51
|
Fernandes VC, Golubeva VA, Di Pietro G, Shields C, Amankwah K, Nepomuceno TC, de Gregoriis G, Abreu RBV, Harro C, Gomes TT, Silva RF, Suarez-Kurtz G, Couch FJ, Iversen ES, Monteiro ANA, Carvalho MA. Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation. J Biol Chem 2019; 294:5980-5992. [PMID: 30765603 DOI: 10.1074/jbc.ra118.005274] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/06/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic testing for BRCA1, a DNA repair protein, can identify carriers of pathogenic variants associated with a substantially increased risk for breast and ovarian cancers. However, an association with increased risk is unclear for a large fraction of BRCA1 variants present in the human population. Most of these variants of uncertain clinical significance lead to amino acid changes in the BRCA1 protein. Functional assays are valuable tools to assess the potential pathogenicity of these variants. Here, we systematically probed the effects of substitutions in the C terminus of BRCA1: the N- and C-terminal borders of its tandem BRCT domain, the BRCT-[N-C] linker region, and the α1 and α'1 helices in BRCT-[N] and -[C]. Using a validated transcriptional assay based on a fusion of the GAL4 DNA-binding domain to the BRCA1 C terminus (amino acids 1396-1863), we assessed the functional impact of 99 missense variants of BRCA1. We include the data obtained for these 99 missense variants in a joint analysis to generate the likelihood of pathogenicity for 347 missense variants in BRCA1 using VarCall, a Bayesian integrative statistical model. The results from this analysis increase our understanding of BRCA1 regions less tolerant to changes, identify functional borders of structural domains, and predict the likelihood of pathogenicity for 98% of all BRCA1 missense variants in this region recorded in the population. This knowledge will be critical for improving risk assessment and clinical treatment of carriers of BRCA1 variants.
Collapse
Affiliation(s)
- Vanessa C Fernandes
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050
| | - Volha A Golubeva
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Giuliano Di Pietro
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612; the Universidade Federal de Sergipe, Campus São Cristóvão, Brazil 49100-000
| | - Cara Shields
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Kwabena Amankwah
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Thales C Nepomuceno
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050; the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Giuliana de Gregoriis
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050
| | - Renata B V Abreu
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050
| | - Carly Harro
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612; the Department of Cell Biology, Microbiology, College of Arts and Sciences, University of South Florida Cancer Biology Ph.D. Program, Tampa, Florida 33612
| | - Thiago T Gomes
- the Instituto Federal do Rio de Janeiro, Rio de Janeiro 20270-021, Brazil
| | - Ricceli F Silva
- the Instituto Federal do Rio de Janeiro, Rio de Janeiro 20270-021, Brazil
| | - Guilherme Suarez-Kurtz
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050
| | - Fergus J Couch
- the Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Edwin S Iversen
- the Department of Statistics, Duke University, Durham, North Carolina 27710
| | - Alvaro N A Monteiro
- the Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612.
| | - Marcelo A Carvalho
- From the Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil 20231-050.
| |
Collapse
|
52
|
Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté J, Simard J, Masson JY. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci 2019; 44:226-240. [PMID: 30638972 DOI: 10.1016/j.tibs.2018.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains. Regulation of PALB2 functions in DNA damage response and repair occurs on multiple levels, including homodimerization, phosphorylation, and ubiquitylation. With a molecular emphasis, we present PALB2-associated cancer mutations and their detailed analysis by functional assays.
