51
|
Scott M, Żychaluk K, Bearon RN. A mathematical framework for modelling 3D cell motility: applications to glioblastoma cell migration. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 38:333-354. [PMID: 34189581 DOI: 10.1093/imammb/dqab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022]
Abstract
The collection of 3D cell tracking data from live images of micro-tissues is a recent innovation made possible due to advances in imaging techniques. As such there is increased interest in studying cell motility in 3D in vitro model systems but a lack of rigorous methodology for analysing the resulting data sets. One such instance of the use of these in vitro models is in the study of cancerous tumours. Growing multicellular tumour spheroids in vitro allows for modelling of the tumour microenvironment and the study of tumour cell behaviours, such as migration, which improves understanding of these cells and in turn could potentially improve cancer treatments. In this paper, we present a workflow for the rigorous analysis of 3D cell tracking data, based on the persistent random walk model, but adaptable to other biologically informed mathematical models. We use statistical measures to assess the fit of the model to the motility data and to estimate model parameters and provide confidence intervals for those parameters, to allow for parametrization of the model taking correlation in the data into account. We use in silico simulations to validate the workflow in 3D before testing our method on cell tracking data taken from in vitro experiments on glioblastoma tumour cells, a brain cancer with a very poor prognosis. The presented approach is intended to be accessible to both modellers and experimentalists alike in that it provides tools for uncovering features of the data set that may suggest amendments to future experiments or modelling attempts.
Collapse
Affiliation(s)
- M Scott
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - K Żychaluk
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - R N Bearon
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| |
Collapse
|
52
|
Fiandaca G, Delitala M, Lorenzi T. A Mathematical Study of the Influence of Hypoxia and Acidity on the Evolutionary Dynamics of Cancer. Bull Math Biol 2021; 83:83. [PMID: 34129102 PMCID: PMC8205926 DOI: 10.1007/s11538-021-00914-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/25/2021] [Indexed: 10/31/2022]
Abstract
Hypoxia and acidity act as environmental stressors promoting selection for cancer cells with a more aggressive phenotype. As a result, a deeper theoretical understanding of the spatio-temporal processes that drive the adaptation of tumour cells to hypoxic and acidic microenvironments may open up new avenues of research in oncology and cancer treatment. We present a mathematical model to study the influence of hypoxia and acidity on the evolutionary dynamics of cancer cells in vascularised tumours. The model is formulated as a system of partial integro-differential equations that describe the phenotypic evolution of cancer cells in response to dynamic variations in the spatial distribution of three abiotic factors that are key players in tumour metabolism: oxygen, glucose and lactate. The results of numerical simulations of a calibrated version of the model based on real data recapitulate the eco-evolutionary spatial dynamics of tumour cells and their adaptation to hypoxic and acidic microenvironments. Moreover, such results demonstrate how nonlinear interactions between tumour cells and abiotic factors can lead to the formation of environmental gradients which select for cells with phenotypic characteristics that vary with distance from intra-tumour blood vessels, thus promoting the emergence of intra-tumour phenotypic heterogeneity. Finally, our theoretical findings reconcile the conclusions of earlier studies by showing that the order in which resistance to hypoxia and resistance to acidity arise in tumours depend on the ways in which oxygen and lactate act as environmental stressors in the evolutionary dynamics of cancer cells.
Collapse
Affiliation(s)
- Giada Fiandaca
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy
| | - Marcello Delitala
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy
| | - Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy.
| |
Collapse
|
53
|
Azimzade Y, Saberi AA, Gatenby RA. Superlinear growth reveals the Allee effect in tumors. Phys Rev E 2021; 103:042405. [PMID: 34005934 DOI: 10.1103/physreve.103.042405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Integrating experimental data into ecological models plays a central role in understanding biological mechanisms that drive tumor progression where such knowledge can be used to develop new therapeutic strategies. While the current studies emphasize the role of competition among tumor cells, they fail to explain recently observed superlinear growth dynamics across human tumors. Here we study tumor growth dynamics by developing a model that incorporates evolutionary dynamics inside tumors with tumor-microenvironment interactions. Our results reveal that tumor cells' ability to manipulate the environment and induce angiogenesis drives superlinear growth-a process compatible with the Allee effect. In light of this understanding, our model suggests that, for high-risk tumors that have a higher growth rate, suppressing angiogenesis can be the appropriate therapeutic intervention.
Collapse
Affiliation(s)
- Youness Azimzade
- Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Abbas Ali Saberi
- Department of Physics, University of Tehran, Tehran 14395-547, Iran and Institut für Theoretische Physik, Universitat zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, Integrated Mathematical Oncology Department, and Diagnostic Imaging Department, Moffitt Cancer Center, Tampa, Florida 33612, USA
| |
Collapse
|
54
|
Dujon AM, Aktipis A, Alix‐Panabières C, Amend SR, Boddy AM, Brown JS, Capp J, DeGregori J, Ewald P, Gatenby R, Gerlinger M, Giraudeau M, Hamede RK, Hansen E, Kareva I, Maley CC, Marusyk A, McGranahan N, Metzger MJ, Nedelcu AM, Noble R, Nunney L, Pienta KJ, Polyak K, Pujol P, Read AF, Roche B, Sebens S, Solary E, Staňková K, Swain Ewald H, Thomas F, Ujvari B. Identifying key questions in the ecology and evolution of cancer. Evol Appl 2021; 14:877-892. [PMID: 33897809 PMCID: PMC8061275 DOI: 10.1111/eva.13190] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
The application of evolutionary and ecological principles to cancer prevention and treatment, as well as recognizing cancer as a selection force in nature, has gained impetus over the last 50 years. Following the initial theoretical approaches that combined knowledge from interdisciplinary fields, it became clear that using the eco-evolutionary framework is of key importance to understand cancer. We are now at a pivotal point where accumulating evidence starts to steer the future directions of the discipline and allows us to underpin the key challenges that remain to be addressed. Here, we aim to assess current advancements in the field and to suggest future directions for research. First, we summarize cancer research areas that, so far, have assimilated ecological and evolutionary principles into their approaches and illustrate their key importance. Then, we assembled 33 experts and identified 84 key questions, organized around nine major themes, to pave the foundations for research to come. We highlight the urgent need for broadening the portfolio of research directions to stimulate novel approaches at the interface of oncology and ecological and evolutionary sciences. We conclude that progressive and efficient cross-disciplinary collaborations that draw on the expertise of the fields of ecology, evolution and cancer are essential in order to efficiently address current and future questions about cancer.
Collapse
Affiliation(s)
- Antoine M. Dujon
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWaurn PondsVic.Australia
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
| | - Athena Aktipis
- Biodesign InstituteDepartment of PsychologyArizona State UniversityTempeAZUSA
| | - Catherine Alix‐Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Center of MontpellierMontpellierFrance
| | - Sarah R. Amend
- Brady Urological InstituteThe Johns Hopkins School of MedicineBaltimoreMDUSA
| | - Amy M. Boddy
- Department of AnthropologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Joel S. Brown
- Department of Integrated MathematicsMoffitt Cancer CenterTampaFLUSA
| | - Jean‐Pascal Capp
- Toulouse Biotechnology InstituteINSA/University of ToulouseCNRSINRAEToulouseFrance
| | - James DeGregori
- Department of Biochemistry and Molecular GeneticsIntegrated Department of ImmunologyDepartment of PaediatricsDepartment of Medicine (Section of Hematology)University of Colorado School of MedicineAuroraCOUSA
| | - Paul Ewald
- Department of BiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Robert Gatenby
- Department of RadiologyH. Lee Moffitt Cancer Center & Research InstituteTampaFLUSA
| | - Marco Gerlinger
- Translational Oncogenomics LabThe Institute of Cancer ResearchLondonUK
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Littoral Environnement et Sociétés (LIENSs)UMR 7266CNRS‐Université de La RochelleLa RochelleFrance
| | | | - Elsa Hansen
- Center for Infectious Disease Dynamics, Biology DepartmentPennsylvania State UniversityUniversity ParkPAUSA
| | - Irina Kareva
- Mathematical and Computational Sciences CenterSchool of Human Evolution and Social ChangeArizona State UniversityTempeAZUSA
| | - Carlo C. Maley
- Arizona Cancer Evolution CenterBiodesign Institute and School of Life SciencesArizona State UniversityTempeAZUSA
| | - Andriy Marusyk
- Department of Cancer PhysiologyH Lee Moffitt Cancer Centre and Research InstituteTampaFLUSA
| | - Nicholas McGranahan
- Translational Cancer Therapeutics LaboratoryThe Francis Crick InstituteLondonUK
- Cancer Research UK Lung Cancer Centre of ExcellenceUniversity College London Cancer InstituteLondonUK
| | | | | | - Robert Noble
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Leonard Nunney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| | - Kenneth J. Pienta
- Brady Urological InstituteThe Johns Hopkins School of MedicineBaltimoreMDUSA
| | - Kornelia Polyak
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Pascal Pujol
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Centre Hospitalier Universitaire Arnaud de VilleneuveMontpellierFrance
| | - Andrew F. Read
- Center for Infectious Disease DynamicsHuck Institutes of the Life SciencesDepartments of Biology and EntomologyPennsylvania State UniversityUniversity ParkPAUSA
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Unité Mixte Internationale de Modélisation Mathématique et Informatique des Systèmes ComplexesUMI IRD/Sorbonne UniversitéUMMISCOBondyFrance
| | - Susanne Sebens
- Institute for Experimental Cancer Research Kiel University and University Hospital Schleswig‐HolsteinKielGermany
| | - Eric Solary
- INSERM U1287Gustave RoussyVillejuifFrance
- Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Kateřina Staňková
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
- Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands
| | | | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWaurn PondsVic.Australia
| |
Collapse
|
55
|
Computational modeling reveals a key role for polarized myeloid cells in controlling osteoclast activity during bone injury repair. Sci Rep 2021; 11:6055. [PMID: 33723343 PMCID: PMC7961065 DOI: 10.1038/s41598-021-84888-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
Bone-forming osteoblasts and -resorbing osteoclasts control bone injury repair, and myeloid-derived cells such as monocytes and macrophages are known to influence their behavior. However, precisely how these multiple cell types coordinate and regulate each other over time within the bone marrow to restore bone is difficult to dissect using biological approaches. Conversely, mathematical modeling lends itself well to this challenge. Therefore, we generated an ordinary differential equation (ODE) model powered by experimental data (osteoblast, osteoclast, bone volume, pro- and anti-inflammatory myeloid cells) obtained from intra-tibially injured mice. Initial ODE results using only osteoblast/osteoclast populations demonstrated that bone homeostasis could not be recovered after injury, but this issue was resolved upon integration of pro- and anti-inflammatory myeloid population dynamics. Surprisingly, the ODE revealed temporal disconnects between the peak of total bone mineralization/resorption, and osteoblast/osteoclast numbers. Specifically, the model indicated that osteoclast activity must vary greatly (> 17-fold) to return the bone volume to baseline after injury and suggest that osteoblast/osteoclast number alone is insufficient to predict bone the trajectory of bone repair. Importantly, the values of osteoclast activity fall within those published previously. These data underscore the value of mathematical modeling approaches to understand and reveal new insights into complex biological processes.
