51
|
Brunner TB, Nestle U, Grosu AL, Partridge M. SBRT in pancreatic cancer: what is the therapeutic window? Radiother Oncol 2015; 114:109-16. [PMID: 25466369 DOI: 10.1016/j.radonc.2014.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/07/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE/OBJECTIVE To analyse outcome and toxicity of stereotactic body radiotherapy (SBRT) in pancreatic cancer (PDAC). MATERIAL/METHODS We systematically reviewed full reports on outcome and toxicity transforming prescription doses to equivalent doses of 2 Gy (EQD2) and biological equivalent doses (BED). Pearson product-moment correlation coefficient, regression analysis and Lyman-Kutcher-Burman modelling were used. RESULTS Sixteen trials (572 patients) were identified. Local control correlated with dose. Additionally 4 upper gastrointestinal-SBRT trials (149 patients) were included for toxicity analysis. Acute toxicity was mild but late toxicity ⩾G2 was substantial and predominantly gastrointestinal. Late toxicity ⩾G2 and ⩾G3 correlated highly with EQD2/BED after linear (R(2)=0.85 and 0.77, respectively) and Lyman-Kutcher-Burman modelling. Linear regression lines indicated ⩾G2 and ⩾G3 toxicity frequencies of 5% at 65 Gy and 80 Gy EQD2-α/β=3, respectively. A comparison of toxicity with dose constraints for duodenum revealed partly inadequate dose constraints. CONCLUSION RESULTS from multiple fraction regimens could be successfully interpreted to estimate toxicity according to EQD2/BED prescription doses, and dose constraints for the duodenum were derived, whereas local control appeared to be less dose-dependent. This analysis may be useful to plan clinical trials for SBRT and hypofractionated radiotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Thomas B Brunner
- Department of Radiation Oncology, University Hospitals Freiburg, Germany.
| | - Ursula Nestle
- Department of Radiation Oncology, University Hospitals Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Hospitals Freiburg, Germany
| | - Mike Partridge
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| |
Collapse
|
52
|
Ree AH, Meltzer S, Flatmark K, Dueland S, Kalanxhi E. Biomarkers of treatment toxicity in combined-modality cancer therapies with radiation and systemic drugs: study design, multiplex methods, molecular networks. Int J Mol Sci 2014; 15:22835-56. [PMID: 25501337 PMCID: PMC4284741 DOI: 10.3390/ijms151222835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 01/21/2023] Open
Abstract
Organ toxicity in cancer therapy is likely caused by an underlying disposition for given pathophysiological mechanisms in the individual patient. Mechanistic data on treatment toxicity at the patient level are scarce; hence, probabilistic and translational linkages among different layers of data information, all the way from cellular targets of the therapeutic exposure to tissues and ultimately the patient’s organ systems, are required. Throughout all of these layers, untoward treatment effects may be viewed as perturbations that propagate within a hierarchically structured network from one functional level to the next, at each level causing disturbances that reach a critical threshold, which ultimately are manifested as clinical adverse reactions. Advances in bioinformatics permit compilation of information across the various levels of data organization, presumably enabling integrated systems biology-based prediction of treatment safety. In view of the complexity of biological responses to cancer therapy, this communication reports on a “top-down” strategy, starting with the systematic assessment of adverse effects within a defined therapeutic context and proceeding to transcriptomic and proteomic analysis of relevant patient tissue samples and computational exploration of the resulting data, with the ultimate aim of utilizing information from functional connectivity networks in evaluation of patient safety in multimodal cancer therapy.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| | - Kjersti Flatmark
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| |
Collapse
|
53
|
Arcangeli G, Arcangeli S, Strigari L. A systematic review and meta-analysis of clinical trials of bladder-sparing trimodality treatment for muscle-invasive bladder cancer (MIBC). Crit Rev Oncol Hematol 2014; 94:105-15. [PMID: 25541350 DOI: 10.1016/j.critrevonc.2014.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/02/2014] [Accepted: 11/27/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Despite the numerous prospective and retrospective studies published during the last 2 decades aiming at testing the safety and the efficacy of trimodality therapy (TMT) as a conservative treatment, an optimal therapeutic strategy has not yet been identified. We made a systematic overview of the 5-year outcomes from 31 trials of combined chemotherapy and radiation (CRT) after transurethral resection of muscle-infiltrating bladder tumours (TURBT), the so-called trimodality therapy. We took into consideration the results of each trial i.e. the rate of complete response (CR), local muscle-invasive local failure (LF), salvage cystectomy (SC), 5-year overall survival (OS) and 5-year bladder intact survival (BIS) from 3315 patients. RESULTS About half of the patients were treated with a preliminary induction followed by a consolidation CRT course in CR, or SC in non-CR patients (split treatment). The remaining half of the patients underwent an upfront full-dose CRT course (continuous treatment) with SC reserved to non-CR patients. Excellent results were obtained by trimodality therapy (TMT), with 78% CR, 28% muscle infiltrating LF and 21% SC in patients with MIBC. The 5-year OS and BIS rates were 56% and 42%, respectively. At univariate analysis, CR, and SC rates appeared to be significantly better in the continuous than in the split treatment group. Multivariate analysis confirmed the former regimen as a significant prognostic variables only for CR, while CP-based regimen was a significant prognostic factor for SC. The subgroup analysis revealed a significant improvement in 5-year OS rate of continuous over split treatment in later stage tumours. No relevant benefit was observed with the addition of other drugs to cisplatin (CP) or neo-adjuvant chemotherapy (NATC) to CRT, although, in patients receiving NACT, significantly better CR and OS rates were seen in the continuous than split treatment. CONCLUSIONS The results of this overview seem to indicate that TMT is able to produce excellent 5-year OS rates, no matter how it is done (continuous or split). No significant difference in 5-year OS rates could be observed between the two treatment regimens, although the continuous may offer some advantage compared to split treatment in terms of higher CR and, likely lower SC rates. The highest benefit might be achieved in later stage tumours, using a total radiation equivalent dose when delivered in 2Gy/fraction (EQD2) of more than 60Gy in combination with CP based regimes and preceded by 2-3 NACT cycles. Appropriate randomized trials should be addressed to confirm the results of the present review.