Collapse
Affiliation(s)
- Mandy Ducy
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laura Sesma-Sanz
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laure Guitton-Sert
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Anahita Lashgari
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Yuandi Gao
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Nadine Brahiti
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Côté
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Simard
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
53
|
Cline MS, Liao RG, Parsons MT, Paten B, Alquaddoomi F, Antoniou A, Baxter S, Brody L, Cook-Deegan R, Coffin A, Couch FJ, Craft B, Currie R, Dlott CC, Dolman L, den Dunnen JT, Dyke SOM, Domchek SM, Easton D, Fischmann Z, Foulkes WD, Garber J, Goldgar D, Goldman MJ, Goodhand P, Harrison S, Haussler D, Kato K, Knoppers B, Markello C, Nussbaum R, Offit K, Plon SE, Rashbass J, Rehm HL, Robson M, Rubinstein WS, Stoppa-Lyonnet D, Tavtigian S, Thorogood A, Zhang C, Zimmermann M, BRCA Challenge Authors, Burn J, Chanock S, Rätsch G, Spurdle AB. BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genet 2018; 14:e1007752. [PMID: 30586411 PMCID: PMC6324924 DOI: 10.1371/journal.pgen.1007752] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
The BRCA Challenge is a long-term data-sharing project initiated within the Global Alliance for Genomics and Health (GA4GH) to aggregate BRCA1 and BRCA2 data to support highly collaborative research activities. Its goal is to generate an informed and current understanding of the impact of genetic variation on cancer risk across the iconic cancer predisposition genes, BRCA1 and BRCA2. Initially, reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org. The purpose of the BRCA Exchange is to provide the community with a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype. More than 20,000 variants have been aggregated, three times the number found in the next-largest public database at the project’s outset, of which approximately 7,250 have expert classifications. The data set is based on shared information from existing clinical databases—Breast Cancer Information Core (BIC), ClinVar, and the Leiden Open Variation Database (LOVD)—as well as population databases, all linked to a single point of access. The BRCA Challenge has brought together the existing international Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium expert panel, along with expert clinicians, diagnosticians, researchers, and database providers, all with a common goal of advancing our understanding of BRCA1 and BRCA2 variation. Ongoing work includes direct contact with national centers with access to BRCA1 and BRCA2 diagnostic data to encourage data sharing, development of methods suitable for extraction of genetic variation at the level of individual laboratory reports, and engagement with participant communities to enable a more comprehensive understanding of the clinical significance of genetic variation in BRCA1 and BRCA2. The goal of this study and paper has been to develop an international resource to generate an informed and current understanding of the impact of genetic variation on cancer risk across the cancer predisposition genes, BRCA1 and BRCA2. Reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org, to provide a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype.
Collapse
Affiliation(s)
- Melissa S. Cline
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Rachel G. Liao
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Michael T. Parsons
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Faisal Alquaddoomi
- Department of Computer Science, Biomedical Informatics Group Universitätsstrasse, Zürich, Switzerland
- Biomedical Informatics, University Hospital Zurich, Zurich, Switzerland
- Biocybernetics Laboratory, Computer Science Department, University of California, Los Angeles, California, United States of America
| | - Antonis Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Samantha Baxter
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Larry Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Robert Cook-Deegan
- School for the Future of Innovation in Society, and Consortium for Science, Policy & Outcomes, Arizona State University, Tempe, Arizona, United States of America
| | - Amy Coffin
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Fergus J. Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Brian Craft
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Robert Currie
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Chloe C. Dlott
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Lena Dolman
- The Global Alliance for Genomics and Health, Toronto, Ontario, Canada
| | - Johan T. den Dunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie O. M. Dyke
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Susan M. Domchek
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Zachary Fischmann
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - William D. Foulkes
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Judy Garber
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary J. Goldman
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Peter Goodhand
- The Global Alliance for Genomics and Health, Toronto, Ontario, Canada
| | - Steven Harrison
- Partners HealthCare Laboratory for Molecular Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Haussler
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kazuto Kato
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Bartha Knoppers
- Centre of Genomics and Policy, Faculty of Medicine, Human Genetics, McGill University, Montreal, Québec, Canada
| | - Charles Markello
- University of California Santa Cruz Genomics Institute, University of California, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Biomolecular Science & Engineering, University of California, Santa Cruz, California, United States of America
| | - Robert Nussbaum
