compounds will provide valuable information on the chemical structures for developing a novel drug candidate suppressing the abnormal oligomerization of mutant SOD1 and possibly curing the disease.
Collapse
Affiliation(s)
- Itsuki Anzai
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| | - Keisuke Toichi
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| | - Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| | - Atsushi Mukaiyama
- Research Center of Integrative Molecular Systems, Institute for Molecular ScienceOkazaki, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies)Okazaki, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems, Institute for Molecular ScienceOkazaki, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies)Okazaki, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| |
Collapse
|
80
|
Müntener T, Häussinger D, Selenko P, Theillet FX. In-Cell Protein Structures from 2D NMR Experiments. J Phys Chem Lett 2016; 7:2821-5. [PMID: 27379949 DOI: 10.1021/acs.jpclett.6b01074] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures.
Collapse
Affiliation(s)
- Thomas Müntener
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Philipp Selenko
- Department of Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin) , Robert Roessle Straße 10, 13125 Berlin, Germany
| | - Francois-Xavier Theillet
- Department of Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin) , Robert Roessle Straße 10, 13125 Berlin, Germany
| |
Collapse
|
81
|
SALS-linked WT-SOD1 adopts a highly similar helical conformation as FALS-causing L126Z-SOD1 in a membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2223-2230. [PMID: 27378311 DOI: 10.1016/j.bbamem.2016.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/18/2016] [Accepted: 06/30/2016] [Indexed: 12/30/2022]
Abstract
So far >180 mutations have been identified within the 153-residue human SOD1 to cause familial amyotrophic lateral sclerosis (FALS), while wild-type (WT) SOD1 was intriguingly implicated in sporadic ALS (SALS). SOD1 mutations lead to ALS by a dominant gain of cytotoxicity but its mechanism still remains elusive. Previously functional studies have revealed that SOD1 mutants became unexpectedly associated with organelle membranes. Indeed we decoded that the ALS-causing truncation mutant L126Z-SOD1 with an elevated toxicity completely loses the ability to fold into the native β-barrel structure but acquire a novel capacity to interact with membranes by forming helices over hydrophobic/amphiphilic segments. Very recently, the abnormal insertion of SOD1 mutants into ER membrane has been functionally characterized to trigger ER stress, an initial event of a cascade of cell-specific damages in ALS pathogenesis. Here we attempted to understand the mechanism for gain of cytotoxicity of the WT SOD1. We obtained atomic-resolution evidence that the nascent WT SOD1 without metalation and disulfide bridge is also highly disordered as L126Z. Most importantly, it owns the same capacity in interacting with membranes by forming very similar helices over the first 125 residues identical to L126Z-SOD1, plus an additional hydrophobic helix over Leu144-Ala152. Our study thus implies that the WT and mutant SOD1 indeed converge on a common mechanism for gain of cytotoxicity by abnormally interacting with membranes. Moreover, any genetic/environmental factors which can delay or impair its maturation might act to transform SOD1 into cytotoxic forms with the acquired capacity to abnormally interact with membranes.
Collapse
|
82
|
Wright GSA, Antonyuk SV, Hasnain SS. A faulty interaction between SOD1 and hCCS in neurodegenerative disease. Sci Rep 2016; 6:27691. [PMID: 27282955 PMCID: PMC4901319 DOI: 10.1038/srep27691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
A proportion of Amyotrophic lateral sclerosis (ALS) cases result from impaired mutant superoxide dismutase-1 (SOD1) maturation. The copper chaperone for SOD1 (hCCS) forms a transient complex with SOD1 and catalyses the final stages of its maturation. We find that a neurodegenerative disease-associated hCCS mutation abrogates the interaction with SOD1 by inhibiting hCCS zinc binding. Analogously, SOD1 zinc loss has a detrimental effect on the formation, structure and disassociation of the hCCS-SOD1 heterodimer. This suggests that hCCS functionality is impaired by ALS mutations that reduce SOD1 zinc affinity. Furthermore, stabilization of wild-type SOD1 by chemical modification including cisplatination, inhibits complex formation. We hypothesize that drug molecules designed to stabilize ALS SOD1 mutants that also target the wild-type form will lead to characteristics common in SOD1 knock-outs. Our work demonstrates the applicability of chromatographic SAXS when studying biomolecules predisposed to aggregation or dissociation; attributes frequently reported for complexes involved in neurodegenerative disease.
