51
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder that is characterized by a progressive degeneration of the upper and lower motor neurons. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease. High-throughput DNA sequencing and related genomic capture tools are methodological advances which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic ALS. It is interesting to note that as the number of ALS genes grows, many of the proteins they encode are in shared intracellular processes. This review will summarize some of the recent advances and gene discovery made in ALS.
Collapse
|
52
|
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc Natl Acad Sci U S A 2016; 113:E7701-E7709. [PMID: 27849576 DOI: 10.1073/pnas.1611673113] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.
Collapse
|
53
|
Bodea L, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem 2016; 138 Suppl 1:71-94. [PMID: 27306859 PMCID: PMC5094566 DOI: 10.1111/jnc.13600] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/31/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anne Eckert
- Neurobiology LaboratoryPsychiatric University Clinics BaselUniversity of BaselBaselSwitzerland
| | - Lars Matthias Ittner
- Dementia Research UnitSchool of Medical SciencesFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
54
|
Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupré N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 2016; 4:70. [PMID: 27400686 PMCID: PMC4940869 DOI: 10.1186/s40478-016-0340-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| | - Paul N Valdmanis
- Departments of Pediatrics and Genetics, Stanford University, 269 Campus Drive, CCSR 2110, Stanford, CA, 94305-5164, USA
| | - Peter V Gould
- Division of Anatomic Pathology and Neuropathology, Department of Medical Biology, CHU de Québec, Hôpital de l'Enfant-Jésus, 1401, 18th street, Québec, QC, Canada, G1J 1Z4
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Nicolas Dupré
- Axe Neurosciences & The Department of Medicine, Faculty of Medicine, CHU de Québec, Laval University, 1401, 18th street, Québec, QC, G1J 1Z4, Canada.
| |
Collapse
|
55
|
Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia. Neurobiol Learn Mem 2016; 130:34-43. [DOI: 10.1016/j.nlm.2016.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/07/2016] [Accepted: 01/16/2016] [Indexed: 12/12/2022]
|
56
|
Moujalled D, White AR. Advances in the Development of Disease-Modifying Treatments for Amyotrophic Lateral Sclerosis. CNS Drugs 2016; 30:227-43. [PMID: 26895253 DOI: 10.1007/s40263-016-0317-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset, neurodegenerative disease characterized by the degeneration of upper and lower motor neurons. Over recent years, numerous genes ha ve been identified that promote disease pathology, including SOD1, TARDBP, and the expanded hexanucleotide repeat (GGGGCC) within C9ORF72. However, despite these major advances in identifying genes contributing to ALS pathogenesis, there remains only one currently approved therapeutic: the glutamate antagonist, riluzole. Seminal breakthroughs in the pathomechanisms and genetic factors associated with ALS have heavily relied on the use of rodent models that recapitulate the ALS phenotype; however, while many therapeutics have proved to be significant in animal models by prolonging life and rescuing motor deficits, they have failed in human clinical trials. This may be due to fundamental differences between rodent models and human disease, the fact that animal models are based on overexpression of mutated genes, and confounding issues such as difficulties mimicking the dosing schedules and regimens implemented in mouse models to humans. Here, we review the major pathways associated with the pathology of ALS, the rodent models engineered to test efficacy of candidate drugs, the advancements being made in stem cell therapy for ALS, and what strategies may be important to circumvent the lack of successful translational studies in the clinic.
