51
|
Müller JS, Giunta M, Horvath R. Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases. J Neuromuscul Dis 2015; 2:S31-S37. [PMID: 27127732 PMCID: PMC4845884 DOI: 10.3233/jnd-150086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Defects of RNA metabolism have been increasingly identified in various forms of inherited neurological diseases. Recently, abnormal RNA degradation due to mutations in human exosome subunit genes has been shown to cause complex childhood onset neurological presentations including spinal muscular atrophy, pontocerebellar hypoplasia and myelination deficiencies. This paper summarizes our current knowledge about the exosome in human neurological disease and provides some important insights into potential disease mechanisms.
Collapse
Affiliation(s)
- Juliane S. Müller
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Michele Giunta
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
52
|
Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2015; 5:5439-52. [PMID: 24978137 PMCID: PMC4170615 DOI: 10.18632/oncotarget.2118] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor-derived exosomes contain biologically active proteins and messenger and microRNAs (miRNAs). These particles serve as vehicles of intercellular communication and are emerging mediators of tumorigenesis and immune escape. Here, we isolated 30-100 nm exosomes from the serum of patients with nasopharyngeal carcinoma (NPC) or the supernatant of TW03 cells. Increased circulating exosome concentrations were correlated with advanced lymphoid node stage and poor prognosis in NPC patients (P < 0.05). TW03-derived exosomes impaired T-cell function by inhibiting T-cell proliferation and Th1 and Th17 differentiation and promoting Treg induction by NPC cells in vitro. These results are associated with decreases in ERK, STAT1, and STAT3 phosphorylation and increases in STAT5 phosphorylation in exosome-stimulated T-cells. TW03-derived exosomes increased the proinflammatory cytokines IL-1β, IL-6, and IL-10 but decreased IFNγ, IL-2, and IL-17 release from CD4+ or CD8+ T-cells. Furthermore, five commonly over-expressed miRNAs were identified in the exosomes from patient sera or NPC cells: hsa-miR-24-3p, hsa-miR-891a, hsa-miR-106a-5p, hsa-miR-20a-5p, and hsa-miR-1908. These over-expressed miRNA clusters down-regulated the MARK1 signaling pathway to alter cell proliferation and differentiation. Overall, these observations reveal the clinical relevance and prognostic value of tumor-derived exosomes and identify a unique intercellular mechanism mediated by tumor-derived exosomes to modulate T-cell function in NPC.
Collapse
Affiliation(s)
- Shu-Biao Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ze-Lei Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Hua Luo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Suan Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
53
|
Kowalinski E, Schuller A, Green R, Conti E. Saccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformation of Active Translational GTPases. Structure 2015; 23:1336-43. [PMID: 26051716 PMCID: PMC4509514 DOI: 10.1016/j.str.2015.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/04/2023]
Abstract
Ski7 is a cofactor of the cytoplasmic exosome in budding yeast, functioning in both mRNA turnover and non-stop decay (NSD), a surveillance pathway that degrades faulty mRNAs lacking a stop codon. The C-terminal region of Ski7 (Ski7C) shares overall sequence similarity with the translational GTPase (trGTPase) Hbs1, but whether Ski7 has retained the properties of a trGTPase is unclear. Here, we report the high-resolution structures of Ski7C bound to either intact guanosine triphosphate (GTP) or guanosine diphosphate-Pi. The individual domains of Ski7C adopt the conformation characteristic of active trGTPases. Furthermore, the nucleotide-binding site of Ski7C shares similar features compared with active trGTPases, notably the presence of a characteristic monovalent cation. However, a suboptimal polar residue at the putative catalytic site and an unusual polar residue that interacts with the γ-phosphate of GTP distinguish Ski7 from other trGTPases, suggesting it might function rather as a GTP-binding protein than as a GTP-hydrolyzing enzyme.