Collapse
|
56
|
Valentim CA, Rabi JA, David SA. Fractional Mathematical Oncology: On the potential of non-integer order calculus applied to interdisciplinary models. Biosystems 2021; 204:104377. [PMID: 33610556 DOI: 10.1016/j.biosystems.2021.104377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
Mathematical Oncology investigates cancer-related phenomena through mathematical models as comprehensive as possible. Accordingly, an interdisciplinary approach involving concepts from biology to materials science can provide a deeper understanding of biological systems pertaining the disease. In this context, fractional calculus (also referred to as non-integer order) is a branch in mathematical analysis whose tools can describe complex phenomena comprising different time and space scales. Fractional-order models may allow a better description and understanding of oncological particularities, potentially contributing to decision-making in areas of interest such as tumor evolution, early diagnosis techniques and personalized treatment therapies. By following a phenomenological (i.e. mechanistic) approach, the present study surveys and explores different aspects of Fractional Mathematical Oncology, reviewing and discussing recent developments in view of their prospective applications.
Collapse
Affiliation(s)
- Carlos A Valentim
- Department of Biosystems Engineering, University of São Paulo, Pirassununga Campus, Brazil.
| | - José A Rabi
- Department of Biosystems Engineering, University of São Paulo, Pirassununga Campus, Brazil.
| | - Sergio A David
- Department of Biosystems Engineering, University of São Paulo, Pirassununga Campus, Brazil.
| |
Collapse
|
57
|
Craig M, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chem Rev 2020; 121:3352-3389. [PMID: 33152247 DOI: 10.1021/acs.chemrev.0c00356] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug resistance has profoundly limited the success of cancer treatment, driving relapse, metastasis, and mortality. Nearly all anticancer drugs and even novel immunotherapies, which recalibrate the immune system for tumor recognition and destruction, have succumbed to resistance development. Engineers have emerged across mechanical, physical, chemical, mathematical, and biological disciplines to address the challenge of drug resistance using a combination of interdisciplinary tools and skill sets. This review explores the developing, complex, and under-recognized role of engineering in medicine to address the multitude of challenges in cancer drug resistance. Looking through the "lens" of intrinsic, extrinsic, and drug-induced resistance (also referred to as "tolerance"), we will discuss three specific areas where active innovation is driving novel treatment paradigms: (1) nanotechnology, which has revolutionized drug delivery in desmoplastic tissues, harnessing physiochemical characteristics to destroy tumors through photothermal therapy and rationally designed nanostructures to circumvent cancer immunotherapy failures, (2) bioengineered tumor models, which have benefitted from microfluidics and mechanical engineering, creating a paradigm shift in physiologically relevant environments to predict clinical refractoriness and enabling platforms for screening drug combinations to thwart resistance at the individual patient level, and (3) computational and mathematical modeling, which blends in silico simulations with molecular and evolutionary principles to map mutational patterns and model interactions between cells that promote resistance. On the basis that engineering in medicine has resulted in discoveries in resistance biology and successfully translated to clinical strategies that improve outcomes, we suggest the proliferation of multidisciplinary science that embraces engineering.
Collapse
Affiliation(s)
- Morgan Craig
- Department of Mathematics and Statistics, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, Quebec H3S 2G4, Canada
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, Quebec H3S 2G4, Canada
| | - Bumseok Namgung
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Luke P Lee
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| |
Collapse
|
58
|
Grimes DR, Jansen M, Macauley RJ, Scott JG, Basanta D. Evidence for hypoxia increasing the tempo of evolution in glioblastoma. Br J Cancer 2020; 123:1562-1569. [PMID: 32848201 PMCID: PMC7653934 DOI: 10.1038/s41416-020-1021-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Tumour hypoxia is associated with metastatic disease, and while there have been many mechanisms proposed for why tumour hypoxia is associated with metastatic disease, it remains unclear whether one precise mechanism is the key reason or several in concert. Somatic evolution drives cancer progression and treatment resistance, fuelled not only by genetic and epigenetic mutation but also by selection from interactions between tumour cells, normal cells and physical micro-environment. Ecological habitats influence evolutionary dynamics, but the impact on tempo of evolution is less clear. METHODS We explored this complex dialogue with a combined clinical-theoretical approach by simulating a proliferative hierarchy under heterogeneous oxygen availability with an agent-based model. Predictions were compared against histology samples taken from glioblastoma patients, stained to elucidate areas of necrosis and TP53 expression heterogeneity. RESULTS Results indicate that cell division in hypoxic environments is effectively upregulated, with low-oxygen niches providing avenues for tumour cells to spread. Analysis of human data indicates that cell division is not decreased under hypoxia, consistent with our results. CONCLUSIONS Our results suggest that hypoxia could be a crucible that effectively warps evolutionary velocity, making key mutations more likely. Thus, key tumour ecological niches such as hypoxic regions may alter the evolutionary tempo, driving mutations fuelling tumour heterogeneity.
Collapse
Affiliation(s)
- David Robert Grimes
- School of Physical Sciences, Dublin City University, Dublin 9, Ireland.
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Marnix Jansen
- Departments of Endoscopy and Pathology, University College London Hospital, London, UK
| | - Robert J Macauley
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jacob G Scott
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - David Basanta
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
59
|
Sego TJ, Glazier JA, Tovar A. Unification of aggregate growth models by emergence from cellular and intracellular mechanisms. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192148. [PMID: 32968501 PMCID: PMC7481681 DOI: 10.1098/rsos.192148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/03/2020] [Indexed: 05/04/2023]
Abstract
Multicellular aggregate growth is regulated by nutrient availability and removal of metabolites, but the specifics of growth dynamics are dependent on cell type and environment. Classical models of growth are based on differential equations. While in some cases these classical models match experimental observations, they can only predict growth of a limited number of cell types and so can only be selectively applied. Currently, no classical model provides a general mathematical representation of growth for any cell type and environment. This discrepancy limits their range of applications, which a general modelling framework can enhance. In this work, a hybrid cellular Potts model is used to explain the discrepancy between classical models as emergent behaviours from the same mathematical system. Intracellular processes are described using probability distributions of local chemical conditions for proliferation and death and simulated. By fitting simulation results to a generalization of the classical models, their emergence is demonstrated. Parameter variations elucidate how aggregate growth may behave like one classical growth model or another. Three classical growth model fits were tested, and emergence of the Gompertz equation was demonstrated. Effects of shape changes are demonstrated, which are significant for final aggregate size and growth rate, and occur stochastically.
Collapse
Affiliation(s)
- T. J. Sego
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - James A. Glazier
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Andres Tovar
- Department of Mechanical and Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
- Author for correspondence: Andres Tovar e-mail:
| |
Collapse
|
60
|
Characterizing the ecological and evolutionary dynamics of cancer. Nat Genet 2020; 52:759-767. [DOI: 10.1038/s41588-020-0668-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
|
61
|
Enderling H, Altrock PM, Andor N, Basanta D, Brown JS, Gatenby RA, Marusyk A, Rejniak KA, Silva A, Anderson ARA. High School Internship Program in Integrated Mathematical Oncology (HIP IMO): Five-Year Experience at Moffitt Cancer Center. Bull Math Biol 2020; 82:91. [PMID: 32648152 DOI: 10.1007/s11538-020-00768-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023]
Abstract
Modern cancer research, and the wealth of data across multiple spatial and temporal scales, has created the need for researchers that are well versed in the life sciences (cancer biology, developmental biology, immunology), medical sciences (oncology) and natural sciences (mathematics, physics, engineering, computer sciences). College undergraduate education traditionally occurs in disciplinary silos, which creates a steep learning curve at the graduate and postdoctoral levels that increasingly bridge multiple disciplines. Numerous colleges have begun to embrace interdisciplinary curricula, but students who double major in mathematics (or other quantitative sciences) and biology (or medicine) remain scarce. We identified the need to educate junior and senior high school students about integrating mathematical and biological skills, through the lens of mathematical oncology, to better prepare students for future careers at the interdisciplinary interface. The High school Internship Program in Integrated Mathematical Oncology (HIP IMO) at Moffitt Cancer Center has so far trained 59 students between 2015 and 2019. We report here on the program structure, training deliverables, curriculum and outcomes. We hope to promote interdisciplinary educational activities early in a student's career.
