51
|
Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor. PLoS One 2022; 17:e0279584. [PMID: 36548354 PMCID: PMC9778607 DOI: 10.1371/journal.pone.0279584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1β inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1β and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1β, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.
Collapse
|
52
|
Zhang C, Zhang S, Liao J, Gong Z, Chai X, Lyu H. Towards Better Sinomenine-Type Drugs to Treat Rheumatoid Arthritis: Molecular Mechanisms and Structural Modification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248645. [PMID: 36557779 PMCID: PMC9781648 DOI: 10.3390/molecules27248645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Sinomenine is the main component of the vine Sinomenium acutum. It was first isolated in the early 1920s and has since attracted special interest as a potential anti-rheumatoid arthritis (RA) agent, owing to its successful application in traditional Chinese medicine for the treatment of neuralgia and rheumatoid diseases. In the past few decades, significant advances have broadened our understanding of the molecular mechanisms through which sinomenine treats RA, as well as the structural modifications necessary for improved pharmacological activity. In this review, we summarize up-to-date reports on the pharmacological properties of sinomenine in RA treatment, document their underlying mechanisms, and provide an overview of promising sinomenine derivatives as potential RA drug therapies.
Collapse
Affiliation(s)
- Cuili Zhang
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Shujie Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Liao
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Xin Chai
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (X.C.); (H.L.)
| | - Haining Lyu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450006, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (X.C.); (H.L.)
| |
Collapse
|
53
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
54
|
Özlem Özden Akkaya, Nawaz S, Dikmen T, Erdoğan M. Determining the Notch1 Expression in Chondrogenically Differentiated Rat Amniotic Fluid Stem Cells in Alginate Beads Using Conditioned Media from Chondrocytes Culture. BIOL BULL+ 2022. [DOI: 10.1134/s106235902215002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
55
|
Yang G, Kang HC, Cho YY, Lee HS, Lee JY. Inflammasomes and their roles in arthritic disease pathogenesis. Front Mol Biosci 2022; 9:1027917. [PMID: 36387275 PMCID: PMC9650081 DOI: 10.3389/fmolb.2022.1027917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 11/14/2023] Open
Abstract
The inflammasome is a molecular platform that is created in the cytosolic compartment to mediate the host immunological response to cellular injury and infection. Caspase-1 may be activated by the inflammasome, which leads to the generation of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and the beginning of pyroptosis, which is a type of proinflammatory cell death. Scientists have identified a number of different inflammasomes in the last 2 decades. The NLRP3 inflammasome has been studied the most, and its activity may be triggered by a broad range of different inducers. However, activation of the NLRP3 inflammasome in a manner that is not properly controlled is also a factor in the etiology of many human illnesses. Accumulating evidence indicates that the NLRP3 inflammasome plays a significant role in the innate and adaptive immune systems and the development of various arthritic illnesses, such as rheumatoid arthritis, ankylosing spondylitis, and gout. The present review provides a concise summary of the biological properties of the NLRP3 inflammasome and presents the fundamental processes behind its activation and control. We discuss the role of the inflammasome in the pathogenesis of arthritic diseases, such as rheumatoid arthritis, ankylosing spondylitis, and gout, and the potential of newly developed therapies that specifically target the inflammasome or its products for the treatment of inflammatory diseases, with a particular emphasis on treatment and clinical application.