Collapse
Affiliation(s)
- Eva Kowalinski
- Department of Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Anthony Schuller
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Conti
- Department of Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
54
|
Perspective: The RNA exosome, cytokine gene regulation and links to autoimmunity. Cytokine 2015; 74:175-80. [PMID: 25835609 DOI: 10.1016/j.cyto.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
The RNA exosome is a highly conserved exoribonuclease complex that is involved in RNA processing, quality control and turnover regulation. The exosome plays pleiotropic functions by recruiting different cofactors that regulate its target specificity. Recently, the exosome has been implicated in the regulation of immune processes including cytokine production and negative regulation of innate sensing of nucleic acids. Careful regulation of such mechanisms is critical to avoid a breakdown of self-tolerance and the pathogenesis of autoimmune disorders. This perspective briefly introduces the exosome, its its normal function in RNA biology and summarizes regulatory roles of the RNA exosome in immunity. Finally we discuss how dysregulation of exosome function can lead to autoimmune disease.
Collapse
|
55
|
Rigby RE, Rehwinkel J. RNA degradation in antiviral immunity and autoimmunity. Trends Immunol 2015; 36:179-88. [PMID: 25709093 PMCID: PMC4358841 DOI: 10.1016/j.it.2015.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/09/2023]
Abstract
The nonsense-mediated decay (NMD) pathway defends cells against RNA virus invasion. NMD targets viral RNAs for degradation, including by the RNA exosome. Genetic deficiencies in NMD and RNA exosome components cause autoimmunity. NMD and the RNA exosome prevent aberrant activation of innate immune responses.
Post-transcriptional control determines the fate of cellular RNA molecules. Nonsense-mediated decay (NMD) provides quality control of mRNA, targeting faulty cellular transcripts for degradation by multiple nucleases including the RNA exosome. Recent findings have revealed a role for NMD in targeting viral RNA molecules, thereby restricting virus infection. Interestingly, NMD is also linked to immune responses at another level: mutations affecting the NMD or RNA exosome machineries cause chronic activation of defence programmes, resulting in autoimmune phenotypes. Here we place these observations in the context of other links between innate antiviral immunity and type I interferon mediated disease and examine two models: one in which expression or function of pathogen sensors is perturbed and one wherein host-derived RNA molecules with a propensity to activate such sensors accumulate.
Collapse
Affiliation(s)
- Rachel E Rigby
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
56
|
The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway. PLoS Genet 2015; 11:e1004999. [PMID: 25680078 PMCID: PMC4378619 DOI: 10.1371/journal.pgen.1004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022] Open
Abstract
The exosome and its nuclear specific subunit Rrp6 form a 3’-5’ exonuclease complex that regulates diverse aspects of RNA biology including 3’ end processing and degradation of a variety of noncoding RNAs (ncRNAs) and unstable transcripts. Known targets of the nuclear exosome include short (<1000 bp) RNAPII transcripts such as small noncoding RNAs (snRNAs), cryptic unstable transcripts (CUTs), and some stable unannotated transcripts (SUTs) that are terminated by an Nrd1, Nab3, and Sen1 (NNS) dependent mechanism. NNS-dependent termination is coupled to RNA 3’ end processing and/or degradation by the Rrp6/exosome in yeast. Recent work suggests Nrd1 is necessary for transcriptome surveillance, regulating promoter directionality and suppressing antisense transcription independently of, or prior to, Rrp6 activity. It remains unclear whether Rrp6 is directly involved in termination; however, Rrp6 has been implicated in the 3’ end processing and degradation of ncRNA transcripts including CUTs. To determine the role of Rrp6 in NNS termination globally, we performed RNA sequencing (RNA-Seq) on total RNA and perform ChIP-exo analysis of RNA Polymerase II (RNAPII) localization. Deletion of RRP6 promotes hyper-elongation of multiple NNS-dependent transcripts resulting from both improperly processed 3’ RNA ends and faulty transcript termination at specific target genes. The defects in RNAPII termination cause transcriptome-wide changes in mRNA expression through transcription interference and/or antisense repression, similar to previously reported effects of depleting Nrd1 from the nucleus. Elongated transcripts were identified within all classes of known NNS targets with the largest changes in transcription termination occurring at CUTs. Interestingly, the extended transcripts that we have detected in our studies show remarkable similarity to Nrd1-unterminated transcripts at many locations, suggesting that Rrp6 acts with the NNS complex globally to promote transcription termination in addition to 3’ end RNA processing and/or degradation at specific targets. RNAPII