Collapse
Affiliation(s)
- Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Philipp M Altrock
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Noemi Andor
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Katarzyna A Rejniak
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ariosto Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
62
|
Derbal Y. Modeling Cancer Dynamics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2455-2458. [PMID: 33018503 DOI: 10.1109/embc44109.2020.9175155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer is a complex disease that continues to pose formidable challenges to therapeutic interventions. An increased understanding of cancer complexity and in particular tumor growth dynamics is critical to the development of more effective therapies. In this respect, an agent-based model of tumor growth is explored with the consideration of cancer reprograming of metabolism and the immune response, to seek insight about the coupling between these two key determinants of tumor growth dynamics. Ultimately, this exploration is intended to inform the development of therapies that can induce a more effective immune response despite the metabolic constraints of the tumor microenvironment.
Collapse
|
63
|
|
64
|
Meeting the Needs of A Changing Landscape: Advances and Challenges in Undergraduate Biology Education. Bull Math Biol 2020; 82:60. [PMID: 32399760 DOI: 10.1007/s11538-020-00739-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/15/2020] [Indexed: 01/05/2023]
Abstract
Over the last 25 years, reforms in undergraduate biology education have transformed the way biology is taught at many institutions of higher education. This has been fueled in part by a burgeoning discipline-based education research community, which has advocated for evidence-based instructional practices based on findings from research. This perspective will review some of the changes to undergraduate biology education that have gained or are currently gaining momentum, becoming increasingly common in undergraduate biology classrooms. However, there are still areas in need of improvement. Although more underrepresented minority students are enrolling in and graduating from biology programs than in the past, there is a need to understand the experiences and broaden participation of other underserved groups in biology and ensure biology classroom learning environments are inclusive. Additionally, although understanding biology relies on understanding concepts from the physical sciences and mathematics, students still rarely connect the concepts they learn from other STEM disciplines to biology. Integrating concepts and practices across the STEM disciplines will be critical for biology graduates as they tackle the biological problems of the twenty-first century.
Collapse
|
65
|
Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation. PLoS Comput Biol 2020; 16:e1007611. [PMID: 32379821 PMCID: PMC7244185 DOI: 10.1371/journal.pcbi.1007611] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/22/2020] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
Modeling cancer cells is essential to better understand the dynamic nature of brain tumors and glioma cells, including their invasion of normal brain. Our goal is to study how the morphology of the glioma cell influences the formation of patterns of collective behavior such as flocks (cells moving in the same direction) or streams (cells moving in opposite direction) referred to as oncostream. We have observed experimentally that the presence of oncostreams correlates with tumor progression. We propose an original agent-based model that considers each cell as an ellipsoid. We show that stretching cells from round to ellipsoid increases stream formation. A systematic numerical investigation of the model was implemented in [Formula: see text]. We deduce a phase diagram identifying key regimes for the dynamics (e.g. formation of flocks, streams, scattering). Moreover, we study the effect of cellular density and show that, in contrast to classical models of flocking, increasing cellular density reduces the formation of flocks. We observe similar patterns in [Formula: see text] with the noticeable difference that stream formation is more ubiquitous compared to flock formation.
Collapse
|
66
|
Banwarth-Kuhn M, Sindi S. How and why to build a mathematical model: A case study using prion aggregation. J Biol Chem 2020; 295:5022-5035. [PMID: 32005659 PMCID: PMC7152750 DOI: 10.1074/jbc.rev119.009851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biological systems are inherently complex, and the increasing level of detail with which we are able to experimentally probe such systems continually reveals new complexity. Fortunately, mathematical models are uniquely positioned to provide a tool suitable for rigorous analysis, hypothesis generation, and connecting results from isolated in vitro experiments with results from in vivo and whole-organism studies. However, developing useful mathematical models is challenging because of the often different domains of knowledge required in both math and biology. In this work, we endeavor to provide a useful guide for researchers interested in incorporating mathematical modeling into their scientific process. We advocate for the use of conceptual diagrams as a starting place to anchor researchers from both domains. These diagrams are useful for simplifying the biological process in question and distinguishing the essential components. Not only do they serve as the basis for developing a variety of mathematical models, but they ensure that any mathematical formulation of the biological system is led primarily by scientific questions. We provide a specific example of this process from our own work in studying prion aggregation to show the power of mathematical models to synergistically interact with experiments and push forward biological understanding. Choosing the most suitable model also depends on many different factors, and we consider how to make these choices based on different scales of biological organization and available data. We close by discussing the many opportunities that abound for both experimentalists and modelers to take advantage of collaborative work in this field.
Collapse
Affiliation(s)
- Mikahl Banwarth-Kuhn
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, California 95343
| | - Suzanne Sindi
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, California 95343
| |
Collapse
|
67
|
Aherne NJ, Dhawan A, Scott JG, Enderling H. Mathematical oncology and it's application in non melanoma skin cancer - A primer for radiation oncology professionals. Oral Oncol 2020; 103:104473. [PMID: 32109841 DOI: 10.1016/j.oraloncology.2019.104473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Cancers of the skin (the majority of which are basal and squamous cell skin carcinomas, but also include the rarer Merkel cell carcinoma) are overwhelmingly the most common of all types of cancer. Most of these are treated surgically, with radiation reserved for those patients with high risk features or anatomical locations less suitable for surgery. Given the high incidence of both basal and squamous cell carcinomas, as well as the relatively poor outcome for Merkel cell carcinoma, it is useful to investigate the role of other disciplines regarding their diagnosis, staging and treatment. Mathematical modelling is one such area of investigation. The use of mathematical modelling is a relatively recent addition to the armamentarium of cancer treatment. It has long been recognised that tumour growth and treatment response is a complex, non-linear biological phenomenon with many mechanisms yet to be understood. Despite decades of research, including clinical, population and basic science approaches, we continue to be challenged by the complexity, heterogeneity and adaptability of tumours, both in individual patients in the oncology clinic and across wider patient populations. Prospective clinical trials predominantly focus on average outcome, with little understanding as to why individual patients may or may not respond. The use of mathematical models may lead to a greater understanding of tumour initiation, growth dynamics and treatment response.
Collapse
Affiliation(s)
- Noel J Aherne
- Department of Radiation Oncology, Mid North Coast Cancer Institute, Coffs Harbour, NSW 2450, Australia; RCS Faculty of Medicine, University of New South Wales, New South Wales, Australia.
| | - Andrew Dhawan
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacob G Scott
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
68
|
Letort G, Montagud A, Stoll G, Heiland R, Barillot E, Macklin P, Zinovyev A, Calzone L. PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling. Bioinformatics 2020; 35:1188-1196. [PMID: 30169736 PMCID: PMC6449758 DOI: 10.1093/bioinformatics/bty766] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/28/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023] Open
Abstract
MOTIVATION Due to the complexity and heterogeneity of multicellular biological systems, mathematical models that take into account cell signalling, cell population behaviour and the extracellular environment are particularly helpful. We present PhysiBoSS, an open source software which combines intracellular signalling using Boolean modelling (MaBoSS) and multicellular behaviour using agent-based modelling (PhysiCell). RESULTS PhysiBoSS provides a flexible and computationally efficient framework to explore the effect of environmental and genetic alterations of individual cells at the population level, bridging the critical gap from single-cell genotype to single-cell phenotype and emergent multicellular behaviour. PhysiBoSS thus becomes very useful when studying heterogeneous population response to treatment, mutation effects, different modes of invasion or isomorphic morphogenesis events. To concretely illustrate a potential use of PhysiBoSS, we studied heterogeneous cell fate decisions in response to TNF treatment. We explored the effect of different treatments and the behaviour of several resistant mutants. We highlighted the importance of spatial information on the population dynamics by considering the effect of competition for resources like oxygen. AVAILABILITY AND IMPLEMENTATION PhysiBoSS is freely available on GitHub (https://github.com/sysbio-curie/PhysiBoSS), with a Docker image (https://hub.docker.com/r/gletort/physiboss/). It is distributed as open source under the BSD 3-clause license. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gaelle Letort
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Arnau Montagud
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Gautier Stoll
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, U1138, Paris, France.,Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Randy Heiland
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| |
Collapse
|
69
|
Fribourg M. A case for the reuse and adaptation of mechanistic computational models to study transplant immunology. Am J Transplant 2020; 20:355-361. [PMID: 31562790 PMCID: PMC6984985 DOI: 10.1111/ajt.15623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
Computational mechanistic models constitute powerful tools for summarizing our knowledge in quantitative terms, providing mechanistic understanding, and generating new hypotheses. The present review emphasizes the advantages of reusing publicly available computational models as a way to capitalize on existing knowledge, reduce the number of parameters that need to be adjusted to experimental data, and facilitate hypothesis generation. Finally, it includes a step-by-step example of the reuse and adaptation of an existing model of immune responses to tuberculosis, tumor growth, and blood pathogens, to study donor-specific antibody (DSA) responses. This review aims to illustrate the benefit of leveraging the currently available computational models in immunology to accelerate the study of alloimmune responses, and to encourage modelers to share their models to further advance our understanding of transplant immunology.