Collapse
Affiliation(s)
- Gabsik Yang
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonju, South Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Seoul, South Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Seoul, South Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Seoul, South Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
56
|
Kim JH, Park YB, Ha CW. Are leukocyte-poor or multiple injections of platelet-rich plasma more effective than hyaluronic acid for knee osteoarthritis? A systematic review and meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg 2022:10.1007/s00402-022-04637-5. [PMID: 36173473 DOI: 10.1007/s00402-022-04637-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Platelet-rich plasma (PRP) has gained popularity as a treatment option for knee osteoarthritis; however, its efficacy remains controversial. The optimal leukocyte concentration and number of injections have not been well investigated. This study was, therefore, designed to provide clinical evidence on the leukocyte concentration and number of intra-articular injections of PRP via a meta-analysis of randomized controlled trials (RCTs). METHODS The MEDLINE, Embase, Cochrane Library, CINAHL, and Scopus databases were searched and RCTs comparing PRP and hyaluronic acid (HA) for treating knee osteoarthritis were included. Clinical outcomes, including visual analog scale (VAS) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and adverse reactions, were evaluated. RESULTS A total of 138 studies were screened, of which 21 level 1 RCTs (2086 knees; 1077 PRP and 1009 HA) were included. PRPs showed significant improvement in pain according to the VAS score compared to HA at 6 and 12 months, regardless of leukocyte concentration. Both single and multiple injections of PRP improved pain better than HA at 12 months. Regarding function, both single and multiple injections of leukocyte-poor PRP and leukocyte-rich PRP led to significantly better improvement in total WOMAC score compared with HA at 6 months. There was no significant difference in procedure-related knee pain or swelling between the PRP and HA groups. Leukocyte-rich PRP had a significantly higher odds ratio for procedure-related knee pain or swelling compared to HA (odds ratio, 3.3 [95% confidence interval, 1.1-10.2], P = .037). CONCLUSION Based on evidence from Level 1 studies, intra-articular injection of PRP improves pain and function in patients with knee osteoarthritis for up to 12 months and is superior to HA, regardless of leukocyte concentration or number of injections. The findings of this study support the routine clinical use of intra-articular injections of PRP for the treatment of knee osteoarthritis, regardless of the type and frequency of PRP injection. LEVEL OF EVIDENCE Meta-analysis of level I studies.
Collapse
Affiliation(s)
- Jun-Ho Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, 110 Deokan-ro, Gwangmyeong-si, Gyeonggi-do, 14353, South Korea.
| | - Chul-Won Ha
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| |
Collapse
|
57
|
Glycogen Synthase Kinase 3β inhibits BMSCs Chondrogenesis in Inflammation via the Cross-Reaction between NF-κB and β-Catenin in the Nucleus. Stem Cells Int 2022; 2022:5670403. [PMID: 36132167 PMCID: PMC9484947 DOI: 10.1155/2022/5670403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation can influence the pluripotency and self-renewal of mesenchymal stem cells (MSCs), thereby altering their cartilage regeneration ability. Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (BMSCs) were isolated and found to be defective in differentiation potential in the interleukin-1β- (IL-1β-) induced inflammatory microenvironment. Glycogen synthase kinase-3β (GSK-3β) is an evolutionarily conserved serine/threonine kinase that plays a role in numerous cellular processes. The role of GSK-3β in inflammation may be related to the nuclear factor-κB (NF-κB) signaling pathway and the Wnt/β-catenin signaling pathway, whose mechanism remains unclear. In this study, we found that GSK-3β can inhibit chondrogenesis of IL-1β-impaired BMSCs by disrupting metabolic balance and promoting cell apoptosis. By using the inhibitors LiCl and SN50, we demonstrated that GSK-3β regulates the chondrogenesis via the NF-κB and Wnt/β-catenin signaling pathways and possibly mediates the cross-reaction between NF-κB and β-catenin in the nucleus. Given the molecular mechanisms of GSK-3β in chondrogenic differentiation in inflammation, GSK-3β is a crucial target for the treatment of inflammation-induced cartilage disease.
Collapse
|
58
|
Zhu S, Dang J, Shi Y, Feng X, Hu Y, Lin L, Huang J. Sonic hedgehog promotes synovial inflammation and articular damage through p38 mitogen-activated protein kinase signaling in experimental arthritis. J Autoimmun 2022; 132:102902. [PMID: 36088884 DOI: 10.1016/j.jaut.2022.102902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
Activated fibroblast-like synoviocytes (FLS) play a pivotal role in synovial inflammation and joint destruction of rheumatoid arthritis (RA). The mechanisms by which sonic hedgehog (SHH) signaling promotes RA FLS-mediated chronic inflammation and tissue damage are not fully understood. The present study aims to determine the role of SHH signaling in the pathogenesis of RA and to explore the potential mechanism(s). We found that the components of SHH signaling were highly expressed in FLS and synovial tissue from patients with RA and in the joint tissue of collagen-induced arthritis (CIA) mice. Overexpression of SHH aggravated the synovial inflammation and joint destruction of CIA and exacerbated cartilage degradation in the cartilage and RA FLS-engrafted severe combined immunodeficiency (SCID) model. Conversely, inhibition of SHH signaling significantly alleviated arthritis severity and reduced cartilage destruction caused by the invasion of RA FLS in vivo. Moreover, we found that p38 mitogen-activated protein kinase (MAPK) cascade was regulated by SHH signaling in RA FLS and the level of phospho-p38 in the joint tissue of CIA was decreased after blockade of SHH signaling. Inhibition of p38 MAPK abolished the effect of SHH overexpression on synovial inflammation and articular destruction of CIA and suppressed the aggressive properties of RA FLS, which were promoted by SHH agonist. In conclusion, our study suggests that SHH signaling aggravates synovial inflammation and joint destruction of experimental arthritis and promotes the abnormal behavior of RA FLS in a p38-dependent manner. SHH-p38 MAPK signaling could be a potential target for the treatment of RA.