- Invitae, San Francisco, California, United States of America
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Sharon E. Plon
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jem Rashbass
- National Disease Registration, National Cancer Registration and Analysis Service, Public Health England, London, United Kingdom
| | - Heidi L. Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts, United States of America
- Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Wendy S. Rubinstein
- CancerLinQ at American Society of Clinical Oncology (ASCO), Alexandria, Virginia, United States of America
| | | | - Sean Tavtigian
- Partners HealthCare Laboratory for Molecular Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Oncological Sciences, The University of Utah, Salt Lake City, Utah, United States of America
| | - Adrian Thorogood
- The Global Alliance for Genomics and Health, Toronto, Ontario, Canada
- Centre of Genomics and Policy, McGill University, Montreal, Canada
| | - Can Zhang
- Department of Computer Science, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Marc Zimmermann
- Department of Computer Science, Biomedical Informatics Group Universitätsstrasse, Zürich, Switzerland
- Biomedical Informatics, University Hospital Zurich, Zurich, Switzerland
| | | | - John Burn
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Gunnar Rätsch
- Department of Computer Science, Biomedical Informatics Group Universitätsstrasse, Zürich, Switzerland
- Biomedical Informatics, University Hospital Zurich, Zurich, Switzerland
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
- * E-mail: (GR); (ABS)
| | - Amanda B. Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
- * E-mail: (GR); (ABS)
| |
Collapse
|
54
|
Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, Janizek JD, Huang X, Starita LM, Shendure J. Accurate classification of BRCA1 variants with saturation genome editing. Nature 2018; 562:217-222. [PMID: 30209399 PMCID: PMC6181777 DOI: 10.1038/s41586-018-0461-z] [Citation(s) in RCA: 545] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Variants of uncertain significance fundamentally limit the clinical utility of genetic information. The challenge they pose is epitomized by BRCA1, a tumour suppressor gene in which germline loss-of-function variants predispose women to breast and ovarian cancer. Although BRCA1 has been sequenced in millions of women, the risk associated with most newly observed variants cannot be definitively assigned. Here we use saturation genome editing to assay 96.5% of all possible single-nucleotide variants (SNVs) in 13 exons that encode functionally critical domains of BRCA1. Functional effects for nearly 4,000 SNVs are bimodally distributed and almost perfectly concordant with established assessments of pathogenicity. Over 400 non-functional missense SNVs are identified, as well as around 300 SNVs that disrupt expression. We predict that these results will be immediately useful for the clinical interpretation of BRCA1 variants, and that this approach can be extended to overcome the challenge of variants of uncertain significance in additional clinically actionable genes.
Collapse
Affiliation(s)
- Gregory M Findlay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Melissa D Zhang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anh P Leith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Joseph D Janizek
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
55
|
Petitalot A, Dardillac E, Jacquet E, Nhiri N, Guirouilh-Barbat J, Julien P, Bouazzaoui I, Bonte D, Feunteun J, Schnell JA, Lafitte P, Aude JC, Noguès C, Rouleau E, Lidereau R, Lopez BS, Zinn-Justin S, Caputo SM. Combining Homologous Recombination and Phosphopeptide-binding Data to Predict the Impact of BRCA1 BRCT Variants on Cancer Risk. Mol Cancer Res 2018; 17:54-69. [PMID: 30257991 DOI: 10.1158/1541-7786.mcr-17-0357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/07/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022]
Abstract
BRCA1 mutations have been identified that increase the risk of developing hereditary breast and ovarian cancers. Genetic screening is now offered to patients with a family history of cancer, to adapt their treatment and the management of their relatives. However, a large number of BRCA1 variants of uncertain significance (VUS) are detected. To better understand the significance of these variants, a high-throughput structural and functional analysis was performed on a large set of BRCA1 VUS. Information on both cellular localization and homology-directed DNA repair (HR) capacity was obtained for 78 BRCT missense variants in the UMD-BRCA1 database and measurement of the structural stability and phosphopeptide-binding capacities was performed for 42 mutated BRCT domains. This extensive and systematic analysis revealed that most characterized causal variants affect BRCT-domain solubility in bacteria and all impair BRCA1 HR activity in cells. Furthermore, binding to a set of 5 different phosphopeptides was tested: all causal variants showed phosphopeptide-binding defects and no neutral variant showed such defects. A classification is presented on the basis of mutated BRCT domain solubility, phosphopeptide-binding properties, and VUS HR capacity. These data suggest that HR-defective variants, which present, in addition, BRCT domains either insoluble in bacteria or defective for phosphopeptide binding, lead to an increased cancer risk. Furthermore, the data suggest that variants with a WT HR activity and whose BRCT domains bind with a WT affinity to the 5 phosphopeptides are neutral. The case of variants with WT HR activity and defective phosphopeptide binding should be further characterized, as this last functional defect might be sufficient per se to lead to tumorigenesis. IMPLICATIONS: The analysis of the current study on BRCA1 structural and functional defects on cancer risk and classification presented may improve clinical interpretation and therapeutic selection.