Collapse
Affiliation(s)
- Giorgio Arcangeli
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Arcangeli
- Department of Radiotherapy, Azienda Ospedaliera S. Camillo-Forlanini, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
54
|
Focal or combined modality for the management of brain metastasis: did high tech radiotherapy superseded drug-radiotherapy combination? Ann Oncol 2014; 25:2293-2294. [DOI: 10.1093/annonc/mdu477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
55
|
Abstract
The development of molecular targeted therapeutics in oncology builds on many years of scientific investigation into the cellular mechanics of malignant transformation and progression. The past two decades have brought an accelerating pace to the clinical investigation of new molecular targeted agents, particularly in the setting of metastatic disease. The integration of molecular targeted agents into phase III clinical trial design has lagged in the curative treatment setting, particularly in combination with established therapeutic modalities such as radiation. In this review, we discuss the interaction of radiation and molecular targeted therapeutics. The dynamics of cellular and tumor response to radiation offer unique opportunities for beneficial interplay with molecular targeted agents that may go unrecognized with conventional screening and monotherapy clinical testing of novel agents. By using epidermal growth factor receptor (EGFR) as a primary example, we discuss recent clinical studies that illustrate the potential synergy of molecular targeted agents with radiation and highlight the clinical value of such interactions. For various molecular targeted agents, their greatest clinical impact may rest in combination with radiation, and efforts to facilitate systematic investigation of this approach appear highly warranted.
Collapse
Affiliation(s)
- Zachary S Morris
- All authors: University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Paul M Harari
- All authors: University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
56
|
McDonald F, Popat S. Combining targeted agents and hypo- and hyper-fractionated radiotherapy in NSCLC. J Thorac Dis 2014; 6:356-68. [PMID: 24688780 DOI: 10.3978/j.issn.2072-1439.2013.12.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Radical radiotherapy remains the cornerstone of treatment for patients with unresectable locally advanced non small cell lung cancer (NSCLC) either as single modality treatment for poor performance status patients or with sequential or concomitant chemotherapy for good performance status patients. Advances in understanding of tumour molecular biology, targeted drug development and experiences of novel agents in the advanced disease setting have brought targeted agents into the NSCLC clinic. In parallel experience using modified accelerated fractionation schedules in locally advanced disease have demonstrated improved outcomes compared to conventional fractionation in the single modality and sequential chemo-radiotherapy settings. Early studies of targeted agents combined with (chemo-) radiotherapy in locally advanced disease in different clinical settings are discussed below and important areas for future studies are high-lighted.
Collapse
|
57
|
Biagioli MC, Fernandez DC, Spiess PE, Wilder RB. Primary bladder preservation treatment for urothelial bladder cancer. Cancer Control 2014; 20:188-99. [PMID: 23811703 DOI: 10.1177/107327481302000307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Significant advancements have occurred in surgical procedures and chemoradiation therapy for bladder preservation. METHODS This review addresses primary treatment options for bladder cancer, including an overview of bladder-sparing strategies. RESULTS Surgical series demonstrate that highly selected patients with cT2N0M0 urothelial bladder cancers can be managed with partial cystectomy and bilateral pelvic lymphadenectomy. For patients with cT2N0M0 to cT4aN0M0 urothelial bladder cancers, neoadjuvant chemotherapy followed by radical cystectomy or maximal transurethral resection of the bladder tumor (TURBT) followed by chemoradiation therapy results in equivalent survival rates. However, each treatment option has a different impact on quality of life. Current chemoradiation therapy trials are evaluating novel approaches to improve outcomes. CONCLUSIONS Maximal TURBT followed by chemoradiation therapy demonstrated equivalent survival with radical cystectomy while preserving bladder function in the majority of patients. Future efforts will be directed toward improving survival and quality of life.