Collapse
Affiliation(s)
- Miguel Fribourg
- Translational Transplant Research Center, Department of Medicine, and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
70
|
Hill RJW, Innominato PF, Lévi F, Ballesta A. Optimizing circadian drug infusion schedules towards personalized cancer chronotherapy. PLoS Comput Biol 2020; 16:e1007218. [PMID: 31986133 PMCID: PMC7004559 DOI: 10.1371/journal.pcbi.1007218] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/06/2020] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Precision medicine requires accurate technologies for drug administration and proper systems pharmacology approaches for patient data analysis. Here, plasma pharmacokinetics (PK) data of the OPTILIV trial in which cancer patients received oxaliplatin, 5-fluorouracil and irinotecan via chronomodulated schedules delivered by an infusion pump into the hepatic artery were mathematically investigated. A pump-to-patient model was designed in order to accurately represent the drug solution dynamics from the pump to the patient blood. It was connected to semi-mechanistic PK models to analyse inter-patient variability in PK parameters. Large time delays of up to 1h41 between the actual pump start and the time of drug detection in patient blood was predicted by the model and confirmed by PK data. Sudden delivery spike in the patient artery due to glucose rinse after drug administration accounted for up to 10.7% of the total drug dose. New model-guided delivery profiles were designed to precisely lead to the drug exposure intended by clinicians. Next, the complete mathematical framework achieved a very good fit to individual time-concentration PK profiles and concluded that inter-subject differences in PK parameters was the lowest for irinotecan, intermediate for oxaliplatin and the largest for 5-fluorouracil. Clustering patients according to their PK parameter values revealed patient subgroups for each drug in which inter-patient variability was largely decreased compared to that in the total population. This study provides a complete mathematical framework to optimize drug infusion pumps and inform on inter-patient PK variability, a step towards precise and personalized cancer chronotherapy. Accuracy and safety of infusion pumps remain a critical issue in the clinics and the development of accurate mathematical models to optimize drug administration though such devices has a key part to play in the advancement of precision medicine. Here, PK data from cancer patient receiving irinotecan, oxaliplatin and 5-fluorouracil into the hepatic artery via an infusion pump was mathematically investigated. A pump-to-patient model was designed and revealed significant inconsistencies between intended drug profiles and actual plasma concentrations. This mathematical model was then used to suggest improved profiles in order to minimise error and optimise delivery. Physiologically-based PK models of the three drugs were then linked to the pump-to-patient model. The whole framework achieved a very good fit to data and allowed quantifying inter-patient variability in PK parameters and linking them to potential clinical biomarkers via patient clustering. The developed methodology improves our understanding of patient-specific drug pharmacokinetics towards personalized drug administration.
Collapse
Affiliation(s)
- Roger J W Hill
- EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, UK
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, UK.,Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Francis Lévi
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver Functions", Campus CNRS, Villejuif, F-94807, France. & Honorary position, University of Warwick, UK
| | - Annabelle Ballesta
- INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver Functions", Campus CNRS, Villejuif, F-94807, France. & Honorary position, University of Warwick, UK
| |
Collapse
|
71
|
Grimes DR, Fletcher AG. Close Encounters of the Cell Kind: The Impact of Contact Inhibition on Tumour Growth and Cancer Models. Bull Math Biol 2020; 82:20. [PMID: 31970500 PMCID: PMC6976547 DOI: 10.1007/s11538-019-00677-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/02/2019] [Indexed: 01/24/2023]
Abstract
Cancer is a complex phenomenon, and the sheer variation in behaviour across different types renders it difficult to ascertain underlying biological mechanisms. Experimental approaches frequently yield conflicting results for myriad reasons, and mathematical modelling of cancer is a vital tool to explore what we cannot readily measure, and ultimately improve treatment and prognosis. Like experiments, models are underpinned by certain biological assumptions, variation of which can lead to divergent predictions. An outstanding and important question concerns contact inhibition of proliferation (CIP), the observation that proliferation ceases when cells are spatially confined by their neighbours. CIP is a characteristic of many healthy adult tissues, but it remains unclear to which extent it holds in solid tumours, which exhibit regions of hyper-proliferation, and apparent breakdown of CIP. What precisely occurs in tumour tissue remains an open question, which mathematical modelling can help shed light on. In this perspective piece, we explore the implications of different hypotheses and available experimental evidence to elucidate the implications of these scenarios. We also outline how erroneous conclusions about the nature of tumour growth may be arrived at by looking selectively at biological data in isolation, and how this might be circumvented.
Collapse
Affiliation(s)
- David Robert Grimes
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
- Department of Oncology, University of Oxford, Old Road Campus, Oxford, OX3 7DQ, UK.
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
72
|
Abstract
In this chapter we consider in silico modeling of diseases starting from some simple to some complex (and mathematical) concepts. Examples and applications of in silico modeling for some important categories of diseases (such as for cancers, infectious diseases, and neuronal diseases) are also given.
Collapse
|
73
|
Heidbuechel JPW, Abate-Daga D, Engeland CE, Enderling H. Mathematical Modeling of Oncolytic Virotherapy. Methods Mol Biol 2020; 2058:307-320. [PMID: 31486048 DOI: 10.1007/978-1-4939-9794-7_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mathematical modeling in biology has a long history as it allows the analysis and simulation of complex dynamic biological systems at little cost. A mathematical model trained on experimental or clinical data can be used to generate and evaluate hypotheses, to ask "what if" questions, and to perform in silico experiments to guide future experimentation and validation. Such models may help identify and provide insights into the mechanisms that drive changes in dynamic systems. While a mathematical model may never replace actual experiments, it can synergize with experiments to save time and resources by identifying experimental conditions that are unlikely to yield favorable outcomes, and by using optimization principles to identify experiments that are most likely to be successful. Over the past decade, numerous models have also been developed for oncolytic virotherapy, ranging from merely theoretic frameworks to fully integrated studies that utilize experimental data to generate actionable hypotheses. Here we describe how to develop such models for specific oncolytic virotherapy experimental setups, and which questions can and cannot be answered using integrated mathematical oncology.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
74
|
Degl’Innocenti A, di Leo N, Ciofani G. Genetic Hallmarks and Heterogeneity of Glioblastoma in the Single-Cell Omics Era. ADVANCED THERAPEUTICS 2020; 3:1900152. [PMID: 31942443 PMCID: PMC6962053 DOI: 10.1002/adtp.201900152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/14/2023]
Abstract
Glioblastoma multiforme is the most common and aggressive malignant primary brain tumor. As implied by its name, the disease displays impressive intrinsic heterogeneity. Among other complications, inter- and intratumoral diversity hamper glioblastoma research and therapy, typically leaving patients with little hope for long-term survival. Extensive genetic analyses, including omics, characterize several recurrent mutations. However, confounding factors mask crucial aspects of the pathology to conventional bulk approaches. In recent years, single-cell omics have made their first appearance in cancer research, and the methodology is about to reach its full potential for glioblastoma too. Here, recent glioblastoma single-cell omics investigations are reviewed, and most promising routes toward less grim prognoses and more efficient therapeutics are discussed.
Collapse
Affiliation(s)
- Andrea Degl’Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Nicoletta di Leo
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy; Scuola Superiore Sant’Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
75
|
Nichol D, Robertson-Tessi M, Anderson ARA, Jeavons P. Model genotype-phenotype mappings and the algorithmic structure of evolution. J R Soc Interface 2019; 16:20190332. [PMID: 31690233 PMCID: PMC6893500 DOI: 10.1098/rsif.2019.0332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancers are complex dynamic systems that undergo evolution and selection. Personalized medicine approaches in the clinic increasingly rely on predictions of tumour response to one or more therapies; these predictions are complicated by the inevitable evolution of the tumour. Despite enormous amounts of data on the mutational status of cancers and numerous therapies developed in recent decades to target these mutations, many of these treatments fail after a time due to the development of resistance in the tumour. The emergence of these resistant phenotypes is not easily predicted from genomic data, since the relationship between genotypes and phenotypes, termed the genotype-phenotype (GP) mapping, is neither injective nor functional. We present a review of models of this mapping within a generalized evolutionary framework that takes into account the relation between genotype, phenotype, environment and fitness. Different modelling approaches are described and compared, and many evolutionary results are shown to be conserved across studies despite using different underlying model systems. In addition, several areas for future work that remain understudied are identified, including plasticity and bet-hedging. The GP-mapping provides a pathway for understanding the potential routes of evolution taken by cancers, which will be necessary knowledge for improving personalized therapies.