Collapse
Affiliation(s)
- Ambre Petitalot
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France.,Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elodie Dardillac
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France.,Team labeled "Ligue 2014," Villejuif, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Josée Guirouilh-Barbat
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France.,Team labeled "Ligue 2014," Villejuif, France
| | - Patrick Julien
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Isslam Bouazzaoui
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dorine Bonte
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France
| | - Jean Feunteun
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France
| | - Jeff A Schnell
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Lafitte
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Jean-Christophe Aude
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Catherine Noguès
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Etienne Rouleau
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Rosette Lidereau
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Bernard S Lopez
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France.,Team labeled "Ligue 2014," Villejuif, France
| | - Sophie Zinn-Justin
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
56
|
Substantial evidence for the clinical significance of missense variant BRCA1 c.5309G>T p.(Gly1770Val). Breast Cancer Res Treat 2018; 172:497-503. [PMID: 30105462 DOI: 10.1007/s10549-018-4903-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Classification of rare BRCA1 missense variants presents a major challenge for the counseling and treatment of patients. Variant classification can be complicated by conflicting lines of evidence. BRCA1 c.5309G>T p.(Gly1770Val) has been shown to abrogate BRCA1 protein homologous DNA repair; however, multiple sequence alignment demonstrates a lack of sequence conservation at this position, suggesting that glycine at position 1770 may not be essential for cellular maintenance in humans. We analyzed clinical information to resolve the classification of BRCA1 c.5309G>T p.(Gly1770Val). METHODS We performed multifactorial likelihood analysis combining segregation data for 14 informative families, and breast tumor histopathological data for 17 variant carriers, ascertained through the ENIGMA consortium. RESULTS Bayes segregation analysis gave a likelihood ratio of 101:1 in favor of pathogenicity. The vast majority of breast tumors showed features indicative of pathogenic variant carrier status, resulting in a likelihood ratio of 15800794:1 towards pathogenicity. Despite a low prior probability of pathogenicity (0.03) based on bioinformatic prediction, multifactorial likelihood analysis including segregation and histopathology analysis gave a posterior probability of > 0.99 and final classification of Pathogenic. CONCLUSIONS We provide evidence that BRCA1 c.5309G>T p.(Gly1770Val), previously described as a Moroccan founder variant, should be treated as a disease-causing variant despite a lack of evolutionary conservation at this amino acid position. Additionally, we stress that bioinformatic information should be used in combination with other data, either direct clinical evidence or some form of clinical calibration, to arrive at a final clinical classification.
Collapse
|
57
|
Cusin I, Teixeira D, Zahn-Zabal M, Rech de Laval V, Gleizes A, Viassolo V, Chappuis PO, Hutter P, Bairoch A, Gaudet P. A new bioinformatics tool to help assess the significance of BRCA1 variants. Hum Genomics 2018; 12:36. [PMID: 29996917 PMCID: PMC6042458 DOI: 10.1186/s40246-018-0168-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
Abstract
Background Germline pathogenic variants in the breast cancer type 1 susceptibility gene BRCA1 are associated with a 60% lifetime risk for breast and ovarian cancer. This overall risk estimate is for all BRCA1 variants; obviously, not all variants confer the same risk of developing a disease. In cancer patients, loss of BRCA1 function in tumor tissue has been associated with an increased sensitivity to platinum agents and to poly-(ADP-ribose) polymerase (PARP) inhibitors. For clinical management of both at-risk individuals and cancer patients, it would be important that each identified genetic variant be associated with clinical significance. Unfortunately for the vast majority of variants, the clinical impact is unknown. The availability of results from studies assessing the impact of variants on protein function may provide insight of crucial importance. Results and conclusion We have collected, curated, and structured the molecular and cellular phenotypic impact of 3654 distinct BRCA1 variants. The data was modeled in triple format, using the variant as a subject, the studied function as the object, and a predicate describing the relation between the two. Each annotation is supported by a fully traceable evidence. The data was captured using standard ontologies to ensure consistency, and enhance searchability and interoperability. We have assessed the extent to which functional defects at the molecular and cellular levels correlate with the clinical interpretation of variants by ClinVar submitters. Approximately 30% of the ClinVar BRCA1 missense variants have some molecular or cellular assay available in the literature. Pathogenic variants (as assigned by ClinVar) have at least some significant functional defect in 94% of testable cases. For benign variants, 77% of ClinVar benign variants, for which neXtProt Cancer variant portal has data, shows either no or mild experimental functional defects. While this does not provide evidence for clinical interpretation of variants, it may provide some guidance for variants of unknown significance, in the absence of more reliable data. The neXtProt Cancer variant portal (https://www.nextprot.org/portals/breast-cancer) contains over 6300 observations at the molecular and/or cellular level for BRCA1 variants.