is responsible for transcription of protein-coding genes and short, regulatory RNAs. In Saccharomyces cerevisiae, termination of RNAPII-transcribed RNAs ≤1000 bases requires the NNS complex (comprised of Nrd1, Nab3, and Sen1), processing by the exosome, and the nuclear specific catalytic subunit, Rrp6. It has been shown that Rrp6 interacts directly with Nrd1, but whether or not Rrp6 is required for NNS-dependent termination is unclear. Loss of Rrp6 function may result in extension (or inhibition of termination) of NNS-dependent transcripts, or Rrp6 may only function after the fact to carry out RNA 3’ end processing. Here, we performed in-depth differential expression analyses and compare RNA-sequencing data of transcript length and abundance in cells lacking RRP6 to ChIP-exo analysis of RNAPII localization. We find many transcripts that were defined as unterminated upon loss of Nrd1 activity are of similar length in rrp6Δ, and expression levels of downstream genes are significantly decreased. This suggests a similar transcription interference mechanism occurs in cells lacking either Nrd1 or Rrp6. Indeed we find increased RNAPII located downstream of its termination site at many know Nrd1-regulated transcripts. Overall, our findings clearly demonstrate that Rrp6 activity is required for efficient NNS termination in vivo.
Collapse
|
57
|
Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 2014; 33:2829-46. [PMID: 25319414 DOI: 10.15252/embj.201488757] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The exosome is a conserved multi-subunit ribonuclease complex that functions in 3' end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10-subunit core complex of the exosome (Exo-10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo-10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N-terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N-terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C-terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6-Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome.
Collapse
Affiliation(s)
- Benjamin Schuch
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Monika Feigenbutz
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, UK
| | - Debora L Makino
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Falk
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Claire Basquin
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Phil Mitchell
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, UK
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
58
|
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, Rodriguez-Justo M, Miles K, Ellis P, Groves A, Punwani S, Ng T. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. BJR Case Rep 2014. [DOI: 10.1259/bjrcr.20140065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
59
|
Wasmuth EV, Januszyk K, Lima CD. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 2014; 511:435-9. [PMID: 25043052 PMCID: PMC4310248 DOI: 10.1038/nature13406] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 01/24/2023]
Abstract
The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 Å crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on top of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.
Collapse
Affiliation(s)
- Elizabeth V. Wasmuth
- Structural Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Christopher D. Lima
- Structural Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
60
|
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, Rodriguez-Justo M, Miles K, Ellis P, Groves A, Punwani S, Ng T. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br J Radiol 2014; 87:20140065. [PMID: 24597512 PMCID: PMC4075563 DOI: 10.1259/bjr.20140065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/03/2014] [Indexed: 01/10/2023] Open
Abstract
Tumour heterogeneity has, in recent times, come to play a vital role in how we understand and treat cancers; however, the clinical translation of this has lagged behind advances in research. Although significant advancements in oncological management have been made, personalized care remains an elusive goal. Inter- and intratumour heterogeneity, particularly in the clinical setting, has been difficult to quantify and therefore to treat. The histological quantification of heterogeneity of tumours can be a logistical and clinical challenge. The ability to examine not just the whole tumour but also all the molecular variations of metastatic disease in a patient is obviously difficult with current histological techniques. Advances in imaging techniques and novel applications, alongside our understanding of tumour heterogeneity, have opened up a plethora of non-invasive biomarker potential to examine tumours, their heterogeneity and the clinical translation. This review will focus on how various imaging methods that allow for quantification of metastatic tumour heterogeneity, along with the potential of developing imaging, integrated with other in vitro diagnostic approaches such as genomics and exosome analyses, have the potential role as a non-invasive biomarker for guiding the treatment algorithm.