Collapse
Affiliation(s)
- Shangling Zhu
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China
| | - Junlong Dang
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, PR China; Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Yiming Shi
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China
| | - Xiaoxue Feng
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China
| | - Yudan Hu
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China
| | - Lang Lin
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China
| | - Jianlin Huang
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China.
| |
Collapse
|
59
|
Zhou R, Chen Y, Li S, Wei X, Hu W, Tang S, Ding J, Fu W, Zhang H, Chen F, Hao W, Lin Y, Zhu R, Wang K, Dong L, Zhao Y, Feng X, Chen F, Ding C, Hu W. TRPM7 channel inhibition attenuates rheumatoid arthritis articular chondrocyte ferroptosis by suppression of the PKCα-NOX4 axis. Redox Biol 2022; 55:102411. [PMID: 35917680 PMCID: PMC9344030 DOI: 10.1016/j.redox.2022.102411] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022] Open
Abstract
A role for ferroptosis in articular cartilage destruction associated with rheumatoid arthritis (RA) has not been identified. We previously reported transient receptor potential melastatin 7 (TRPM7) expression was correlated with RA cartilage destruction. Herein, we further characterized a role for TRPM7 in chondrocyte ferroptosis. The expression of TRPM7 was found to be elevated in articular chondrocytes derived from adjuvant arthritis (AA) rats, human RA patients, and cultured chondrocytes treated with the ferroptosis inducer, erastin. TRPM7 knockdown or pharmacological inhibition protected primary rat articular chondrocytes and human chondrocytes (C28/I2 cells) from ferroptosis. Moreover, TRPM7 channel activity was demonstrated to contribute to chondrocyte ferroptosis by elevation of intracellular Ca2+. Mechanistically, the PKCα-NOX4 axis was found to respond to stimulation with erastin, which resulted in TRPM7-mediated chondrocyte ferroptosis. Meanwhile, PKCα was shown to directly bind to NOX4, which could be reduced by TRPM7 channel inhibition. Adeno-associated virus 9-mediated TRPM7 silencing or TRPM7 blockade with 2-APB alleviated articular cartilage destruction in AA rats and inhibited chondrocyte ferroptosis. Collectively, both genetic and pharmacological inhibitions of TRPM7 attenuated articular cartilage damage and chondrocyte ferroptosis via the PKCα-NOX4 axis, suggesting that TRPM7-mediated chondrocyte ferroptosis is a promising target for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xin Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Weirong Hu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wanjin Fu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hailin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fan Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wenjuan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rendi Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ke Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Xiaowen Feng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Feihu Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
60
|
Gonçalves C, Carvalho DN, Silva TH, Reis RL, Oliveira JM. Engineering of Viscosupplement Biomaterials for Treatment of Osteoarthritis: A Comprehensive Review. ADVANCED ENGINEERING MATERIALS 2022; 24. [DOI: 10.1002/adem.202101541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 01/06/2025]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease that causes severe pain and functional limitation, especially during locomotion. It is the most common arthritis type that damages the surface of articular cartilage until the underlying bone. In the past decade, the scientific community has made a considerable effort to improve or discover therapeutical products used as a form of conservative treatment capable of restoring the damaged articular tissue, avoiding, as far as possible, the use of surgical practices. The most common and direct nonoperative application available for OA treatment is the viscosupplementation (VS) procedure that demonstrates a safe, effective method and is less painful for the patients. The most recent works dealing with the design, development, and validation of viscosupplement products in preclinical and clinical trials for OA treatment are overviewed herein. In general, despite the development of new products, hyaluronic acid continues to be among the most reported intra‐articular viscosupplement products used in clinical trials, typically used as an isolated product or conjugated with other biologicals or drugs, such as platelet‐rich plasma and corticosteroids (CS). However, this issue is still demanding innovation. Approaches comprising new biomaterials as VS products, with intrinsic bioactivity, economical, and environmental friendliness, are required.