Collapse
Affiliation(s)
- Isabelle Cusin
- CALIPHO group, SIB Swiss Institute of Bioinformatics, 1211, Geneva 4, Switzerland
| | - Daniel Teixeira
- CALIPHO group, SIB Swiss Institute of Bioinformatics, 1211, Geneva 4, Switzerland
| | - Monique Zahn-Zabal
- CALIPHO group, SIB Swiss Institute of Bioinformatics, 1211, Geneva 4, Switzerland
| | - Valentine Rech de Laval
- CALIPHO group, SIB Swiss Institute of Bioinformatics, 1211, Geneva 4, Switzerland.,Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne Gleizes
- CALIPHO group, SIB Swiss Institute of Bioinformatics, 1211, Geneva 4, Switzerland
| | - Valeria Viassolo
- Oncogenetics and Cancer Prevention Unit, Division of Oncology, University Hospitals of Geneva, 1205, Geneva, Switzerland
| | - Pierre O Chappuis
- Oncogenetics and Cancer Prevention Unit, Division of Oncology, University Hospitals of Geneva, 1205, Geneva, Switzerland.,Division of Genetic Medicine, University Hospitals of Geneva, 1205, Geneva, Switzerland
| | - Pierre Hutter
- Sophia Genetics, Rue du Centre 172, 1025, Saint Sulpice, Switzerland
| | - Amos Bairoch
- CALIPHO group, SIB Swiss Institute of Bioinformatics, 1211, Geneva 4, Switzerland.,Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pascale Gaudet
- CALIPHO group, SIB Swiss Institute of Bioinformatics, 1211, Geneva 4, Switzerland. .,Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
58
|
Mesman RLS, Calléja FMGR, Hendriks G, Morolli B, Misovic B, Devilee P, van Asperen CJ, Vrieling H, Vreeswijk MPG. The functional impact of variants of uncertain significance in BRCA2. Genet Med 2018; 21:293-302. [PMID: 29988080 PMCID: PMC6752316 DOI: 10.1038/s41436-018-0052-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/20/2018] [Indexed: 11/30/2022] Open
Abstract
Purpose Genetic testing has uncovered large numbers of variants in the BRCA2 gene for which the clinical significance is unclear. Cancer risk prediction of these variants of uncertain significance (VUS) can be improved by reliable assessment of the extent of impairment of the tumor suppressor function(s) of BRCA2. Methods Here, we evaluated the performance of the mouse embryonic stem cell (mESC)-based functional assay on an extensive set of BRCA2 missense variants. Results Whereas all 20 nonpathogenic (class 1/2) variants were able to complement the cell lethal phenotype induced by loss of endogenous mouse Brca2, only 1 out of 15 pathogenic (class 4/5) variants (p.Gly2609Asp) was able to do so. However, in this variant the major tumor suppressive activity of BRCA2, i.e., homology directed repair (HDR), was severely abrogated. Among 43 evaluated VUS (class 3), 7 were unable to complement the lethal phenotype of mouse Brca2 loss while 7 other variants displayed a more severe reduction of HDR activity than observed for class 1/ 2 variants. Conclusion The mESC-based BRCA2 functional assay can reliably determine the functional impact of VUS, distinguish between pathogenic and nonpathogenic variants, and may contribute to improved cancer risk estimation for BRCA2 VUS carriers.