Collapse
Affiliation(s)
- Daniel Nichol
- Department of Computer Science, University of Oxford, Oxford, UK
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander R. A. Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Peter Jeavons
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
76
|
Mathematical Models of Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:2403483. [PMID: 31814825 PMCID: PMC6877945 DOI: 10.1155/2019/2403483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 01/29/2023]
Abstract
Quantitative modelling is increasingly important in cancer research, helping to integrate myriad diverse experimental data into coherent pictures of the disease and able to discriminate between competing hypotheses or suggest specific experimental lines of enquiry and new approaches to therapy. Here, we review a diverse set of mathematical models of cancer cell plasticity (a process in which, through genetic and epigenetic changes, cancer cells survive in hostile environments and migrate to more favourable environments, respectively), tumour growth, and invasion. Quantitative models can help to elucidate the complex biological mechanisms of cancer cell plasticity. In this review, we discuss models of plasticity, tumour progression, and metastasis under three broadly conceived mathematical modelling techniques: discrete, continuum, and hybrid, each with advantages and disadvantages. An emerging theme from the predictions of many of these models is that cell escape from the tumour microenvironment (TME) is encouraged by a combination of physiological stress locally (e.g., hypoxia), external stresses (e.g., the presence of immune cells), and interactions with the extracellular matrix. We also discuss the value of mathematical modelling for understanding cancer more generally.
Collapse
|
77
|
Affiliation(s)
- S W Smye
- SW Smye, NIHR CRN National Specialty, Cluster, King's College London, 6.01 Addison House, London SE1 1UL, UK.
| |
Collapse
|
78
|
Harris LA, Beik S, Ozawa PMM, Jimenez L, Weaver AM. Modeling heterogeneous tumor growth dynamics and cell-cell interactions at single-cell and cell-population resolution. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 17:24-34. [PMID: 32642602 PMCID: PMC7343346 DOI: 10.1016/j.coisb.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer is a complex, dynamic disease that despite recent advances remains mostly incurable. Inter- and intratumoral heterogeneity are generally considered major drivers of therapy resistance, metastasis, and treatment failure. Recent advances in high-throughput experimentation have produced a wealth of data on tumor heterogeneity and researchers are increasingly turning to mathematical modeling to aid in the interpretation of these complex datasets. In this mini-review, we discuss three important classes of approaches for modeling cellular dynamics within heterogeneous tumors: agent-based models, population dynamics, and multiscale models. An important new focus, for which we provide an example, is the role of intratumoral cell-cell interactions.
Collapse
Affiliation(s)
- Leonard A. Harris
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Samantha Beik
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Patricia M. M. Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
79
|
Lai X, Geier OM, Fleischer T, Garred Ø, Borgen E, Funke SW, Kumar S, Rognes ME, Seierstad T, Børresen-Dale AL, Kristensen VN, Engebraaten O, Köhn-Luque A, Frigessi A. Toward Personalized Computer Simulation of Breast Cancer Treatment: A Multiscale Pharmacokinetic and Pharmacodynamic Model Informed by Multitype Patient Data. Cancer Res 2019; 79:4293-4304. [PMID: 31118201 PMCID: PMC7617071 DOI: 10.1158/0008-5472.can-18-1804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/13/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
Abstract
The usefulness of mechanistic models to disentangle complex multiscale cancer processes, such as treatment response, has been widely acknowledged. However, a major barrier for multiscale models to predict treatment outcomes in individual patients lies in their initialization and parametrization, which needs to reflect individual cancer characteristics accurately. In this study, we use multitype measurements acquired routinely on a single breast tumor, including histopathology, MRI, and molecular profiling, to personalize parts of a complex multiscale model of breast cancer treated with chemotherapeutic and antiangiogenic agents. The model accounts for drug pharmacokinetics and pharmacodynamics. We developed an open-source computer program that simulates cross-sections of tumors under 12-week therapy regimens and used it to individually reproduce and elucidate treatment outcomes of 4 patients. Two of the tumors did not respond to therapy, and model simulations were used to suggest alternative regimens with improved outcomes dependent on the tumor's individual characteristics. It was determined that more frequent and lower doses of chemotherapy reduce tumor burden in a low proliferative tumor while lower doses of antiangiogenic agents improve drug penetration in a poorly perfused tumor. Furthermore, using this model, we were able to correctly predict the outcome in another patient after 12 weeks of treatment. In summary, our model bridges multitype clinical data to shed light on individual treatment outcomes. SIGNIFICANCE: Mathematical modeling is used to validate possible mechanisms of tumor growth, resistance, and treatment outcome.
Collapse
Affiliation(s)
- Xiaoran Lai
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Oliver M Geier
- Department of Diagnostic Physics, Clinic of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Thomas Fleischer
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Øystein Garred
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Elin Borgen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Simon W Funke
- Center for Biomedical Computing, Simula Research Laboratory, Lysaker, Norway
| | - Surendra Kumar
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marie E Rognes
- Center for Biomedical Computing, Simula Research Laboratory, Lysaker, Norway
| | - Therese Seierstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Olav Engebraaten
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, University of Oslo, Oslo, Norway
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
80
|
Piretto E, Delitala M, Kim PS, Frascoli F. Effects of mutations and immunogenicity on outcomes of anti-cancer therapies for secondary lesions. Math Biosci 2019; 315:108238. [PMID: 31401294 DOI: 10.1016/j.mbs.2019.108238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/30/2022]
Abstract
Cancer development is driven by mutations and selective forces, including the action of the immune system and interspecific competition. When administered to patients, anti-cancer therapies affect the development and dynamics of tumours, possibly with various degrees of resistance due to immunoediting and microenvironment. Tumours are able to express a variety of competing phenotypes with different attributes and thus respond differently to various anti-cancer therapies. In this paper, a mathematical framework incorporating a system of delay differential equations for the immune system activation cycle and an agent-based approach for tumour-immune interaction is presented. The focus is on those metastatic, secondary solid lesions that are still undetected and non-vascularised. By using available experimental data, we analyse the effects of combination therapies on these lesions and investigate the role of mutations on the rates of success of common treatments. Findings show that mutations, growth properties and immunoediting influence therapies' outcomes in nonlinear and complex ways, affecting cancer lesion morphologies, phenotypical compositions and overall proliferation patterns. Cascade effects on final outcomes for secondary lesions are also investigated, showing that actions on primary lesions could sometimes result in unexpected clearances of secondary tumours. This outcome is strongly dependent on the clonal composition of the primary and secondary masses and is shown to allow, in some cases, the control of the disease for years.
Collapse
Affiliation(s)
- Elena Piretto
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy; Department of Mathematics, Universitá di Torino, Turin, Italy; Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Marcello Delitala
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy
| | - Peter S Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Federico Frascoli
- Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
81
|
Integrating Mathematical Modeling into the Roadmap for Personalized Adaptive Radiation Therapy. Trends Cancer 2019; 5:467-474. [PMID: 31421904 DOI: 10.1016/j.trecan.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022]
Abstract
In current radiation oncology practice, treatment protocols are prescribed based on the average outcomes of large clinical trials, with limited personalization and without adaptations of dose or dose fractionation to individual patients based on their individual clinical responses. Predicting tumor responses to radiation and comparing predictions against observed responses offers an opportunity for novel treatment evaluation. These analyses can lead to protocol adaptation aimed at the improvement of patient outcomes with better therapeutic ratios. We foresee the integration of mathematical models into radiation oncology to simulate individual patient tumor growth and predict treatment response as dynamic biomarkers for personalized adaptive radiation therapy (RT).
Collapse
|
82
|
Chkhaidze K, Heide T, Werner B, Williams MJ, Huang W, Caravagna G, Graham TA, Sottoriva A. Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data. PLoS Comput Biol 2019; 15:e1007243. [PMID: 31356595 PMCID: PMC6687187 DOI: 10.1371/journal.pcbi.1007243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 08/08/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Quantification of the effect of spatial tumour sampling on the patterns of mutations detected in next-generation sequencing data is largely lacking. Here we use a spatial stochastic cellular automaton model of tumour growth that accounts for somatic mutations, selection, drift and spatial constraints, to simulate multi-region sequencing data derived from spatial sampling of a neoplasm. We show that the spatial structure of a solid cancer has a major impact on the detection of clonal selection and genetic drift from both bulk and single-cell sequencing data. Our results indicate that spatial constrains can introduce significant sampling biases when performing multi-region bulk sampling and that such bias becomes a major confounding factor for the measurement of the evolutionary dynamics of human tumours. We also propose a statistical inference framework that incorporates spatial effects within a growing tumour and so represents a further step forwards in the inference of evolutionary dynamics from genomic data. Our analysis shows that measuring cancer evolution using next-generation sequencing while accounting for the numerous confounding factors remains challenging. However, mechanistic model-based approaches have the potential to capture the sources of noise and better interpret the data.