Collapse
Affiliation(s)
- Cristiana Gonçalves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Guimarães Barco Portugal
- ICVS/3B's–PT Government Associate Laboratory Guimarães Barco Portugal
| | - Duarte Nuno Carvalho
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Guimarães Barco Portugal
- ICVS/3B's–PT Government Associate Laboratory Guimarães Barco Portugal
| | - Tiago H. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Guimarães Barco Portugal
- ICVS/3B's–PT Government Associate Laboratory Guimarães Barco Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Guimarães Barco Portugal
- ICVS/3B's–PT Government Associate Laboratory Guimarães Barco Portugal
| | - J. Miguel Oliveira
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Guimarães Barco Portugal
- ICVS/3B's–PT Government Associate Laboratory Guimarães Barco Portugal
| |
Collapse
|
61
|
Wojdas M, Dąbkowska K, Kuźnik-Trocha K, Wisowski G, Lachór-Motyka I, Komosińska-Vassev K, Olczyk K, Winsz-Szczotka K. Plasma Glycosaminoglycans in Children with Juvenile Idiopathic Arthritis Being Treated with Etanercept as Potential Biomarkers of Joint Dysfunction. Biomedicines 2022; 10:biomedicines10081845. [PMID: 36009392 PMCID: PMC9405228 DOI: 10.3390/biomedicines10081845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
We assessed the effect of two-year etanercept (ETA) therapy on the metabolism of the cartilage extracellular matrix (ECM) in patients with juvenile idiopathic arthritis (JIA). Methods: We performed a quantitative evaluation of glycosaminoglycans (GAGs) (performed by the multistage extraction and purification method) in blood obtained from patients before and during 24 months of ETA treatment, as potential biomarker of joint dysfunction and indicators of biological effectiveness of therapy. Since the metabolism of GAGs is related to the activity of proteolytic enzymes and prooxidant–antioxidant factors, we decided to evaluate the relationship between GAGs and the levels of metalloproteinases (MMP), i.e., MMP-1 and MMP-3 (using immunoenzymatic methods), as well as the total antioxidative status (TAS) (using the colorimetric method) in blood of the JIA patients. Results: When compared to the controls, GAGs and TAS concentrations were significantly lower in patients with an aggressive course of JIA qualified for ETA treatment. MMP-1 and MMP-3 levels were significantly higher versus control values. An anti-cytokine therapy leading to clinical improvement does not lead to the normalization of any of the assessed parameters. GAGs concentration is significantly related to MMP-1, MMP-3, TAS, TOS, and CRP levels. Conclusion: The results of the present study indicate the necessity of constant monitoring of the dynamics of destructive processes of articular cartilage in children with JIA. We suggest that GAGs may be a useful biomarker to assess the clinical status of the extracellular matrix of joints.
Collapse
Affiliation(s)
- Magdalena Wojdas
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
- Correspondence:
| | - Klaudia Dąbkowska
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Iwona Lachór-Motyka
- Department of Rheumatology, The John Paul II Pediatric Center in Sosnowiec, ul. G. Zapolskiej 3, 41-218 Sosnowiec, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Katarzyna Winsz-Szczotka
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| |
Collapse
|
62
|
Zou N, Liu R, Li C. Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Front Cell Dev Biol 2022; 10:818462. [PMID: 35912093 PMCID: PMC9326176 DOI: 10.3389/fcell.2022.818462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K (Ctsk) is a cysteine protease of the papain superfamily initially identified in differentiated osteoclasts; it plays a critical role in degrading the bone matrix. However, subsequent in vivo and in vitro studies based on animal models elucidate novel subpopulations of Ctsk-expressing cells, which display markers and properties of mesenchymal stem/progenitor cells. This review introduces the function, identity, and role of Ctsk+ cells and their therapeutic implications in related preclinical osseous disorder models. It also summarizes the available in vivo models for studying Ctsk+ cells and their progeny. Further investigations of detailed properties and mechanisms of Ctsk+ cells in transgenic models are required to guide potential therapeutic targets in multiple diseases in the future.