Collapse
Affiliation(s)
- Romy L S Mesman
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Fabienne M G R Calléja
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Giel Hendriks
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Bruno Morolli
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Branislav Misovic
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands.,Department of Pathology, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands.
| |
Collapse
|
59
|
Comprehensive annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-based computational prediction models. Genet Med 2018; 21:71-80. [PMID: 29884841 PMCID: PMC6287763 DOI: 10.1038/s41436-018-0018-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose: To improve methods for predicting the impact of missense variants of
uncertain significance (VUS) in BRCA1 and
BRCA2 on protein function. Methods: Functional data for 248 BRCA1 and 207
BRCA2 variants from assays with established high
sensitivity and specificity for damaging variants were used to recalibrate
40 in silico algorithms predicting the impact of variants
on protein activity. Additional RandomForest (RF) and Naïve Voting
Method (NVM) meta-predictors for both BRCA1 and
BRCA2 were developed to increase predictive
accuracy. Results: Optimized thresholds for in silico prediction models
significantly improved the accuracy of predicted functional effects for
BRCA1 and BRCA2 variants. In addition,
new BRCA1-RF and BRCA2-RF meta-predictors showed AUC values of 0.92
(95%CI:0.88–0.96) and 0.90 (95%CI:0.84–0.95), respectively.
Similarly, the BRCA1-NVM and BRCA2-NVM models had AUCs of 0.93 and 0.90. The
RF and NVM models were used to predict the pathogenicity of all possible
missense variants in BRCA1 and BRCA2. Conclusion: The recalibrated algorithms and new meta-predictors significantly
improved upon current models for predicting the impact of variants in cancer
risk-associated domains of BRCA1 and
BRCA2. Prediction of the functional impact of all possible
variants in BRCA1 and BRCA2 provides
important information about the clinical relevance of variants in these
genes.
Collapse
|
60
|
Raraigh KS, Han ST, Davis E, Evans TA, Pellicore MJ, McCague AF, Joynt AT, Lu Z, Atalar M, Sharma N, Sheridan MB, Sosnay PR, Cutting GR. Functional Assays Are Essential for Interpretation of Missense Variants Associated with Variable Expressivity. Am J Hum Genet 2018; 102:1062-1077. [PMID: 29805046 DOI: 10.1016/j.ajhg.2018.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/30/2018] [Indexed: 12/22/2022] Open
Abstract
Missense DNA variants have variable effects upon protein function. Consequently, interpreting their pathogenicity is challenging, especially when they are associated with disease variability. To determine the degree to which functional assays inform interpretation, we analyzed 48 CFTR missense variants associated with variable expressivity of cystic fibrosis (CF). We assessed function in a native isogenic context by evaluating CFTR mutants that were stably expressed in the genome of a human airway cell line devoid of endogenous CFTR expression. 21 of 29 variants associated with full expressivity of the CF phenotype generated <10% wild-type CFTR (WT-CFTR) function, a conservative threshold for the development of life-limiting CF lung disease, and five variants had moderately decreased function (10% to ∼25% WT-CFTR). The remaining three variants in this group unexpectedly had >25% WT-CFTR function; two were higher than 75% WT-CFTR. As expected, 14 of 19 variants associated with partial expressivity of CF had >25% WT-CFTR function; however, four had minimal to no effect on CFTR function (>75% WT-CFTR). Thus, 6 of 48 (13%) missense variants believed to be disease causing did not alter CFTR function. Functional studies substantially refined pathogenicity assignment with expert annotation and criteria from the American College of Medical Genetics and Genomics and Association for Molecular Pathology. However, four algorithms (CADD, REVEL, SIFT, and PolyPhen-2) could not differentiate between variants that caused severe, moderate, or minimal reduction in function. In the setting of variable expressivity, these results indicate that functional assays are essential for accurate interpretation of missense variants and that current prediction tools should be used with caution.