Collapse
Affiliation(s)
- Ketevan Chkhaidze
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Timon Heide
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Benjamin Werner
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Marc J. Williams
- Evolution and Cancer Lab, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Weini Huang
- Evolution and Cancer Lab, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Giulio Caravagna
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Trevor A. Graham
- Evolution and Cancer Lab, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
83
|
Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, Hormuth DA, Jarrett AM, Lima EABF, Tinsley Oden J, Biros G, Yankeelov TE, Curtius K, Al Bakir I, Wodarz D, Komarova N, Aparicio L, Bordyuh M, Rabadan R, Finley SD, Enderling H, Caudell J, Moros EG, Anderson ARA, Gatenby RA, Kaznatcheev A, Jeavons P, Krishnan N, Pelesko J, Wadhwa RR, Yoon N, Nichol D, Marusyk A, Hinczewski M, Scott JG. The 2019 mathematical oncology roadmap. Phys Biol 2019; 16:041005. [PMID: 30991381 PMCID: PMC6655440 DOI: 10.1088/1478-3975/ab1a09] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology, Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is no denying that mathematics continues to play an increasingly prominent role in cancer research. Mathematical Oncology-defined here simply as the use of mathematics in cancer research-complements and overlaps with a number of other fields that rely on mathematics as a core methodology. As a result, Mathematical Oncology has a broad scope, ranging from theoretical studies to clinical trials designed with mathematical models. This Roadmap differentiates Mathematical Oncology from related fields and demonstrates specific areas of focus within this unique field of research. The dominant theme of this Roadmap is the personalization of medicine through mathematics, modelling, and simulation. This is achieved through the use of patient-specific clinical data to: develop individualized screening strategies to detect cancer earlier; make predictions of response to therapy; design adaptive, patient-specific treatment plans to overcome therapy resistance; and establish domain-specific standards to share model predictions and to make models and simulations reproducible. The cover art for this Roadmap was chosen as an apt metaphor for the beautiful, strange, and evolving relationship between mathematics and cancer.
Collapse
Affiliation(s)
- Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Clarke R, Tyson JJ, Tan M, Baumann WT, Jin L, Xuan J, Wang Y. Systems biology: perspectives on multiscale modeling in research on endocrine-related cancers. Endocr Relat Cancer 2019; 26:R345-R368. [PMID: 30965282 PMCID: PMC7045974 DOI: 10.1530/erc-18-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Drawing on concepts from experimental biology, computer science, informatics, mathematics and statistics, systems biologists integrate data across diverse platforms and scales of time and space to create computational and mathematical models of the integrative, holistic functions of living systems. Endocrine-related cancers are well suited to study from a systems perspective because of the signaling complexities arising from the roles of growth factors, hormones and their receptors as critical regulators of cancer cell biology and from the interactions among cancer cells, normal cells and signaling molecules in the tumor microenvironment. Moreover, growth factors, hormones and their receptors are often effective targets for therapeutic intervention, such as estrogen biosynthesis, estrogen receptors or HER2 in breast cancer and androgen receptors in prostate cancer. Given the complexity underlying the molecular control networks in these cancers, a simple, intuitive understanding of how endocrine-related cancers respond to therapeutic protocols has proved incomplete and unsatisfactory. Systems biology offers an alternative paradigm for understanding these cancers and their treatment. To correctly interpret the results of systems-based studies requires some knowledge of how in silico models are built, and how they are used to describe a system and to predict the effects of perturbations on system function. In this review, we provide a general perspective on the field of cancer systems biology, and we explore some of the advantages, limitations and pitfalls associated with using predictive multiscale modeling to study endocrine-related cancers.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ming Tan
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - William T Baumann
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Lu Jin
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jianhua Xuan
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia, USA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia, USA
| |
Collapse
|
85
|
McKenna MT, Weis JA, Quaranta V, Yankeelov TE. Leveraging Mathematical Modeling to Quantify Pharmacokinetic and Pharmacodynamic Pathways: Equivalent Dose Metric. Front Physiol 2019; 10:616. [PMID: 31178753 PMCID: PMC6538812 DOI: 10.3389/fphys.2019.00616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
Treatment response assays are often summarized by sigmoidal functions comparing cell survival at a single timepoint to applied drug concentration. This approach has a limited biophysical basis, thereby reducing the biological insight gained from such analysis. In particular, drug pharmacokinetic and pharmacodynamic (PK/PD) properties are overlooked in developing treatment response assays, and the accompanying summary statistics conflate these processes. Here, we utilize mathematical modeling to decouple and quantify PK/PD pathways. We experimentally modulate specific pathways with small molecule inhibitors and filter the results with mechanistic mathematical models to obtain quantitative measures of those pathways. Specifically, we investigate the response of cells to time-varying doxorubicin treatments, modulating doxorubicin pharmacology with small molecules that inhibit doxorubicin efflux from cells and DNA repair pathways. We highlight the practical utility of this approach through proposal of the “equivalent dose metric.” This metric, derived from a mechanistic PK/PD model, provides a biophysically-based measure of drug effect. We define equivalent dose as the functional concentration of drug that is bound to the nucleus following therapy. This metric can be used to quantify drivers of treatment response and potentially guide dosing of combination therapies. We leverage the equivalent dose metric to quantify the specific intracellular effects of these small molecule inhibitors using population-scale measurements, and to compare treatment response in cell lines differing in expression of drug efflux pumps. More generally, this approach can be leveraged to quantify the effects of various pharmaceutical and biologic perturbations on treatment response.
Collapse
Affiliation(s)
- Matthew T McKenna
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
86
|
Affiliation(s)
- Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, UK.
| |
Collapse
|
87
|
Xu S, Ware KE, Ding Y, Kim SY, Sheth MU, Rao S, Chan W, Armstrong AJ, Eward WC, Jolly MK, Somarelli JA. An Integrative Systems Biology and Experimental Approach Identifies Convergence of Epithelial Plasticity, Metabolism, and Autophagy to Promote Chemoresistance. J Clin Med 2019; 8:jcm8020205. [PMID: 30736412 PMCID: PMC6406733 DOI: 10.3390/jcm8020205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
The evolution of therapeutic resistance is a major cause of death for cancer patients. The development of therapy resistance is shaped by the ecological dynamics within the tumor microenvironment and the selective pressure of the host immune system. These selective forces often lead to evolutionary convergence on pathways or hallmarks that drive progression. Thus, a deeper understanding of the evolutionary convergences that occur could reveal vulnerabilities to treat therapy-resistant cancer. To this end, we combined phylogenetic clustering, systems biology analyses, and molecular experimentation to identify convergences in gene expression data onto common signaling pathways. We applied these methods to derive new insights about the networks at play during transforming growth factor-β (TGF-β)-mediated epithelial–mesenchymal transition in lung cancer. Phylogenetic analyses of gene expression data from TGF-β-treated cells revealed convergence of cells toward amine metabolic pathways and autophagy during TGF-β treatment. Knockdown of the autophagy regulatory, ATG16L1, re-sensitized lung cancer cells to cancer therapies following TGF-β-induced resistance, implicating autophagy as a TGF-β-mediated chemoresistance mechanism. In addition, high ATG16L expression was found to be a poor prognostic marker in multiple cancer types. These analyses reveal the usefulness of combining evolutionary and systems biology methods with experimental validation to illuminate new therapeutic vulnerabilities for cancer.
Collapse
Affiliation(s)
- Shengnan Xu
- Duke Cancer Institute and the Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kathryn E Ware
- Duke Cancer Institute and the Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - Yuantong Ding
- Department of Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 2 7710, USA.
| | - Maya U Sheth
- Duke Cancer Institute and the Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - Sneha Rao
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wesley Chan
- Duke Cancer Institute and the Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - Andrew J Armstrong
- Duke Cancer Institute and the Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
- Solid Tumor Program and the Duke Prostate and Urologic Cancer Center, Duke University Medical Center, Durham, NC 27710, USA.
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
- Current address: Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| | - Jason A Somarelli
- Duke Cancer Institute and the Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
88
|
Rivaz A, Azizian M, Soltani M. Various Mathematical Models of Tumor Growth with Reference to Cancer Stem Cells: A Review. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2019. [DOI: 10.1007/s40995-019-00681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
89
|
Prediction of Optimal Drug Schedules for Controlling Autophagy. Sci Rep 2019; 9:1428. [PMID: 30723233 PMCID: PMC6363771 DOI: 10.1038/s41598-019-38763-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/27/2018] [Indexed: 12/19/2022] Open
Abstract
The effects of molecularly targeted drug perturbations on cellular activities and fates are difficult to predict using intuition alone because of the complex behaviors of cellular regulatory networks. An approach to overcoming this problem is to develop mathematical models for predicting drug effects. Such an approach beckons for co-development of computational methods for extracting insights useful for guiding therapy selection and optimizing drug scheduling. Here, we present and evaluate a generalizable strategy for identifying drug dosing schedules that minimize the amount of drug needed to achieve sustained suppression or elevation of an important cellular activity/process, the recycling of cytoplasmic contents through (macro)autophagy. Therapeutic targeting of autophagy is currently being evaluated in diverse clinical trials but without the benefit of a control engineering perspective. Using a nonlinear ordinary differential equation (ODE) model that accounts for activating and inhibiting influences among protein and lipid kinases that regulate autophagy (MTORC1, ULK1, AMPK and VPS34) and methods guaranteed to find locally optimal control strategies, we find optimal drug dosing schedules (open-loop controllers) for each of six classes of drugs and drug pairs. Our approach is generalizable to designing monotherapy and multi therapy drug schedules that affect different cell signaling networks of interest.