Collapse
Affiliation(s)
- R Chowdhury
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
The human oral cavity is home to a large and diverse community of viruses that have yet to be characterized in patients with periodontal disease. We recruited and sampled saliva and oral biofilm from a cohort of humans either periodontally healthy or with mild or significant periodontal disease to discern whether there are differences in viral communities that reflect their oral health status. We found communities of viruses inhabiting saliva and the subgingival and supragingival biofilms of each subject that were composed largely of bacteriophage. While there were homologous viruses common to different subjects and biogeographic sites, for most of the subjects, virome compositions were significantly associated with the oral sites from which they were derived. The largest distinctions between virome compositions were found when comparing the subgingival and supragingival biofilms to those of planktonic saliva. Differences in virome composition were significantly associated with oral health status for both subgingival and supragingival biofilm viruses but not for salivary viruses. Among the differences identified in virome compositions was a significant expansion of myoviruses in subgingival biofilm, suggesting that periodontal disease favors lytic phage. We also characterized the bacterial communities in each subject at each biogeographic site by using the V3 hypervariable segment of the 16S rRNA and did not identify distinctions between oral health and disease similar to those found in viral communities. The significantly altered ecology of viruses of oral biofilm in subjects with periodontal disease compared to that of relatively periodontally healthy ones suggests that viruses may serve as useful indicators of oral health status. Little is known about the role or the constituents of viruses as members of the human microbiome. We investigated the composition of human oral viral communities in a group of relatively periodontally healthy subjects or significant periodontitis to determine whether health status may be associated with differences in viruses. We found that most of the viruses present were predators of bacteria. The viruses inhabiting dental plaque were significantly different on the basis of oral health status, while those present in saliva were not. Dental plaque viruses in periodontitis were predicted to be significantly more likely to kill their bacterial hosts than those found in healthy mouths. Because oral diseases such as periodontitis have been shown to have altered bacterial communities, we believe that viruses and their role as drivers of ecosystem diversity are important contributors to the human oral microbiome in health and disease states.
Collapse
|
62
|
Quality control of mRNP biogenesis: networking at the transcription site. Semin Cell Dev Biol 2014; 32:37-46. [PMID: 24713468 DOI: 10.1016/j.semcdb.2014.03.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery.
Collapse
|
63
|
Jobert L, Nilsen H. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes. Cell Mol Life Sci 2014; 71:2451-65. [PMID: 24496644 PMCID: PMC4055861 DOI: 10.1007/s00018-014-1562-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/05/2014] [Accepted: 01/10/2014] [Indexed: 12/13/2022]
Abstract
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.
Collapse
Affiliation(s)
- Laure Jobert
- Division of Medicine, Department of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen, 1478 Lørenskog, Norway
| | - Hilde Nilsen
- Division of Medicine, Department of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen, 1478 Lørenskog, Norway
- Department of Clinical Molecular Biology, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Blindern, P.O.Box 1171, 0318 Oslo, Norway
| |
Collapse
|
64
|
Stoecklin G, Bukau B. Telling right from wrong in life - cellular quality control. Nat Rev Mol Cell Biol 2013; 14:613-5. [PMID: 24199228 DOI: 10.1038/nrm3662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An astounding ability to discriminate functional molecules from a range of unsuitable molecules is the cornerstone of cellular physiology. In all living cells, a hierarchy of communicating mechanisms directed at identifying, isolating, removing or repairing damaged molecules continuously monitors and maintains genomic integrity and cellular homeostasis, ensuring survival under changing and adverse conditions. This network interconnects with cytoprotective processes, which act preventively to avoid damage before it occurs. Altogether, this represents a massive evolutionary investment in cellular quality control. Four articles in this issue of Nature Reviews Molecular Cell Biology offer insights into emerging aspects of the cellular quality control network relating to RNA and proteins.
Collapse
|