Collapse
Affiliation(s)
- Matthew C Biagioli
- Radiation Oncology Program, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
58
|
Walker AJ, Alcorn S, Narang A, Nugent K, Wild AT, Herman JM, Tran PT. Radiosensitizers in pancreatic cancer--preclinical and clinical exploits with molecularly targeted agents. Curr Probl Cancer 2013; 37:301-12. [PMID: 24331186 PMCID: PMC3868005 DOI: 10.1016/j.currproblcancer.2013.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There has been an explosion in the number of molecularly targeted agents engineered to inhibit specific molecular pathways driving the tumorigenic phenotype in cancer cells. Some of these molecularly targeted agents have demonstrated robust clinical effects, but few result in meaningful durable responses. Therapeutic radiation is used to treat a majority of cancer patients with recent technologic and pharmacologic enhancements, leading to improvements in the therapeutic ratio for cancer care. Radiotherapy has a very specific role in select cases of postoperative and locally advanced pancreatic cancer patients, but control of metastatic disease still appears to be the major limiting factor behind improvements in cure. Recent rapid autopsy pathologic findings suggest a sub-group of advanced pancreatic cancer patients where death is caused from local disease progression and who would thus benefit from improved local control. One promising approach is to combine molecularly targeted agents with radiotherapy to improve tumor response rates and likelihood of durable local control. We review suggested recommendations on the investigation of molecularly targeted agents as radiosensitizers from preclinical studies to implementation in phase I–II clinical trials. We then discuss a select set of molecularly targeted therapies that we believe show promise as radiosensitizers in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Amanda J. Walker
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Sara Alcorn
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Aaron T. Wild
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Joseph M. Herman
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology, and Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401 N Broadway Street Baltimore, MD 21231, , Phone (410) 502-3823, Fax (410) 502-1419
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology, and Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401 N Broadway Street Baltimore, MD 21231, , Phone (410) 614-3880, Fax (410) 502-1419
| |
Collapse
|
59
|
Song H, Zhou S, Wang R, Li S. Kinesin spindle protein (KSP) inhibitors in combination with chemotherapeutic agents for cancer therapy. ChemMedChem 2013; 8:1736-49. [PMID: 23964020 DOI: 10.1002/cmdc.201300228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/20/2013] [Indexed: 12/20/2022]
Abstract
A diverse group of proteins, the activities of which are precisely orchestrated during mitosis, have emerged as targets for cancer therapeutics; these include the Aurora kinases (AKs), Polo-like kinases (PLKs), and the kinesin spindle protein (KSP). KSP is essential for the proper separation of spindle poles during mitosis. Agents that target KSP selectively act on cells undergoing cell division, which means that KSP inhibitors are mitosis-specific drugs, and have demonstrated remarkable activities in vitro. However, a significant obstacle to the success of KSP inhibitors is that these compounds, with tremendous efficacy in vitro, have demonstrated little or even no antitumor activity in vivo. Accumulated data suggest that a combination of KSP inhibitors with various cytostatic drugs will result in a more powerful tumor-killing effect than monotherapy. Combination therapies might predominate and represent the next frontier in the discovery research of KSP inhibitors as potential anticancer drugs. Few published studies have reviewed combination therapy using KSP inhibitors. Herein we provide a comprehensive review of the literature on KSP inhibitor monotherapy and therapeutic combinations. The current state and problems are also discussed.
Collapse
Affiliation(s)
- Hualong Song
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai (PR China)
| | | | | | | |
Collapse
|
60
|
Stancevic B, Varda-Bloom N, Cheng J, Fuller JD, Rotolo JA, García-Barros M, Feldman R, Rao S, Weichselbaum RR, Harats D, Haimovitz-Friedman A, Fuks Z, Sadelain M, Kolesnick R. Adenoviral transduction of human acid sphingomyelinase into neo-angiogenic endothelium radiosensitizes tumor cure. PLoS One 2013; 8:e69025. [PMID: 23936314 PMCID: PMC3732255 DOI: 10.1371/journal.pone.0069025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
These studies define a new mechanism-based approach to radiosensitize tumor cure by single dose radiotherapy (SDRT). Published evidence indicates that SDRT induces acute microvascular endothelial apoptosis initiated via acid sphingomyelinase (ASMase) translocation to the external plasma membrane. Ensuing microvascular damage regulates radiation lethality of tumor stem cell clonogens to effect tumor cure. Based on this biology, we engineered an ASMase-producing vector consisting of a modified pre-proendothelin-1 promoter, PPE1(3x), and a hypoxia-inducible dual-binding HIF-2α-Ets-1 enhancer element upstream of the asmase gene, inserted into a replication-deficient adenovirus yielding the vector Ad5H2E-PPE1(3x)-ASMase. This vector confers ASMase over-expression in cycling angiogenic endothelium in vitro and within tumors in vivo, with no detectable enhancement in endothelium of normal tissues that exhibit a minute fraction of cycling cells or in non-endothelial tumor or normal tissue cells. Intravenous pretreatment with Ad5H2E-PPE1(3x)-ASMase markedly increases SDRT cure of inherently radiosensitive MCA/129 fibrosarcomas, and converts radiation-incurable B16 melanomas into biopsy-proven tumor cures. In contrast, Ad5H2E-PPE1(3x)-ASMase treatment did not impact radiation damage to small intestinal crypts as non-dividing small intestinal microvessels did not overexpress ASMase and were not radiosensitized. We posit that combination of genetic up-regulation of tumor microvascular ASMase and SDRT provides therapeutic options for currently radiation-incurable human tumors.
Collapse
Affiliation(s)
- Branka Stancevic
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nira Varda-Bloom
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jin Cheng
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - John D. Fuller
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jimmy A. Rotolo
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Mónica García-Barros
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Regina Feldman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Shyam Rao
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, and the Ludwig Center for Metastasis Research, Chicago, Illinois, United States of America
| | | | - Adriana Haimovitz-Friedman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
61
|
Shi HY, Zhu SC. Radiosensitization of esophageal cancer cells ECA109 by knockdown of H2AX. Thorac Cancer 2013; 4:254-263. [PMID: 28920248 DOI: 10.1111/1759-7714.12005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/14/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Genetic studies on mice have demonstrated that the key regulator of DNA damage in mammalian cells is the histone H2A variant, H2AX. We hypothesize that knockdown of H2AX will cause DNA damage pathway defects and may be able to increase the sensitivity to radiotherapy. METHODS The formation of foci and the interaction of several important proteins in esophageal cancer ECA109, triggered by irradiation, were detected by immunofluorescence staining and Co-immunoprecipitation (Co-IP) assay before and after H2AX silencing. Clone formation assay was employed to detect cell radiosensitivity and cloning formation ability also before and after H2AX silencing. Cell cycle distribution and apoptosis were detected by flow cytometry. We constructed a nude mice esophageal cancer model and detected the above contents in vivo. RESULTS H2AX and several proteins could form foci in nuclear triggered by irradiation and establish a relationship in vitro. The foci reduced after H2AX silencing. H2AX silencing could lead to radiosensitization via a colony-forming test. The apoptosis rate increased and the cell cycle was blocked in G2-M stage after H2AX silencing in vivo. The tumor volume was decreased in the H2AX silenced group after irradiation, while the tumor only slowed down the growth rate in the control groups. CONCLUSIONS Knockdown of H2AX induced radiosensitization of esophageal cancer ECA109 cells both in vitro and in vivo. The mechanisms include defective cell cycle checkpoints and abolishment of foci formation for several important mediator and effector proteins in the DNA damage response to irradiation (IR).