Collapse
Affiliation(s)
- Diane Moujalled
- Department of Pathology and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Anthony R White
- Department of Pathology and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
57
|
Piscopo P, Albani D, Castellano AE, Forloni G, Confaloni A. Frontotemporal Lobar Degeneration and MicroRNAs. Front Aging Neurosci 2016; 8:17. [PMID: 26903860 PMCID: PMC4746266 DOI: 10.3389/fnagi.2016.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/21/2016] [Indexed: 12/18/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) includes a spectrum of disorders characterized by changes of personality and social behavior and, often, a gradual and progressive language dysfunction. In the last years, several efforts have been fulfilled in identifying both genetic mutations and pathological proteins associated with FTLD. The molecular bases undergoing the onset and progression of the disease remain still unknown. Recent literature prompts an involvement of RNA metabolism in FTLD, particularly microRNAs (miRNAs). Dysregulation of miRNAs in several disorders, including neurodegenerative diseases, and increasing importance of circulating miRNAs in different pathologies has suggested to implement the study of their possible application as biological markers and new therapeutic targets; moreover, miRNA-based therapy is becoming a powerful tool to deepen the function of a gene, the mechanism of a disease, and validate therapeutic targets. Regarding FTLD, different studies showed that miRNAs are playing an important role. For example, several reports have evaluated miRNA regulation of the progranulin gene suggesting that it is under their control, as described for miR-29b, miR-107, and miR-659. More recently, it has been demonstrated that TMEM106B gene, which protein is elevated in FTLD-TDP brains, is repressed by miR-132/212 cluster; this post-transcriptional mechanism increases intracellular levels of progranulin, affecting its pathways. These findings if confirmed could suggest that these microRNAs have a role as potential targets for some related-FTLD genes. In this review, we focus on the emerging roles of the miRNAs in the pathogenesis of FTLD.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Milano, Italy
| | | | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Milano, Italy
| | | |
Collapse
|
58
|
Zou ZY, Liu CY, Che CH, Huang HP. Toward precision medicine in amyotrophic lateral sclerosis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:27. [PMID: 26889480 PMCID: PMC4731596 DOI: 10.3978/j.issn.2305-5839.2016.01.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
Precision medicine is an innovative approach that uses emerging biomedical technologies to deliver optimally targeted and timed interventions, customized to the molecular drivers of an individual's disease. This approach is only just beginning to be considered for treating amyotrophic lateral sclerosis (ALS). The clinical and biological complexities of ALS have hindered development of effective therapeutic strategies. In this review we consider applying the key elements of precision medicine to ALS: phenotypic classification, comprehensive risk assessment, presymptomatic period detection, potential molecular pathways, disease model development, biomarker discovery and molecularly tailored interventions. Together, these would embody a precision medicine approach, which may provide strategies for optimal targeting and timing of efforts to prevent, stop or slow progression of ALS.
Collapse
Affiliation(s)
- Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
59
|
ElMallah MK, Stanley DA, Lee KZ, Turner SMF, Streeter KA, Baekey DM, Fuller DD. Power spectral analysis of hypoglossal nerve activity during intermittent hypoxia-induced long-term facilitation in mice. J Neurophysiol 2015; 115:1372-80. [PMID: 26683067 DOI: 10.1152/jn.00479.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
Power spectral analyses of electrical signals from respiratory nerves reveal prominent oscillations above the primary rate of breathing. Acute exposure to intermittent hypoxia can induce a form of neuroplasticity known as long-term facilitation (LTF), in which inspiratory burst amplitude is persistently elevated. Most evidence indicates that the mechanisms of LTF are postsynaptic and also that high-frequency oscillations within the power spectrum show coherence across different respiratory nerves. Since the most logical interpretation of this coherence is that a shared presynaptic mechanism is responsible, we hypothesized that high-frequency spectral content would be unchanged during LTF. Recordings of inspiratory hypoglossal (XII) activity were made from anesthetized, vagotomized, and ventilated 129/SVE mice. When arterial O2 saturation (SaO2) was maintained >96%, the XII power spectrum and burst amplitude were unchanged for 90 min. Three, 1-min hypoxic episodes (SaO2 = 50 ± 10%), however, caused a persistent (>60 min) and robust (>400% baseline) increase in burst amplitude. Spectral analyses revealed a rightward shift of the signal content during LTF, with sustained increases in content above ∼125 Hz following intermittent hypoxia and reductions in power at lower frequencies. Changes in the spectral content during LTF were qualitatively similar to what occurred during the acute hypoxic response. We conclude that high-frequency content increases during XII LTF in this experimental preparation; this may indicate that intermittent hypoxia-induced plasticity in the premotor network contributes to expression of XII LTF.