Collapse
|
61
|
Toland AE, Andreassen PR. DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment. J Med Genet 2017; 54:721-731. [PMID: 28866612 DOI: 10.1136/jmedgenet-2017-104707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/04/2017] [Accepted: 06/27/2017] [Indexed: 01/02/2023]
Abstract
Mutation of BRCA1 and BRCA2 is the most common cause of inherited breast and ovarian cancer. Genetic screens to detect carriers of variants can aid in cancer prevention by identifying individuals with a greater cancer risk and can potentially be used to predict the responsiveness of tumours to therapy. Frequently, classification cannot be performed based on traditional approaches such as segregation analyses, including for many missense variants, which are therefore referred to as variants of uncertain significance (VUS). Functional assays provide an important alternative for classification of BRCA1 and BRCA2 VUS. As reviewed here, both of these tumour suppressors promote the maintenance of genome stability via homologous recombination. Thus, related assays may be particularly relevant to cancer risk. Progress in implementing functional assays to assess missense variants of BRCA1 and BRCA2 is considered here, along with current limitations and the path to more impactful assay systems. While functional assays have been developed to independently evaluate BRCA1 and BRCA2 VUS, high-throughput assays with sufficient sensitivity to characterise the large number of identified variants are lacking. Additionally, because of relatively low conservation of certain domains of BRCA1, and of BRCA2, between humans and rodents, heterologous expression in rodent cells may have limited reliability or capacity to assess variants present throughout either protein. Moving forward, it will be important to perform assays in human cell lines with relevance to particular tumour types, and to strengthen risk predictions based on multifactorial statistical analyses that also include available data on cosegregation and tumour pathology.
Collapse
Affiliation(s)
- Amanda Ewart Toland
- Department of Cancer Biology & Genetics and Division of Human Genetics, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
62
|
|
63
|
Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing. PLoS One 2017; 12:e0170822. [PMID: 28182693 PMCID: PMC5300139 DOI: 10.1371/journal.pone.0170822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
Variants in the TGFBR2 kinase domain cause several human diseases and can increase propensity for cancer. The widespread application of next generation sequencing within the setting of Individualized Medicine (IM) is increasing the rate at which TGFBR2 kinase domain variants are being identified. However, their clinical relevance is often uncertain. Consequently, we sought to evaluate the use of molecular modeling and molecular dynamics (MD) simulations for assessing the potential impact of variants within this domain. We documented the structural differences revealed by these models across 57 variants using independent MD simulations for each. Our simulations revealed various mechanisms by which variants may lead to functional alteration; some are revealed energetically, while others structurally or dynamically. We found that the ATP binding site and activation loop dynamics may be affected by variants at positions throughout the structure. This prediction cannot be made from the linear sequence alone. We present our structure-based analyses alongside those obtained using several commonly used genomics-based predictive algorithms. We believe the further mechanistic information revealed by molecular modeling will be useful in guiding the examination of clinically observed variants throughout the exome, as well as those likely to be discovered in the near future by clinical tests leveraging next-generation sequencing through IM efforts.
Collapse
|
64
|
Vaclová T, Woods NT, Megías D, Gomez-Lopez S, Setién F, García Bueno JM, Macías JA, Barroso A, Urioste M, Esteller M, Monteiro ANA, Benítez J, Osorio A. Germline missense pathogenic variants in the BRCA1 BRCT domain, p.Gly1706Glu and p.Ala1708Glu, increase cellular sensitivity to PARP inhibitor olaparib by a dominant negative effect. Hum Mol Genet 2016; 25:5287-5299. [PMID: 27742776 DOI: 10.1093/hmg/ddw343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
BRCA1-deficient cells show defects in DNA repair and rely on other members of the DNA repair machinery, which makes them sensitive to PARP inhibitors (PARPi). Although carrying a germline pathogenic variant in BRCA1/2 is the best determinant of response to PARPi, a significant percentage of the patients do not show sensitivity and/or display increased toxicity to the agent. Considering previously suggested mutation-specific BRCA1 haploinsufficiency, we aimed to investigate whether there are any differences in cellular response to PARPi olaparib depending on the BRCA1 mutation type. Lymphoblastoid cell lines derived from carriers of missense pathogenic variants in the BRCA1 BRCT domain (c.5117G > A, p.Gly1706Glu and c.5123C > A, p.Ala1708Glu) showed higher sensitivity to olaparib than cells with truncating variants or