Collapse
Affiliation(s)
- Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Changjun Li,
| |
Collapse
|
63
|
Shao G, Xie W, Jia X, Bade R, Xie Y, Qi R, Gong K, Bai H, Si L, Chen Y, Sun K, Bo A. Overview of Traditional Mongolian Medical Warm Acupuncture. Aging Dis 2022; 13:1030-1041. [PMID: 35855342 PMCID: PMC9286911 DOI: 10.14336/ad.2022.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Mongolian medical warm acupuncture is a traditional therapy of Mongolian medicine and was developed by people living on the Mongolian Plateau. This kind of traditional oriental medicine has a long history. The main characteristics of Mongolian medical warm acupuncture are the acupoints and the needles used. Its theory is based on the human anatomical structure and the distinct local culture. Mongolian medical warm acupuncture has been practiced for centuries and proved to be very effective in the treatment of age-related diseases, including the musculoskeletal and nervous diseases. This paper aims to briefly introduce the history and scope of Mongolian medical warm acupuncture, with a particular focus on age-related diseases, where Mongolian medical warm acupuncture has shown significant beneficial effects.
Collapse
Affiliation(s)
- Guo Shao
- Center for Translational Medicine and Department of Laboratory Medicine, the Third People’s Hospital of Longgang District Shenzhen, Shenzhen, China.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Wei Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Xiaoe Jia
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Rengui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yabing Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Ruifang Qi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA.
| | - Haihua Bai
- Inner Mongolia Minzu University, Tongliao, China.
| | - Lengge Si
- Inner Mongolia Minzu University, Tongliao, China.
| | | | - Kai Sun
- Center for Translational Medicine and Department of Laboratory Medicine, the Third People’s Hospital of Longgang District Shenzhen, Shenzhen, China.
| | - Agula Bo
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China.
| |
Collapse
|
64
|
Jávor P, Mácsai A, Butt E, Baráth B, Jász DK, Horváth T, Baráth B, Csonka Á, Török L, Varga E, Hartmann P. Mitochondrial Dysfunction Affects the Synovium of Patients with Rheumatoid Arthritis and Osteoarthritis Differently. Int J Mol Sci 2022; 23:ijms23147553. [PMID: 35886901 PMCID: PMC9319158 DOI: 10.3390/ijms23147553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence regarding the role of mitochondrial dysfunction in osteoarthritis (OA) and rheumatoid arthritis (RA). However, quantitative comparison of synovial mitochondrial derangements in these main arthritis forms is missing. A prospective clinical study was conducted on adult patients undergoing knee surgery. Patients were allocated into RA and OA groups based on disease-specific clinical scores, while patients without arthritis served as controls. Synovial samples were subjected to high-resolution respirometry to analyze mitochondrial functions. From the total of 814 patients, 109 cases were enrolled into the study (24 RA, 47 OA, and 38 control patients) between 1 September 2019 and 31 December 2021. The decrease in complex I-linked respiration and dyscoupling of mitochondria were characteristics of RA patients, while both arthritis groups displayed reduced OxPhos activity compared to the control group. However, no significant difference was found in complex II-related activity between the OA and RA groups. The cytochrome C release and H2O2 formation were increased in both arthritis groups. Mitochondrial dysfunction was present in both arthritis groups; however, to a different extent. Consequently, mitochondrial protective agents may have major benefits for arthritis patients. Based on our current study, we recommend focusing on respiratory complex I in rheumatoid arthritis research.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Attila Mácsai
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Edina Butt
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Bálint Baráth
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Dávid Kurszán Jász
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Tamara Horváth