Collapse
Affiliation(s)
- Mai K ElMallah
- Department of Pediatrics, Division of Pulmonary Medicine, University of Florida, Gainesville, Florida
| | - David A Stanley
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sara M F Turner
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Kristi A Streeter
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - David M Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - David D Fuller
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
60
|
Ke YD, van Hummel A, Stevens CH, Gladbach A, Ippati S, Bi M, Lee WS, Krüger S, van der Hoven J, Volkerling A, Bongers A, Halliday G, Haass NK, Kiernan M, Delerue F, Ittner LM. Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS. Acta Neuropathol 2015; 130:661-78. [PMID: 26437864 DOI: 10.1007/s00401-015-1486-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/26/2015] [Accepted: 09/27/2015] [Indexed: 12/28/2022]
Abstract
The nuclear transactive response DNA-binding protein 43 (TDP-43) undergoes relocalization to the cytoplasm with formation of cytoplasmic deposits in neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Pathogenic mutations in the TDP-43-encoding TARDBP gene in familial ALS as well as non-mutant human TDP-43 have been utilized to model FTD/ALS in cell culture and animals, including mice. Here, we report novel A315T mutant TDP-43 transgenic mice, iTDP-43(A315T), with controlled neuronal over-expression. Constitutive expression of human TDP-43(A315T) resulted in pronounced early-onset and progressive neurodegeneration, which was associated with compromised motor performance, spatial memory and disinhibition. Muscle atrophy resulted in reduced grip strength. Cortical degeneration presented with pronounced astrocyte activation. Using differential protein extraction from iTDP-43(A315T) brains, we found cytoplasmic localization, fragmentation, phosphorylation and ubiquitination and insolubility of TDP-43. Surprisingly, suppression of human TDP-43(A315T) expression in mice with overt neurodegeneration for only 1 week was sufficient to significantly improve motor and behavioral deficits, and reduce astrogliosis. Our data suggest that functional deficits in iTDP-43(A315T) mice are at least in part a direct and transient effect of the presence of TDP-43(A315T). Furthermore, it illustrates the compensatory capacity of compromised neurons once transgenic TDP-43 is removed, with implications for future treatments.
Collapse
|
61
|
Vernay A, Sellal F, René F. Evaluating Behavior in Mouse Models of the Behavioral Variant of Frontotemporal Dementia: Which Test for Which Symptom? NEURODEGENER DIS 2015; 16:127-39. [PMID: 26517704 DOI: 10.1159/000439253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
The behavioral variant of frontotemporal dementia (bvFTD) is a neurodegenerative disease affecting people in their early sixties, characterized by dramatic changes in individual and social behavior. Despite the heterogeneity in the presentation of the clinical symptoms of bvFTD, some characteristic changes can be highlighted. Social disinhibition, changes in food preferences as well as loss of empathy and apathy are commonly described. This is accompanied by a characteristic and dramatic atrophy of the prefrontal cortex with the accumulation of protein aggregates in the neurons in this area. Several causative mutations in different genes have been discovered, allowing the development of transgenic animal models, especially mouse models. In mice, attention has been focused on the histopathological aspects of the pathology, but now studies are taking interest in assessing the behavioral phenotype of FTD models. Finding the right test corresponding to human symptoms is quite challenging, especially since the frontal cortex is much less developed in mice than in humans. Although challenging, the ability to detect relevant prefrontal cortex impairments in mice is crucial for therapeutic approaches. In this review, we aim to present the approaches that have been used to model the behavioral symptoms of FTD and to explore other relevant approaches to assess behavior involving the prefrontal cortex, as well as the deficits associated with FTD.
Collapse
Affiliation(s)
- Aurélia Vernay
- INSERM, U1118, Laboratoire des Mx00E9;canismes Centraux et Px00E9;riphx00E9;riques de la Neurodx00E9;gx00E9;nx00E9;rescence, Strasbourg, France
| | | | | |
Collapse
|