Collapse
Affiliation(s)
- Hong-Yun Shi
- Department of Radiation Oncology, Fouth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shu-Chai Zhu
- Department of Radiation Oncology, Fouth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
62
|
Molecularly targeted agents as radiosensitizers in cancer therapy--focus on prostate cancer. Int J Mol Sci 2013; 14:14800-32. [PMID: 23863691 PMCID: PMC3742274 DOI: 10.3390/ijms140714800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022] Open
Abstract
As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer.
Collapse
|
63
|
Laine A, Iyengar P, Pandita TK. The role of inflammatory pathways in cancer-associated cachexia and radiation resistance. Mol Cancer Res 2013; 11:967-72. [PMID: 23788634 DOI: 10.1158/1541-7786.mcr-13-0189] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dysregulated inflammatory responses are key contributors to a multitude of chronic ailments, including cancer. Evidence indicates that disease progression in cancer is dependent on the complex interaction between the tumor and the host microenvironment. Most recently, the inflammatory response has been suggested to be critical, as both the tumor and microenvironment compartments produce cytokines that act on numerous target sites, where they foster a complex cascade of biologic outcomes. Patients with cancer-associated cachexia (CAC) suffer from a dramatic loss of skeletal muscle and adipose tissue, ultimately precluding them from many forms of therapeutic intervention, including radiotherapy. The cytokines that have been linked to the promotion of the cachectic response may also participate in radiation resistance. The major changes at the cytokine level are, in part, due to transcriptional regulatory alterations possibly due to epigenetic modifications. Herein we discuss the role of inflammatory pathways in CAC and examine the potential link between cachexia induction and radiation resistance.
Collapse
Affiliation(s)
- Aaron Laine
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, 5801 Forest Park Road, Dallas, TX 75235.
| | | | | |
Collapse
|
64
|
Lin SH, George TJ, Ben-Josef E, Bradley J, Choe KS, Edelman MJ, Guha C, Krishnan S, Lawrence TS, Le QT, Lu B, Mehta M, Peereboom D, Sarkaria J, Seong J, Wang D, Welliver MX, Coleman CN, Vikram B, Yoo S, Chung CH. Opportunities and challenges in the era of molecularly targeted agents and radiation therapy. J Natl Cancer Inst 2013; 105:686-93. [PMID: 23503600 PMCID: PMC3733308 DOI: 10.1093/jnci/djt055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/10/2012] [Accepted: 02/20/2013] [Indexed: 01/12/2023] Open
Abstract
The first annual workshop for preclinical and clinical development of radiosensitizers took place at the National Cancer Institute on August 8-9, 2012. Radiotherapy is one of the most commonly applied and effective oncologic treatments for solid tumors. It is well recognized that improved clinical efficacy of radiotherapy would make a substantive impact in clinical practice and patient outcomes. Advances in genomic technologies and high-throughput drug discovery platforms have brought a revolution in cancer treatment by providing molecularly targeted agents for various cancers. Development of predictive biomarkers directed toward specific subsets of cancers has ushered in a new era of personalized therapeutics. The field of radiation oncology stands to gain substantial benefit from these advances given the concerted effort to integrate this progress into radiation therapy. This workshop brought together expert clinicians and scientists working in various disease sites to identify the exciting opportunities and expected challenges in the development of molecularly targeted agents in combination with radiation therapy.
Collapse
Affiliation(s)
- Steven H Lin
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 097, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Molecularly targeted therapies in locally advanced non-small-cell lung cancer. Clin Lung Cancer 2013; 14:467-72. [PMID: 23684057 DOI: 10.1016/j.cllc.2013.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/19/2013] [Indexed: 11/22/2022]
Abstract
Approximately a third of the patients with non-small cell lung cancer (NSCLC) present with locally advanced disease not amenable to curative resection. Concurrent chemoradiation is currently the treatment of choice for these patients. Outcomes in patients with locally advanced NSCLC treated with concurrent chemoradiation are modest at best. No significant progress has been made over the past decade in this subset of patients with NSCLC. Several trials have examined the role of molecular targeted therapies in this setting. We review the results of these trials and present the outline of a proposed prospective clinical trial to evaluate targeted drugs in molecularly selected group of patients with locally advanced NSCLC.