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Bence Baráth
- Department of Pathology, University of Szeged, 6720 Szeged, Hungary;
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - László Török
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Department of Sports Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Endre Varga
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Correspondence:
| |
Collapse
|
65
|
Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol 2022; 18:415-429. [PMID: 35705856 DOI: 10.1038/s41584-022-00793-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by inflammation and destruction of bone and cartilage in affected joints. Autoimmune responses lead to increased osteoclastic bone resorption and impaired osteoblastic bone formation, the imbalance of which underlies bone loss in RA, which includes bone erosion, periarticular bone loss and systemic osteoporosis. The crucial role of osteoclasts in bone erosion has been demonstrated in basic studies as well as by the clinical efficacy of antibodies targeting RANKL, an important mediator of osteoclastogenesis. Synovial fibroblasts contribute to joint damage by stimulating both pro-inflammatory and tissue-destructive pathways. New technologies, such as single-cell RNA sequencing, have revealed the heterogeneity of synovial fibroblasts and of immune cells including T cells and macrophages. To understand the mechanisms of bone damage in RA, it is important to clarify how the immune system promotes the tissue-destructive properties of synovial fibroblasts and influences bone cells. The interaction between immune cells and fibroblasts underlies the imbalance between regulatory T cells and T helper 17 cells, which in turn exacerbates not only inflammation but also bone destruction, mainly by promoting RANKL expression on synovial fibroblasts. An improved understanding of the immune mechanisms underlying joint damage and the interplay between the immune system, synovial fibroblasts and bone will contribute to the identification of novel therapeutic targets in RA.
Collapse
Affiliation(s)
- Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
66
|
Hügle T, Nasi S, Ehirchiou D, Omoumi P, So A, Busso N. Fibrin deposition associates with cartilage degeneration in arthritis. EBioMedicine 2022; 81:104081. [PMID: 35660787 PMCID: PMC9163430 DOI: 10.1016/j.ebiom.2022.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background Cartilage damage in inflammatory arthritis is attributed to inflammatory cytokines and pannus infiltration. Activation of the coagulation system is a well known feature of arthritis, especially in rheumatoid arthritis (RA). Here we describe mechanisms by which fibrin directly mediates cartilage degeneration. Methods Fibrin deposits were stained on cartilage and synovial tissue of RA and osteoarthritis (OA) patients and in murine adjuvant-induced arthritis (AIA) in wild-type or fibrinogen deficient mice. Fibrinogen expression and procoagulant activity in chondrocytes were evaluated using qRT-PCR analysis and turbidimetry. Chondro-synovial adhesion was studied in co-cultures of human RA cartilage and synoviocytes, and in the AIA model. Calcific deposits were stained in human RA and OA cartilage and in vitro in fibrinogen-stimulated chondrocytes. Findings Fibrin deposits on cartilage correlated with the severity of cartilage damage in human RA explants and in AIA in wild-type mice, whilst fibrinogen deficient mice were protected. Fibrin upregulated Adamts5 and Mmp13 in chondrocytes. Chondro-synovial adhesion only occurred in fibrin-rich cartilage areas and correlated with cartilage damage. In vitro, autologous human synoviocytes, cultured on RA cartilage explants, adhered exclusively to fibrin-rich areas. Fibrin co-localized with calcification in human RA cartilage and triggered chondrocyte mineralization by inducing pro-calcification genes (Anx5, Pit1, Pc1) and the IL-6 cytokine. Similar fibrin-mediated mechanisms were observed in OA models, but to a lesser extent and without pseudo-membranes formation. Interpretation In arthritis, fibrin plaques directly impair cartilage integrity via a triad of catabolism, adhesion, and calcification. Funding None.