wild types (WT). Response to olaparib depended on a basal PARP enzymatic activity, but did not correlate with PARP1 expression. Interestingly, cellular sensitivity to the agent was associated with the level of BRCA1 recruitment into γH2AX foci, being the lowest in cells with missense variants. Since these variants lead to partially stable protein mutants, we propose a model in which the mutant protein acts in a dominant negative manner on the WT BRCA1, impairing the recruitment of BRCA1 into DNA damage sites and, consequently, increasing cellular sensitivity to PARPi. Taken together, our results indicate that carriers of different BRCA1 mutations could benefit from olaparib in a distinct way and show different toxicities to the agent, which could be especially relevant for a potential future use of PARPi as prophylactic agents in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Tereza Vaclová
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Molecular and Biochemical Etiology Program, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Diego Megías
- Confocal Microscopy Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Gomez-Lopez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fernando Setién
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | | | - José Antonio Macías
- Hereditary Cancer Unit, Medical Oncology Service, Hospital Morales Meseguer, Murcia, Spain
| | - Alicia Barroso
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Urioste
- Familial Cancer Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, FL, USA
| | - Javier Benítez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Spanish Network on Rare Diseases (CIBERER), Madrid, Spain.,Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
65
|
Nielsen FC, van Overeem Hansen T, Sørensen CS. Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 2016; 16:599-612. [PMID: 27515922 DOI: 10.1038/nrc.2016.72] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic abnormalities in the DNA repair genes BRCA1 and BRCA2 predispose to hereditary breast and ovarian cancer (HBOC). However, only approximately 25% of cases of HBOC can be ascribed to BRCA1 and BRCA2 mutations. Recently, exome sequencing has uncovered substantial locus heterogeneity among affected families without BRCA1 or BRCA2 mutations. The new pathogenic variants are rare, posing challenges to estimation of risk attribution through patient cohorts. In this Review article, we examine HBOC genes, focusing on their role in genome maintenance, the possibilities for functional testing of putative causal variants and the clinical application of new HBOC genes in cancer risk management and treatment decision-making.
Collapse
Affiliation(s)
- Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
66
|
Lodovichi S, Vitello M, Cervelli T, Galli A. Expression of cancer related BRCA1 missense variants decreases MMS-induced recombination in Saccharomyces cerevisiae without altering its nuclear localization. Cell Cycle 2016; 15:2723-31. [PMID: 27484786 DOI: 10.1080/15384101.2016.1215389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BRCA1 tumor suppressor gene is found mutated in familial breast and ovarian cancer. Most cancer related mutations were found located at the RING (Really Interesting New Gene) and at the BRCT (BRca1 C-Terminal) domain. However, 20 y after its identification, the biological role of BRCA1 and which domains are more relevant for tumor suppression are still being elucidated. We previously reported that expression of BRCA1 cancer related variants in the RING and BRCT domain increases spontaneous homologous recombination in yeast indicating that BRCA1 may interact with yeast DNA repair/recombination. To finally demonstrate whether BRCA1 interacts with yeast DNA repair, we exposed yeast cells expressing BRCA1wt, the cancer-related variants C-61G and M1775R to different doses of the alkylating agent methyl methane-sulfonate (MMS) and then evaluated the effect on survival and homologous recombination. Cells expressing BRCA1 cancer variants were more sensitive to MMS and less inducible to recombination as compared to cell expressing BRCA1wt. Moreover, BRCA1-C61G and -M1775R did not change their nuclear localization form as compared to the BRCA1wt or the neutral variant R1751Q indicating a difference in the DNA damage processing. We propose a model where BRCA1 cancer variants interact with the DNA double strand break repair pathways producing DNA recombination intermediates, that maybe less repairable and decrease MMS-induced recombination and survival. Again, this study strengthens the use of yeast as model system to characterize the mechanisms leading to cancer in humans carrying the BRCA1 missense variant.
Collapse
Affiliation(s)
- Samuele Lodovichi
- a Yeast Genetics and Genomics, Institute of Clinical Physiology , CNR, Pisa , Italy
| | - Martina Vitello
- a Yeast Genetics and Genomics, Institute of Clinical Physiology , CNR, Pisa , Italy
| | - Tiziana Cervelli
- a Yeast Genetics and Genomics, Institute of Clinical Physiology , CNR, Pisa , Italy
| | - Alvaro Galli
- a Yeast Genetics and Genomics, Institute of Clinical Physiology , CNR, Pisa , Italy
| |
Collapse
|