Collapse
|
66
|
Lawrence YR, Vikram B, Dignam JJ, Chakravarti A, Machtay M, Freidlin B, Takebe N, Curran WJ, Bentzen SM, Okunieff P, Coleman CN, Dicker AP. NCI-RTOG translational program strategic guidelines for the early-stage development of radiosensitizers. J Natl Cancer Inst 2013; 105:11-24. [PMID: 23231975 PMCID: PMC3536642 DOI: 10.1093/jnci/djs472] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/15/2012] [Accepted: 10/02/2012] [Indexed: 12/21/2022] Open
Abstract
The addition of chemotherapeutic agents to ionizing radiation has improved survival in many malignancies. Cure rates may be further improved by adding novel targeted agents to current radiotherapy or radiochemotherapy regimens. Despite promising laboratory data, progress in the clinical development of new drugs with radiation has been limited. To define and address the problems involved, a collaborative effort between individuals within the translational research program of the Radiation Oncology Therapy Group and the National Cancer Institute was established. We discerned challenges to drug development with radiation including: 1) the limited relevance of preclinical work, 2) the pharmaceutical industry's diminished interest, and 3) the important individual skills and institutional commitments required to ensure a successful program. The differences between early-phase trial designs with and without radiation are noted as substantial. The traditional endpoints for early-phase clinical trials-acute toxicity and maximum-tolerated dose-are of limited value when combining targeted agents with radiation. Furthermore, response rate is not a useful surrogate marker of activity in radiation combination trials.Consequently, a risk-stratified model for drug-dose escalation with radiation is proposed, based upon the known and estimated adverse effects. The guidelines discuss new clinical trial designs, such as the time-to-event continual reassessment method design for phase I trials, randomized phase II "screening" trials, and the use of surrogate endpoints, such as pathological response. It is hoped that by providing a clear pathway, this article will accelerate the rate of drug development with radiation.
Collapse
|
67
|
Koh PK, Faivre-Finn C, Blackhall FH, De Ruysscher D. Targeted agents in non-small cell lung cancer (NSCLC): Clinical developments and rationale for the combination with thoracic radiotherapy. Cancer Treat Rev 2012; 38:626-40. [DOI: 10.1016/j.ctrv.2011.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023]
|
68
|
|
69
|
|
70
|
Rohrer Bley C, Furmanova P, Orlowski K, Grosse N, Broggini-Tenzer A, McSheehy PMJ, Pruschy M. Microtubule stabilising agents and ionising radiation: multiple exploitable mechanisms for combined treatment. Eur J Cancer 2012; 49:245-53. [PMID: 22683167 DOI: 10.1016/j.ejca.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/18/2022]
Abstract
Combined radiochemotherapy treatment modalities are in use for many indications and therefore of high interest. Even though a combined modality in clinical use is often driven by pragmatic aspects, mechanistic preclinical-based concepts of interaction are of importance in order to translate and implement an optimal combination and scheduling of two modalities into the clinics. The use of microtubule stabilising agents is a promising strategy for anti-cancer therapy as a part of combined treatment modality with ionising radiation. Traditionally, microtubule targeting agents are classified as cytotoxic chemotherapeutics and are mostly used in a maximally tolerated dose regimen. Apart from direct cytotoxicity and similar to mechanisms of molecular targeting agents, microtubule stabilising agents interfere with multiple cellular processes, which can be exploited as part of combined treatment modalities. Recent preclinical investigations on the combination of ionising radiation and microtubule stabilising agents reveal new mechanistic interactions on the cellular and tumour level and elucidate the supra-additive tumour response observed particularly in vivo. The major focus on the mechanism of interaction was primarily based on radiosensitisation due to cell cycle arrest in the most radiosensitive G2/M-phase of the cell cycle. However, other mechanisms of interaction such as reoxygenation and direct as well as indirect endothelial damage have also been identified. In this review we summarise and allocate additive and synergistic effects induced by the combined treatment of clinically relevant microtubule stabilising agents and ionising radiation along a described radiobiological framework encompassing distinct mechanisms relevant for exploiting the combination of drugs and ionising radiation.
Collapse
Affiliation(s)
- Carla Rohrer Bley
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
71
|
Dziadziuszko R. Radiotherapy and targeted drugs. Lung Cancer 2012. [DOI: 10.1016/j.lungcan.2012.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
72
|
Hagtvet E, Røe K, Olsen DR. Liposomal doxorubicin improves radiotherapy response in hypoxic prostate cancer xenografts. Radiat Oncol 2011; 6:135. [PMID: 21981945 PMCID: PMC3193805 DOI: 10.1186/1748-717x-6-135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/07/2011] [Indexed: 02/07/2023] Open
Abstract
Background Tumor vasculature frequently fails to supply sufficient levels of oxygen to tumor tissue resulting in radioresistant hypoxic tumors. To improve therapeutic outcome radiotherapy (RT) may be combined with cytotoxic agents. Methods In this study we have investigated the combination of RT with the cytotoxic agent doxorubicin (DXR) encapsulated in pegylated liposomes (PL-DXR). The PL-DXR formulation Caelyx® was administered to male mice bearing human, androgen-sensitive CWR22 prostate carcinoma xenografts in a dose of 3.5 mg DXR/kg, in combination with RT (2 Gy/day × 5 days) performed under normoxic and hypoxic conditions. Hypoxic RT was achieved by experimentally inducing tumor hypoxia by clamping the tumor-bearing leg five minutes prior to and during RT. Treatment response evaluation consisted of tumor volume measurements and dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) with subsequent pharmacokinetic analysis using the Brix model. Imaging was performed pre-treatment (baseline) and 8 days later. Further, hypoxic fractions were determined by pimonidazole immunohistochemistry of excised tumor tissue. Results As expected, the therapeutic effect of RT was significantly less effective under hypoxic than normoxic conditions. However, concomitant administration of PL-DXR significantly improved the therapeutic outcome following RT in hypoxic tumors. Further, the pharmacokinetic DCE MRI parameters and hypoxic fractions suggest PL-DXR to induce growth-inhibitory effects without interfering with tumor vascular functions. Conclusions We found that DXR encapsulated in liposomes improved the therapeutic effect of RT under hypoxic conditions without affecting vascular functions. Thus, we propose that for cytotoxic agents affecting tumor vascular functions liposomes may be a promising drug delivery technology for use in chemoradiotherapy.