Collapse
|
90
|
Hormuth DA, Jarrett AM, Lima EA, McKenna MT, Fuentes DT, Yankeelov TE. Mechanism-Based Modeling of Tumor Growth and Treatment Response Constrained by Multiparametric Imaging Data. JCO Clin Cancer Inform 2019; 3:1-10. [PMID: 30807209 PMCID: PMC6535803 DOI: 10.1200/cci.18.00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Multiparametric imaging is a critical tool in the noninvasive study and assessment of cancer. Imaging methods have evolved over the past several decades to provide quantitative measures of tumor and healthy tissue characteristics related to, for example, cell number, blood volume fraction, blood flow, hypoxia, and metabolism. Mechanistic models of tumor growth also have matured to a point where the incorporation of patient-specific measures could provide clinically relevant predictions of tumor growth and response. In this review, we identify and discuss approaches that use multiparametric imaging data, including diffusion-weighted magnetic resonance imaging, dynamic contrast-enhanced magnetic resonance imaging, diffusion tensor imaging, contrast-enhanced computed tomography, [18F]fluorodeoxyglucose positron emission tomography, and [18F]fluoromisonidazole positron emission tomography to initialize and calibrate mechanistic models of tumor growth and response. We focus the discussion on brain and breast cancers; however, we also identify three emerging areas of application in kidney, pancreatic, and lung cancers. We conclude with a discussion of the future directions for incorporating multiparametric imaging data and mechanistic modeling into clinical decision making for patients with cancer.
Collapse
|
91
|
Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth. Proc Natl Acad Sci U S A 2019; 116:1152-1161. [PMID: 30617074 DOI: 10.1073/pnas.1815735116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer and benign prostatic hyperplasia are common genitourinary diseases in aging men. Both pathologies may coexist and share numerous similarities, which have suggested several connections or some interplay between them. However, solid evidence confirming their existence is lacking. Recent studies on extensive series of prostatectomy specimens have shown that tumors originating in larger prostates present favorable pathological features. Hence, large prostates may exert a protective effect against prostate cancer. In this work, we propose a mechanical explanation for this phenomenon. The mechanical stress fields that originate as tumors enlarge have been shown to slow down their dynamics. Benign prostatic hyperplasia contributes to these mechanical stress fields, hence further restraining prostate cancer growth. We derived a tissue-scale, patient-specific mechanically coupled mathematical model to qualitatively investigate the mechanical interaction of prostate cancer and benign prostatic hyperplasia. This model was calibrated by studying the deformation caused by each disease independently. Our simulations show that a history of benign prostatic hyperplasia creates mechanical stress fields in the prostate that impede prostatic tumor growth and limit its invasiveness. The technology presented herein may assist physicians in the clinical management of benign prostate hyperplasia and prostate cancer by predicting pathological outcomes on a tissue-scale, patient-specific basis.
Collapse
|
92
|
Stéphanou A, Fanchon E, Innominato PF, Ballesta A. Systems Biology, Systems Medicine, Systems Pharmacology: The What and The Why. Acta Biotheor 2018; 66:345-365. [PMID: 29744615 DOI: 10.1007/s10441-018-9330-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/05/2018] [Indexed: 12/22/2022]
Abstract
Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.
Collapse
Affiliation(s)
- Angélique Stéphanou
- Université Grenoble Alpes, CNRS, TIMC-IMAG/DyCTIM2, 38000, Grenoble, France.
| | - Eric Fanchon
- Université Grenoble Alpes, CNRS, TIMC-IMAG/DyCTIM2, 38000, Grenoble, France
| | - Pasquale F Innominato
- North Wales Cancer Centre, Betsi Cadwaladr University Health Board, Bangor, Denbighshire, UK
- INSERM and Université Paris 11 Unit 935, Villejuif, France
- University of Warwick, Coventry, UK
| | - Annabelle Ballesta
- INSERM and Université Paris 11 Unit 935, Villejuif, France
- University of Warwick, Coventry, UK
| |
Collapse
|
93
|
A Bayesian Sequential Learning Framework to Parameterise Continuum Models of Melanoma Invasion into Human Skin. Bull Math Biol 2018; 81:676-698. [PMID: 30443704 DOI: 10.1007/s11538-018-0532-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
We present a novel framework to parameterise a mathematical model of cell invasion that describes how a population of melanoma cells invades into human skin tissue. Using simple experimental data extracted from complex experimental images, we estimate three model parameters: (i) the melanoma cell proliferation rate, [Formula: see text]; (ii) the melanoma cell diffusivity, D; and (iii) [Formula: see text], a constant that determines the rate that melanoma cells degrade the skin tissue. The Bayesian sequential learning framework involves a sequence of increasingly sophisticated experimental data from: (i) a spatially uniform cell proliferation assay; (ii) a two-dimensional circular barrier assay; and (iii) a three-dimensional invasion assay. The Bayesian sequential learning approach leads to well-defined parameter estimates. In contrast, taking a naive approach that attempts to estimate all parameters from a single set of images from the same experiment fails to produce meaningful results. Overall, our approach to inference is simple-to-implement, computationally efficient, and well suited for many cell biology phenomena that can be described by low-dimensional continuum models using ordinary differential equations and partial differential equations. We anticipate that this Bayesian sequential learning framework will be relevant in other biological contexts where it is challenging to extract detailed, quantitative biological measurements from experimental images and so we must rely on using relatively simple measurements from complex images.
Collapse
|
94
|
Xie H, Jiao Y, Fan Q, Hai M, Yang J, Hu Z, Yang Y, Shuai J, Chen G, Liu R, Liu L. Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy. PLoS One 2018; 13:e0206292. [PMID: 30365511 PMCID: PMC6203364 DOI: 10.1371/journal.pone.0206292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
A systematic understanding of the evolution and growth dynamics of invasive solid tumors in response to different chemotherapy strategies is crucial for the development of individually optimized oncotherapy. Here, we develop a hybrid three-dimensional (3D) computational model that integrates pharmacokinetic model, continuum diffusion-reaction model and discrete cell automaton model to investigate 3D invasive solid tumor growth in heterogeneous microenvironment under chemotherapy. Specifically, we consider the effects of heterogeneous environment on drug diffusion, tumor growth, invasion and the drug-tumor interaction on individual cell level. We employ the hybrid model to investigate the evolution and growth dynamics of avascular invasive solid tumors under different chemotherapy strategies. Our simulations indicate that constant dosing is generally more effective in suppressing primary tumor growth than periodic dosing, due to the resulting continuous high drug concentration. In highly heterogeneous microenvironment, the malignancy of the tumor is significantly enhanced, leading to inefficiency of chemotherapies. The effects of geometrically-confined microenvironment and non-uniform drug dosing are also investigated. Our computational model, when supplemented with sufficient clinical data, could eventually lead to the development of efficient in silico tools for prognosis and treatment strategy optimization.
Collapse
Affiliation(s)
- Hang Xie
- College of Physics, Chongqing University, Chongqing, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Qihui Fan
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, China
| | - Miaomiao Hai
- College of Physics, Chongqing University, Chongqing, China
| | - Jiaen Yang
- College of Physics, Chongqing University, Chongqing, China
| | - Zhijian Hu
- College of Physics, Chongqing University, Chongqing, China
| | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Haidian District, Beijing, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, China
| | - Guo Chen
- College of Physics, Chongqing University, Chongqing, China
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, China
| |
Collapse
|
95
|
Khan KH, Cunningham D, Werner B, Vlachogiannis G, Spiteri I, Heide T, Mateos JF, Vatsiou A, Lampis A, Damavandi MD, Lote H, Huntingford IS, Hedayat S, Chau I, Tunariu N, Mentrasti G, Trevisani F, Rao S, Anandappa G, Watkins D, Starling N, Thomas J, Peckitt C, Khan N, Rugge M, Begum R, Hezelova B, Bryant A, Jones T, Proszek P, Fassan M, Hahne JC, Hubank M, Braconi C, Sottoriva A, Valeri N. Longitudinal Liquid Biopsy and Mathematical Modeling of Clonal Evolution Forecast Time to Treatment Failure in the PROSPECT-C Phase II Colorectal Cancer Clinical Trial. Cancer Discov 2018; 8:1270-1285. [PMID: 30166348 PMCID: PMC6380469 DOI: 10.1158/2159-8290.cd-17-0891] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 05/01/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Sequential profiling of plasma cell-free DNA (cfDNA) holds immense promise for early detection of patient progression. However, how to exploit the predictive power of cfDNA as a liquid biopsy in the clinic remains unclear. RAS pathway aberrations can be tracked in cfDNA to monitor resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer. In this prospective phase II clinical trial of single-agent cetuximab in RAS wild-type patients, we combine genomic profiling of serial cfDNA and matched sequential tissue biopsies with imaging and mathematical modeling of cancer evolution. We show that a significant proportion of patients defined as RAS wild-type based on diagnostic tissue analysis harbor aberrations in the RAS pathway in pretreatment cfDNA and, in fact, do not benefit from EGFR inhibition. We demonstrate that primary and acquired resistance to cetuximab are often of polyclonal nature, and these dynamics can be observed in tissue and plasma. Furthermore, evolutionary modeling combined with frequent serial sampling of cfDNA allows prediction of the expected time to treatment failure in individual patients. This study demonstrates how integrating frequently sampled longitudinal liquid biopsies with a mathematical framework of tumor evolution allows individualized quantitative forecasting of progression, providing novel opportunities for adaptive personalized therapies.Significance: Liquid biopsies capture spatial and temporal heterogeneity underpinning resistance to anti-EGFR monoclonal antibodies in colorectal cancer. Dense serial sampling is needed to predict the time to treatment failure and generate a window of opportunity for intervention. Cancer Discov; 8(10); 1270-85. ©2018 AACR. See related commentary by Siravegna and Corcoran, p. 1213 This article is highlighted in the In This Issue feature, p. 1195.