Collapse
Affiliation(s)
- Gareth S. A. Wright
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| |
Collapse
|
83
|
Abstract
In-cell NMR spectroscopy is a unique tool for characterizing biological macromolecules in their physiological environment at atomic resolution. Recent progress in NMR instruments and sample preparation methods allows functional processes, such as metal uptake, disulfide-bond formation and protein folding, to be analyzed by NMR in living, cultured human cells. This protocol describes the necessary steps to overexpress one or more proteins of interest inside human embryonic kidney 293T (HEK293T) cells, and it explains how to set up in-cell NMR experiments. The cDNA is transiently transfected as a complex with a cationic polymer (DNA:PEI (polyethylenimine)), and protein expression is carried on for 2-3 d, after which the NMR sample is prepared. (1)H and (1)H-(15)N correlation NMR experiments (for example, using band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence (SOFAST-HMQC)) can be carried out in <2 h, ensuring cell viability. Uniform (15)N labeling and amino-acid-specific (e.g., cysteine, methionine) labeling schemes are possible. The entire procedure takes 4 d from cell culture seeding to NMR data collection.
Collapse
|
84
|
Shi Y, Acerson MJ, Abdolvahabi A, Mowery RA, Shaw BF. Gibbs Energy of Superoxide Dismutase Heterodimerization Accounts for Variable Survival in Amyotrophic Lateral Sclerosis. J Am Chem Soc 2016; 138:5351-62. [DOI: 10.1021/jacs.6b01742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunhua Shi
- Department of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| | - Mark J. Acerson
- Department of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| | - Alireza Abdolvahabi
- Department of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| | - Richard A. Mowery
- Department of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| | - Bryan F. Shaw
- Department of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76798-7348, United States
| |
Collapse
|
85
|
Fuccio C, Luchinat E, Barbieri L, Neri S, Fragai M. Algal autolysate medium to label proteins for NMR in mammalian cells. JOURNAL OF BIOMOLECULAR NMR 2016; 64:275-280. [PMID: 27106902 DOI: 10.1007/s10858-016-0026-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in (15)N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.
Collapse
Affiliation(s)
- Carmelo Fuccio
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Enrico Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
- Department of Biomedical, Clinical and Experimental Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Letizia Barbieri
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Sara Neri
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
86
|
Sequential protein expression and selective labeling for in-cell NMR in human cells. Biochim Biophys Acta Gen Subj 2016; 1860:527-33. [DOI: 10.1016/j.bbagen.2015.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/23/2022]
|
87
|
Fujimaki N, Miura T, Nakabayashi T. The structural analysis of the pro-oxidant copper-binding site of denatured apo-H43R SOD1 and the elucidation of the origin of the acquisition of the pro-oxidant activity. Phys Chem Chem Phys 2016; 18:4468-75. [DOI: 10.1039/c5cp07729j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the Cu2+-binding site of denatured apo-SOD1 mutant (H43R) was investigated to clarify the mechanism of the acquisition of the pro-oxidant activity.
Collapse
Affiliation(s)
- Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Takashi Miura
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | | |
Collapse
|
88
|
Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2015; 113:614-9. [PMID: 26719414 DOI: 10.1073/pnas.1516725113] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies.
Collapse
|
89
|
Abstract
Conventional structural and chemical biology approaches are applied to macromolecules extrapolated from their native context. When this is done, important structural and functional features of macromolecules, which depend on their native network of interactions within the cell, may be lost. In-cell nuclear magnetic resonance is a branch of biomolecular NMR spectroscopy that allows macromolecules to be analyzed in living cells, at the atomic level. In-cell NMR can be applied to several cellular systems to obtain biologically relevant structural and functional information. Here we summarize the existing approaches and focus on the applications to protein folding, interactions, and post-translational modifications.