Collapse
Affiliation(s)
- Eirik Hagtvet
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P, O, Box 4953 Nydalen, 0424 Oslo, Norway
| | | | | |
Collapse
|
73
|
Ikeda M, Matsumoto K, Niibe Y, Satoh T, Fujita T, Iwamura M, Ishiyama H, Kotani S, Hayakawa K, Baba S. The radiotherapy with methotrexate, vinblastine, doxorubicin, and cisplatin treatment is an effective therapeutic option in patients with advanced or metastatic bladder cancer. JOURNAL OF RADIATION RESEARCH 2011; 52:674-679. [PMID: 21881297 DOI: 10.1269/jrr.11036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The objectives of this study were to determine the tolerability of combined use of methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) with external beam radiation therapy (EBRT) and to access the efficacy in patients with locally advanced or metastatic bladder cancer. From December 2000 to November 2010, 30 eligible patients were enrolled in this study. After receiving one cycle of MVAC treatment, all patients received EBRT with a half dose of MVAC treatment followed by two more cycles of chemotherapy. A standard fractionation with daily dose of 1.8-2.0 Gy was used, with the total dose up to 60 Gy over 5-6 weeks. The four-field box technique was utilized for radiation fields. Thirteen patients (43%) had complete response and 11 (37%) had partial response, with an overall response rate of 80%. The median overall survival and progression-free survival was 25.5 months and 12.8 months, respectively. In the complete-response patients, median overall survival was 37.1 months. Grade 3 or 4 neutropenia occurred in 25 patients (83%), but there were no severe infections. One patient (3%) had hemorrhagic radiation cystitis. There were no treatment-related deaths. Combined use of MVAC treatment with EBRT is a favorable therapeutic option for patients with advanced or metastatic bladder carcinoma. Given the safety and benefit profile found in this study, appropriate case selection is warranted in the future.
Collapse
Affiliation(s)
- Masaomi Ikeda
- Department of Urology, Kitasato University School of Medicine, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer 2011; 105:628-39. [PMID: 21772330 PMCID: PMC3188925 DOI: 10.1038/bjc.2011.240] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
75
|
Vogelius IS, Westerly DC, Cannon GM, Mackie TR, Mehta MP, Sugie C, Bentzen SM. Intensity-modulated radiotherapy might increase pneumonitis risk relative to three-dimensional conformal radiotherapy in patients receiving combined chemotherapy and radiotherapy: a modeling study of dose dumping. Int J Radiat Oncol Biol Phys 2011; 80:893-9. [PMID: 21477946 DOI: 10.1016/j.ijrobp.2010.12.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/29/2010] [Accepted: 11/26/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. METHODS AND MATERIALS A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. RESULTS For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. CONCLUSIONS Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.
Collapse
|
76
|
Deorukhkar A, Krishnan S. Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol 2010; 80:1904-14. [PMID: 20599771 PMCID: PMC3090731 DOI: 10.1016/j.bcp.2010.06.039] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 12/16/2022]
Abstract
Although radiation therapy (RT) is an integral component of treatment of patients with many types of cancer, inherent and/or acquired resistance to the cytotoxic effects of RT is increasingly recognized as a significant impediment to effective cancer treatment. Inherent resistance is mediated by constitutively activated oncogenic, proliferative and anti-apoptotic proteins/pathways whereas acquired resistance refers to transient induction of proteins/pathways following radiation exposure. To realize the full potential of RT, it is essential to understand the signaling pathways that mediate inducible radiation resistance, a poorly characterized phenomenon, and identify druggable targets for radiosensitization. Ionizing radiation induces a multilayered signaling response in mammalian cells by activating many pro-survival pathways that converge to transiently activate a few important transcription factors (TFs), including nuclear factor kappa B (NF-κB) and signal transducers and activators of transcription (STATs), the central mediators of inflammatory and carcinogenic signaling. Together, these TFs activate a wide spectrum of pro-survival genes regulating inflammation, anti-apoptosis, invasion and angiogenesis pathways, which confer tumor cell radioresistance. Equally, radiation-induced activation of pro-inflammatory cytokine network (including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α) has been shown to mediate symptom burden (pain, fatigue, local inflammation) in cancer patients. Thus, targeting radiation-induced inflammatory pathways may exert a dual effect of accentuating the tumor radioresponse and reducing normal tissue side-effects, thereby increasing the therapeutic window of cancer treatment. We review recent data demonstrating the pivotal role played by inflammatory pathways in cancer progression and modulation of radiation response.