Collapse
Affiliation(s)
- Khurum H Khan
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - David Cunningham
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Benjamin Werner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Georgios Vlachogiannis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Timon Heide
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Javier Fernandez Mateos
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Alexandra Vatsiou
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Mahnaz Darvish Damavandi
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Hazel Lote
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Ian Said Huntingford
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Somaieh Hedayat
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Ian Chau
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Nina Tunariu
- Department of Radiology, The Royal Marsden NHS Trust, Londonand Sutton, United Kingdom
| | - Giulia Mentrasti
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Francesco Trevisani
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Sheela Rao
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Gayathri Anandappa
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - David Watkins
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Naureen Starling
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Janet Thomas
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Clare Peckitt
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Nasir Khan
- Department of Radiology, The Royal Marsden NHS Trust, Londonand Sutton, United Kingdom
| | - Massimo Rugge
- Department of Medicine and Surgical Pathology, University of Padua, Padua, Italy
| | - Ruwaida Begum
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Blanka Hezelova
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Annette Bryant
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Thomas Jones
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Paula Proszek
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Matteo Fassan
- Department of Medicine and Surgical Pathology, University of Padua, Padua, Italy
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Michael Hubank
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Chiara Braconi
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom.
| | - Nicola Valeri
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom.
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| |
Collapse
|
96
|
Pham K, Turian E, Liu K, Li S, Lowengrub J. Nonlinear studies of tumor morphological stability using a two-fluid flow model. J Math Biol 2018; 77:671-709. [PMID: 29546457 DOI: 10.1007/s00285-018-1212-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/31/2018] [Indexed: 01/08/2023]
Abstract
We consider the nonlinear dynamics of an avascular tumor at the tissue scale using a two-fluid flow Stokes model, where the viscosity of the tumor and host microenvironment may be different. The viscosities reflect the combined properties of cell and extracellular matrix mixtures. We perform a linear morphological stability analysis of the tumors, and we investigate the role of nonlinearity using boundary-integral simulations in two dimensions. The tumor is non-necrotic, although cell death may occur through apoptosis. We demonstrate that tumor evolution is regulated by a reduced set of nondimensional parameters that characterize apoptosis, cell-cell/cell-extracellular matrix adhesion, vascularization and the ratio of tumor and host viscosities. A novel reformulation of the equations enables the use of standard boundary integral techniques to solve the equations numerically. Nonlinear simulation results are consistent with linear predictions for nearly circular tumors. As perturbations develop and grow, the linear and nonlinear results deviate and linear theory tends to underpredict the growth of perturbations. Simulations reveal two basic types of tumor shapes, depending on the viscosities of the tumor and microenvironment. When the tumor is more viscous than its environment, the tumors tend to develop invasive fingers and a branched-like structure. As the relative ratio of the tumor and host viscosities decreases, the tumors tend to grow with a more compact shape and develop complex invaginations of healthy regions that may become encapsulated in the tumor interior. Although our model utilizes a simplified description of the tumor and host biomechanics, our results are consistent with experiments in a variety of tumor types that suggest that there is a positive correlation between tumor stiffness and tumor aggressiveness.
Collapse
Affiliation(s)
- Kara Pham
- Department of Mathematics, University of California at Irvine, Irvine, CA, 92697-3875, USA
- Department of Mathematics, Fullerton College, Fullerton, CA, 92832, USA
| | - Emma Turian
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Department of Mathematics, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Kai Liu
- Department of Mathematics, University of California at Irvine, Irvine, CA, 92697-3875, USA
| | - Shuwang Li
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - John Lowengrub
- Departments of Mathematics and Biomedical Engineering, Center for Complex Biological Systems, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA, 92697-3875, USA.
| |
Collapse
|
97
|
Little JP, Pettet GJ, Hutmacher DW, Loessner D. SpheroidSim-Preliminary evaluation of a new computational tool to predict the influence of cell cycle time and phase fraction on spheroid growth. Biotechnol Prog 2018; 34:1335-1343. [PMID: 30009492 DOI: 10.1002/btpr.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND There is a relative paucity of research that integrates materials science and bioengineering with computational simulations to decipher the intricate processes promoting cancer progression. Therefore, a first-generation computational model, SpheroidSim, was developed that includes a biological data set derived from a bioengineered spheroid model to obtain a quantitative description of cell kinetics. RESULTS SpheroidSim is a 3D agent-based model simulating the growth of multicellular cancer spheroids. Cell cycle time and phases mathematically motivated the population growth. SpheroidSim simulated the growth dynamics of multiple spheroids by individually defining a collection of specific phenotypic traits and characteristics for each cell. Experimental data derived from a hydrogel-based spheroid model were fit to the predictions providing insight into the influence of cell cycle time (CCT) and cell phase fraction (CPF) on the cell population. A comparison of the number of active cells predicted for each analysis showed that the value and method used to define CCT had a greater effect on the predicted cell population than CPF. The model predictions were similar to the experimental results for the number of cells, with the predicted total number of cells varying by 8% and 12%, respectively, compared to the experimental data. CONCLUSIONS SpheroidSim is a first step in developing a biologically based predictive tool capable of revealing fundamental elements in cancer cell physiology. This computational model may be applied to study the effect of the microenvironment on spheroid growth and other cancer cell types that demonstrate a similar multicellular clustering behavior as the population develops. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1335-1343, 2018.
Collapse
Affiliation(s)
- J P Little
- Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - G J Pettet
- Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - D W Hutmacher
- Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Australian Research Centre for Additive Biomanufacturing, QUT, Brisbane, QLD, Australia.,George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - D Loessner
- Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Barts Cancer Institute, Queen Mary University of London, London, U.K
| |
Collapse
|
98
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
99
|
Wodarz D. Effect of cellular de-differentiation on the dynamics and evolution of tissue and tumor cells in mathematical models with feedback regulation. J Theor Biol 2018; 448:86-93. [PMID: 29605227 PMCID: PMC6173950 DOI: 10.1016/j.jtbi.2018.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
Tissues are maintained by adult stem cells that self-renew and also differentiate into functioning tissue cells. Homeostasis is achieved by a set of complex mechanisms that involve regulatory feedback loops. Similarly, tumors are believed to be maintained by a minority population of cancer stem cells, while the bulk of the tumor is made up of more differentiated cells, and there is indication that some of the feedback loops that operate in tissues continue to be functional in tumors. Mathematical models of such tissue hierarchies, including feedback loops, have been analyzed in a variety of different contexts. Apart from stem cells giving rise to differentiated cells, it has also been observed that more differentiated cells can de-differentiate into stem cells, both in healthy tissue and tumors, aspects of which have also been investigated mathematically. This paper analyses the effect of de-differentiation on the basic and evolutionary dynamics of cells in the context of tissue hierarchy models that include negative feedback regulation of the cell populations. The models predict that in the presence of de-differentiation, the fixation probability of a neutral mutant is lower than in its absence. Therefore, if de-differentiation occurs, a mutant with identical parameters compared to the wild-type cell population behaves like a disadvantageous mutant. Similarly, the process of de-differentiation is found to lower the fixation probability of an advantageous mutant. These results indicate that the presence of de-differentiation can lower the rates of tumor initiation and progression in the context of the models considered here.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology & Department of Mathematics, 321 Steinhaus Hall, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
100
|
McKenna MT, Weis JA, Brock A, Quaranta V, Yankeelov TE. Precision Medicine with Imprecise Therapy: Computational Modeling for Chemotherapy in Breast Cancer. Transl Oncol 2018; 11:732-742. [PMID: 29674173 PMCID: PMC6056758 DOI: 10.1016/j.tranon.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Medical oncology is in need of a mathematical modeling toolkit that can leverage clinically-available measurements to optimize treatment selection and schedules for patients. Just as the therapeutic choice has been optimized to match tumor genetics, the delivery of those therapeutics should be optimized based on patient-specific pharmacokinetic/pharmacodynamic properties. Under the current approach to treatment response planning and assessment, there does not exist an efficient method to consolidate biomarker changes into a holistic understanding of treatment response. While the majority of research on chemotherapies focus on cellular and genetic mechanisms of resistance, there are numerous patient-specific and tumor-specific measures that contribute to treatment response. New approaches that consolidate multimodal information into actionable data are needed. Mathematical modeling offers a solution to this problem. In this perspective, we first focus on the particular case of breast cancer to highlight how mathematical models have shaped the current approaches to treatment. Then we compare chemotherapy to radiation therapy. Finally, we identify opportunities to improve chemotherapy treatments using the model of radiation therapy. We posit that mathematical models can improve the application of anticancer therapeutics in the era of precision medicine. By highlighting a number of historical examples of the contributions of mathematical models to cancer therapy, we hope that this contribution serves to engage investigators who may not have previously considered how mathematical modeling can provide real insights into breast cancer therapy.
Collapse
Affiliation(s)
- Matthew T McKenna
- Vanderbilt University Institute of Imaging Science, Nashville, TN; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Jared A Weis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX; Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX; Department of Oncology, The University of Texas at Austin, Austin, TX; Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX.
| |
Collapse
|