Collapse
Affiliation(s)
- Enrico Luchinat
- From the Magnetic Resonance Center (CERM), the Department of Biomedical, Clinical and Experimental Sciences, and
| | - Lucia Banci
- From the Magnetic Resonance Center (CERM), the Department of Chemistry, University of Florence, Florence 50121, Italy
| |
Collapse
|
90
|
Direct structural evidence of protein redox regulation obtained by in-cell NMR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:198-204. [PMID: 26589182 DOI: 10.1016/j.bbamcr.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 12/30/2022]
Abstract
The redox properties of cellular environments are critical to many functional processes, and are strictly controlled in all living organisms. The glutathione-glutathione disulfide (GSH-GSSG) couple is the most abundant intracellular redox couple. A GSH redox potential can be calculated for each cellular compartment, which reflects the redox properties of that environment. This redox potential is often used to predict the redox state of a disulfide-containing protein, based on thermodynamic considerations. However, thiol-disulfide exchange reactions are often catalyzed by specific partners, and the distribution of the redox states of a protein may not correspond to the thermodynamic equilibrium with the GSH pool. Ideally, the protein redox state should be measured directly, bypassing the need to extrapolate from the GSH. Here, by in-cell NMR, we directly observe the redox state of three human proteins, Cox17, Mia40 and SOD1, in the cytoplasm of human and bacterial cells. We compare the observed distributions of redox states with those predicted by the GSH redox potential, and our results partially agree with the predictions. Discrepancies likely arise from the fact that the redox state of SOD1 is controlled by a specific partner, its copper chaperone (CCS), in a pathway which is not linked to the GSH redox potential. In principle, in-cell NMR allows determining whether redox proteins are at the equilibrium with GSH, or they are kinetically regulated. Such approach does not need assumptions on the redox potential of the environment, and provides a way to characterize each redox-regulating pathway separately.
Collapse
|
91
|
Chattopadhyay M, Nwadibia E, Strong CD, Gralla EB, Valentine JS, Whitelegge JP. The Disulfide Bond, but Not Zinc or Dimerization, Controls Initiation and Seeded Growth in Amyotrophic Lateral Sclerosis-linked Cu,Zn Superoxide Dismutase (SOD1) Fibrillation. J Biol Chem 2015; 290:30624-36. [PMID: 26511321 DOI: 10.1074/jbc.m115.666503] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
Aggregation of copper-zinc superoxide dismutase (SOD1) is a defining feature of familial ALS caused by inherited mutations in the sod1 gene, and misfolded and aggregated forms of wild-type SOD1 are found in both sporadic and familial ALS cases. Mature SOD1 owes its exceptional stability to a number of post-translational modifications as follows: formation of the intramolecular disulfide bond, binding of copper and zinc, and dimerization. Loss of stability due to the failure to acquire one or more of these modifications is proposed to lead to aggregation in vivo. Previously, we showed that the presence of apo-, disulfide-reduced SOD1, the most immature form of SOD1, results in initiation of fibrillation of more mature forms that have an intact Cys-57-Cys-146 disulfide bond and are partially metallated. In this study, we examine the ability of each of the above post-translational modifications to modulate fibril initiation and seeded growth. Cobalt or zinc binding, despite conferring great structural stability, neither inhibits the initiation propensity of disulfide-reduced SOD1 nor consistently protects disulfide-oxidized SOD1 from being recruited into growing fibrils across wild-type and a number of ALS mutants. In contrast, reduction of the disulfide bond, known to be necessary for fibril initiation, also allows for faster recruitment during seeded amyloid growth. These results identify separate factors that differently influence seeded growth and initiation and indicate a lack of correlation between the overall thermodynamic stability of partially mature SOD1 states and their ability to initiate fibrillation or be recruited by a growing fibril.
Collapse
Affiliation(s)
- Madhuri Chattopadhyay
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095,
| | - Ekeoma Nwadibia
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095
| | - Cynthia D Strong
- the Department of Chemistry, Cornell College, Mt. Vernon, Iowa 52314, and
| | - Edith Butler Gralla
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095
| | | | - Julian P Whitelegge
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095, the The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|
92
|
Leal SS, Cristóvão JS, Biesemeier A, Cardoso I, Gomes CM. Aberrant zinc binding to immature conformers of metal-free copper-zinc superoxide dismutase triggers amorphous aggregation. Metallomics 2015; 7:333-46. [PMID: 25554447 DOI: 10.1039/c4mt00278d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Superoxide dismutase 1 (SOD1) is a Cu/Zn metalloenzyme that aggregates in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Correct metal insertion during SOD1 biosynthesis is critical to prevent misfolding; however Zn(2+) can bind to the copper-site leading to an aberrantly metallated protein. These effects of Zn(2+) misligation on SOD1 aggregation remain to be explored, even though Zn(2+) levels are upregulated in ALS motor neurons. Here we use complementary biophysical methods to investigate Zn(2+) binding and its effects on the aggregation of three immature metal-free SOD1 conformers that represent biogenesis intermediates: dimeric, monomeric and reduced monomeric SOD1. Using isothermal titration calorimetry we determined that Zn(2+) binds to all conformers both at the zinc- as well as to the copper-site; however Zn(2+) binding mechanisms to the zinc-site have distinct characteristics across immature conformers. We show that this 'zinc overload' of immature SOD1 promotes intermolecular interactions, as evidenced by dynamic light scattering and ThT fluorescence kinetic studies. Analysis of aged zinc-induced aggregates by energy-dispersive X-ray and electron energy-loss spectroscopy shows that aggregates integrate some Zn(2+). In addition, electron diffraction analysis identifies nano-scaled crystalline materials and amyloid fibril-like reflections. Transmission electron microscopy reveals that Zn(2+) diverts the SOD1 aggregation pathway from fibrils to amorphous aggregate, and electrophoretic analysis evidences an increase in insoluble materials. Overall, we provide evidence that aberrant zinc coordination to immature conformers broadens the population of SOD1 misfolded species at early aggregation stages and provide evidence for a high structural polymorphism and heterogeneity of SOD1 aggregates.