Collapse
Affiliation(s)
- Amit Deorukhkar
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
77
|
Kuroda S, Fujiwara T, Shirakawa Y, Yamasaki Y, Yano S, Uno F, Tazawa H, Hashimoto Y, Watanabe Y, Noma K, Urata Y, Kagawa S, Fujiwara T. Telomerase-dependent oncolytic adenovirus sensitizes human cancer cells to ionizing radiation via inhibition of DNA repair machinery. Cancer Res 2010; 70:9339-48. [PMID: 21045143 DOI: 10.1158/0008-5472.can-10-2333] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inability to repair DNA double-strand breaks (DSB) leads to radiosensitization, such that ionizing radiation combined with molecular inhibition of cellular DSB processing may greatly affect treatment of human cancer. As a variety of viral products interact with the DNA repair machinery, oncolytic virotherapy may improve the therapeutic window of conventional radiotherapy. Here, we describe the mechanistic basis for synergy of irradiation and OBP-301 (Telomelysin), an attenuated type-5 adenovirus with oncolytic potency that contains the human telomerase reverse transcriptase promoter to regulate viral replication. OBP-301 infection led to E1B55kDa viral protein expression that degraded the complex formed by Mre11, Rad50, and NBS1, which senses DSBs. Subsequently, the phosphorylation of cellular ataxia-telangiectasia mutated protein was inhibited, disrupting the signaling pathway controlling DNA repair. Thus, tumor cells infected with OBP-301 could be rendered sensitive to ionizing radiation. Moreover, by using noninvasive whole-body imaging, we showed that intratumoral injection of OBP-301 followed by regional irradiation induces a substantial antitumor effect, resulting from tumor cell-specific radiosensitization, in an orthotopic human esophageal cancer xenograft model. These results illustrate the potential of combining oncolytic virotherapy and ionizing radiation as a promising strategy in the management of human cancer.
Collapse
Affiliation(s)
- Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Center for Gene and Cell Therapy, Okayama University Hospital, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
|
79
|
Dose de tolérance à l’irradiation des tissus sains : la moelle osseuse. Cancer Radiother 2010; 14:392-404. [DOI: 10.1016/j.canrad.2010.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/20/2023]
|
80
|
Rodon J, Perez J, Kurzrock R. Combining targeted therapies: practical issues to consider at the bench and bedside. Oncologist 2010; 15:37-50. [PMID: 20080862 DOI: 10.1634/theoncologist.2009-0117] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Numerous practical issues must be considered when combining targeted therapies in early clinical drug development. These include tumor resistance mechanisms, the existence of multiple, redundant signaling pathways, and the failure of single-agent therapies to achieve cures. The strategies adopted to examine combinatorial therapy include the goal of hitting more than one target by specifically inhibiting signal transduction cascades and suppressing specific mechanisms of action with the use of multitargeted kinase inhibitors made possible by high-throughput screening techniques, combinatorial chemistry, and chemoinformatics. Two complex considerations are: which agents to combine given the heterogeneity of tumors and their various underlying perturbations, including secondary mutations and feedback loops, and how to translate findings from the bench to the bedside or directly from the bedside. Another consideration is: When is there enough information to provide a rationale for instituting a phase I trial? Various strategies have been used in combining molecules, including targeting diverse pathways, inhibiting upstream and downstream signals, and adopting a synthetic lethality paradigm. Other issues are: determining appropriate target populations for treatment, how to combine therapeutics with diagnostics, and the frequency of targets in patients referred to clinical trials. Here, we review these issues and we propose various novel trial designs that are logical for determining the efficacy of a drug or drug combination for personalized treatment. A difficult issue that must be answered is how many and which drugs to combine. Recent technologies, such as multiplexed assay platforms and bioinformatics, will shape the future of clinical trials and help answer these questions surrounding combinatorial treatment.
Collapse
Affiliation(s)
- Jordi Rodon
- Servei d'Oncologia Medica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Oncology (V.H.I.O), Passatge Vall d'Hebron 119, 08035 Barcelona, Spain.
| | | | | |
Collapse
|
81
|
Shannon AM, Telfer BA, Smith PD, Babur M, Logie A, Wilkinson RW, Debray C, Stratford IJ, Williams KJ, Wedge SR. The mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) enhances the radiation responsiveness of lung and colorectal tumor xenografts. Clin Cancer Res 2009; 15:6619-29. [PMID: 19843666 DOI: 10.1158/1078-0432.ccr-08-2958] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Novel molecularly targeted agents, given in combination with radiotherapy, have the potential to increase tumor response rates and the survival of patients with lung cancer. AZD6244 is a potent and selective inhibitor of mitogen-activated protein kinase (MAPK) kinase 1/2 (MEK1/2), a critical enzyme within the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway that regulates the proliferation and survival of tumor cells. EXPERIMENTAL DESIGN This study examined the potential benefit of combining AZD6244 with fractionated radiotherapy using human lung and colon carcinoma xenograft models. RESULTS AZD6244 reduced ERK phosphorylation in Calu-6 lung cancer cells in vitro. Administration of AZD6244 for 10 days (25 mg/kg twice daily p.o.) inhibited the tumor growth of Calu-6 xenografts, with regrowth occurring on cessation of drug treatment. When fractionated tumor-localized radiotherapy (5 x 2 Gy) was combined with AZD6244 treatment, the tumor growth delay was enhanced significantly when compared with either modality alone, and this effect was also seen in a colon tumor model. We examined the effect of inhibiting MEK1/2 on the molecular responses to hypoxia, a potential interaction that could contribute to radioresponsiveness. AZD6244 reduced hypoxia-inducible factor-specific transactivation in vivo, shown using Calu-6 dual clone cells that stably express a Firefly luciferase gene under the control of a hypoxia-driven promoter. Furthermore, hypoxia-inducible factor-1 alpha, GLUT-1, and vascular endothelial growth factor levels were reduced by AZD6244, and there was a significant decrease in vascular perfusion in the tumors given combination treatment when compared with the other treatment groups. CONCLUSIONS These data provide support for the clinical development of AZD6244 in combination with radiotherapy and indicate a potential role for AZD6244 in inhibiting the tumor hypoxia response.
Collapse
Affiliation(s)
- Aoife M Shannon
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Bischoff P, Altmeyer A, Dumont F. Radiosensitising agents for the radiotherapy of cancer: advances in traditional and hypoxia targeted radiosensitisers. Expert Opin Ther Pat 2009; 19:643-62. [DOI: 10.1517/13543770902824172] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
83
|
|
84
|
Katz D, Ito E, Liu FF. On the path to seeking novel radiosensitizers. Int J Radiat Oncol Biol Phys 2009; 73:988-96. [PMID: 19251086 DOI: 10.1016/j.ijrobp.2008.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/29/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Radiation therapy is a highly effective cancer treatment modality, and extensive investigations have been undertaken over the years to augment its efficacy in the clinic. This review summarizes the current understanding of the biologic bases underpinning many of the clinically used radiosensitizers. In addition, this review illustrates how the advent of innovative, high-throughput technologies with integration of different disciplines could be harnessed for an expeditious discovery process for novel radiosensitizers, providing an exciting future for such pursuits in radiation biology and oncology.
Collapse
Affiliation(s)
- David Katz
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
85
|
Abstract
Throughout the last 2 decades, great strides have been made in managing patients with locally advanced head and neck squamous cell carcinoma. In many clinical settings, they translated to significant advances in treatment efficacy and improvements in disease prognosis. To achieve this, most strategies, ranging from induction to postoperative treatments, are essentially based on multidisciplinary approaches. Nowadays, the indication and sequencing of surgery, radiotherapy, and systemic treatments are carefully weighted in the function of risk levels, efficacy results, and quality of life. Along this track, the coadministration of chemotherapy and radiotherapy was shown, as definitive or adjuvant treatment, to improve the results of conventional radiotherapy alone. However, recent prospective trials showed that the compliance of patients to aggressive approaches is more of a concern for poor tolerability and reduced compliance inevitably impact on treatment dose intensity, leading to the delivery of suboptimal regimens. Therefore, further efforts to tailor novel, multidisciplinary approaches based on drug-radiation interactions have been put forth to optimize treatment outcomes in terms of both disease control and quality of life. Because therapy is becoming more intense, a careful recording and reporting of treatment-related morbidity is also a crucial element in estimating the therapeutic gain from competing strategies.
Collapse
|
86
|
Chemotherapy for muscle-invasive bladder cancer treated with definitive radiotherapy: persisting uncertainties. ACTA ACUST UNITED AC 2008; 5:444-54. [DOI: 10.1038/ncponc1159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 12/11/2007] [Indexed: 11/09/2022]
|
87
|
Clinical trials and biomarker development with molecularly targeted agents and radiotherapy. Cancer Metastasis Rev 2008; 27:339-49. [DOI: 10.1007/s10555-008-9140-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
88
|
Bentzen SM. Randomized controlled trials in health technology assessment: overkill or overdue? Radiother Oncol 2008; 86:142-7. [PMID: 18237799 PMCID: PMC3539737 DOI: 10.1016/j.radonc.2008.01.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 11/23/2022]
Abstract
Evidence-based medicine has become a cornerstone in the development of radiation oncology and the randomized controlled phase III trial remains the gold standard for assessing differential benefits in clinical outcome between therapies. Health technologies aimed at improving treatment quality should primarily be tested using process measures or operational characteristics, the reason being that the sensitivity and specificity of clinical outcome is low for detecting quality improvements. The ongoing discussion of the relative merits of intensity modulated photon versus proton radiotherapy is used to illustrate these concepts. Concerns over clinical and individual equipoise as well as the potential limitations of health economics considerations in this setting are also discussed. Working in a technology and science based medical discipline, radiation oncology researchers need to further develop methodology for critical assessment of health technologies as a complement to randomized controlled trials.
Collapse
Affiliation(s)
- Søren M Bentzen
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
89
|
Affiliation(s)
- Søren M Bentzen
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | | | | | | |
Collapse
|
90
|
Bentzen SM, Rosenthal DI, Weymuller EA, Trotti A. Increasing toxicity in nonoperative head and neck cancer treatment: investigations and interventions. Int J Radiat Oncol Biol Phys 2007; 69:S79-82. [PMID: 17848301 DOI: 10.1016/j.ijrobp.2007.04.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/22/2007] [Indexed: 11/15/2022]
Affiliation(s)
- Søren M Bentzen
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | | | |
Collapse
|
91
|
Abstract
Combined chemoradiotherapy is increasingly becoming a standard of care for the nonoperative management of a variety of solid malignancies. A string of randomized controlled phase III trials have shown statistically significant and clinically relevant improvements in outcome, ostensibly without any apparent increase in late toxicity. However, the reliability and the sensitivity of toxicity reporting in most trials are questionable. Audits and phase IV studies suggest that the chemoradiotherapy success comes at a price in terms of late toxicity. This review presents some of the challenges in recording, analyzing, and reporting toxicity data. Methods for summarizing toxicity are reviewed, and a new investigational metric, the TAME reporting system, is discussed. The need for special vigilance in the era of molecular-targeted agents is emphasized because of the possibility that unexpected serious adverse events with a low incidence may occur. Finally, we discuss how progress in molecular pathology and radiation biology may provide novel opportunities for stratifying patients according to risk of adverse effects, interventional targets for reducing or treating adverse effects, and surrogate markers of normal-tissue injury.
Collapse
Affiliation(s)
- Søren M Bentzen
- University of Wisconsin School of Medicine and Public Health, Department of Human Oncology, Madison, WI, USA
| | | |
Collapse
|