Collapse
Affiliation(s)
- Sónia S Leal
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
93
|
Abstract
Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.
Collapse
|
94
|
Abstract
A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.
Collapse
|
95
|
Ye Y, Liu X, Chen Y, Xu G, Wu Q, Zhang Z, Yao C, Liu M, Li C. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes. Chemistry 2015; 21:8686-90. [PMID: 25965532 DOI: 10.1002/chem.201500279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 01/20/2023]
Abstract
We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in Xenopus oocytes, but there have been few reports since then of high-resolution spectra in oocytes. The scarcity of data is at least partly due to the lack of good labeling strategies and the paucity of information on resonance broadening mechanisms. Here, we systematically evaluate isotope enrichment and labeling methods in oocytes injected with five different proteins with molecular masses of 6 to 54 kDa. (19) F labeling is more promising than (15) N, (13) C, and (2) H enrichment. We also used (19) F NMR spectroscopy to quantify the contribution of viscosity, weak interactions, and sample inhomogeneity to resonance broadening in cells. We found that the viscosity in oocytes is only about 1.2 times that of water, and that inhomogeneous broadening is a major factor in determining line width in these cells.
Collapse
Affiliation(s)
- Yansheng Ye
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China).,Graduate University of Chinese Academy of Sciences, Beijing, 100049 (P.R. China)
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China)
| | - Yanhua Chen
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China).,Graduate University of Chinese Academy of Sciences, Beijing, 100049 (P.R. China)
| | - Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China)
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China)
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China)
| | - Chendie Yao
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China).,Graduate University of Chinese Academy of Sciences, Beijing, 100049 (P.R. China)
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China)
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems State, Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance Department, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (P.R. China).
| |
Collapse
|
96
|
Ye Y, Liu X, Xu G, Liu M, Li C. Direct Observation of Ca2+-Induced Calmodulin Conformational Transitions in IntactXenopus laevisOocytes by19F NMR Spectroscopy. Angew Chem Int Ed Engl 2015; 54:5328-30. [DOI: 10.1002/anie.201500261] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 01/04/2023]
|
97
|
Ye Y, Liu X, Xu G, Liu M, Li C. Direct Observation of Ca2+-Induced Calmodulin Conformational Transitions in IntactXenopus laevisOocytes by19F NMR Spectroscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
98
|
Cedeño C, Raveh-Hamit H, Dinnyés A, Tompa P. Towards Understanding Protein Disorder In-Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:319-34. [PMID: 26387107 DOI: 10.1007/978-3-319-20164-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Investigating the activity and structure of cellular biochemical machinery at atomic resolution has been a point of paramount significance for understanding health and disease over the decades. The underlying molecular mechanisms are primarily studied in vitro. Nuclear magnetic resonance (NMR) is a technique that allows to look into cells and study proteins and other constituents, thanks to careful experimental design and technological advances (spectrometer sensitivity and pulse sequence design). Here we outline current applications of the technique and propose a realistic future for the field.
Collapse
Affiliation(s)
- Cesyen Cedeño
- VIB Department of Structural Biology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | | | - András Dinnyés
- BioTalentum Ltd, Aulich L. str. 26, 2100, Godollo, Hungary.
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel, 1050, Brussels, Belgium.,Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, 1518, Budapest, Hungary
| |
Collapse
|