Collapse
|
67
|
Barisón MJ, Nogoceke R, Josino R, Horinouchi CDDS, Marcon BH, Correa A, Stimamiglio MA, Robert AW. Functionalized Hydrogels for Cartilage Repair: The Value of Secretome-Instructive Signaling. Int J Mol Sci 2022; 23:ijms23116010. [PMID: 35682690 PMCID: PMC9181449 DOI: 10.3390/ijms23116010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cartilage repair has been a challenge in the medical field for many years. Although treatments that alleviate pain and injury are available, none can effectively regenerate the cartilage. Currently, regenerative medicine and tissue engineering are among the developed strategies to treat cartilage injury. The use of stem cells, associated or not with scaffolds, has shown potential in cartilage regeneration. However, it is currently known that the effect of stem cells occurs mainly through the secretion of paracrine factors that act on local cells. In this review, we will address the use of the secretome—a set of bioactive factors (soluble factors and extracellular vesicles) secreted by the cells—of mesenchymal stem cells as a treatment for cartilage regeneration. We will also discuss methodologies for priming the secretome to enhance the chondroregenerative potential. In addition, considering the difficulty of delivering therapies to the injured cartilage site, we will address works that use hydrogels functionalized with growth factors and secretome components. We aim to show that secretome-functionalized hydrogels can be an exciting approach to cell-free cartilage repair therapy.
Collapse
|
68
|
Synovial mesenchymal progenitor derived aggrecan regulates cartilage homeostasis and endogenous repair capacity. Cell Death Dis 2022; 13:470. [PMID: 35585042 PMCID: PMC9117284 DOI: 10.1038/s41419-022-04919-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Aggrecan is a critical component of the extracellular matrix of all cartilages. One of the early hallmarks of osteoarthritis (OA) is the loss of aggrecan from articular cartilage followed by degeneration of the tissue. Mesenchymal progenitor cell (MPC) populations in joints, including those in the synovium, have been hypothesized to play a role in the maintenance and/or repair of cartilage, however, the mechanism by which this may occur is unknown. In the current study, we have uncovered that aggrecan is secreted by synovial MPCs from healthy joints yet accumulates inside synovial MPCs within OA joints. Using human synovial biopsies and a rat model of OA, we established that this observation in aggrecan metabolism also occurs in vivo. Moreover, the loss of the "anti-proteinase" molecule alpha-2 macroglobulin (A2M) inhibits aggrecan secretion in OA synovial MPCs, whereas overexpressing A2M rescues the normal secretion of aggrecan. Using mice models of OA and cartilage repair, we have demonstrated that intra-articular injection of aggrecan into OA joints inhibits cartilage degeneration and stimulates cartilage repair respectively. Furthermore, when synovial MPCs overexpressing aggrecan were transplanted into injured joints, increased cartilage regeneration was observed vs. wild-type MPCs or MPCs with diminished aggrecan expression. Overall, these results suggest that aggrecan secreted from joint-associated MPCs may play a role in tissue homeostasis and repair of synovial joints.
Collapse
|
69
|
Balkrishna A, Sinha S, Karumuri S, Srivastava J, Haldar S, Varshney A. Peedanil Gold, Herbo-Mineral Formulation, Moderates Cytokine Levels and Attenuates Pathophysiology in Monosodium Iodoacetate Induced Osteoarthritis in SD Rat Model. Front Pharmacol 2022; 13:883475. [PMID: 35600853 PMCID: PMC9114492 DOI: 10.3389/fphar.2022.883475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The inflammatory cartilaginous degeneration of the articular joints, mostly those of knee, hips and hands, is osteoarthritis (OA). The available treatment strategies for osteoarthritis are designed for pain relief, molecular targeting, cartilage regeneration and surgical intervention. However, meta-analysis of clinical trials has shown these strategies to be sub-optimal, thereby, eliciting a need for investigating alternative options. The herbo-mineral formulation, Peedanil Gold (PN-G) has been used against joint pains and inflammation. In the current study, anti-osteoarthritic effects of PN-G were investigated in rat model of OA, induced by intra-articular injection of monosodium-iodoacetate. PN-G treatment improved the clinical and Kellgren & Lawrence scores; and rescued the osteoarthritic rats from hyperalgesia and allodynia. Besides, PN-G treatment ameliorated joint inflammation and abrogated in vivo osteoarthritic pathology through effective cartilage regeneration, measured radiologically and histopathologically. PN-G also reduced the levels of interleukin-6 (IL-6) and interleukin-1 beta (IL-1β), in a dose dependent manner, in inflamed human macrophagic THP-1 cells, thereby, reaffirming its anti-inflammatory property at cytosafe concentrations. Ultra High performance liquid chromatography (UHPLC) revealed the presence of several analgesic and anti-inflammatory phytocompounds, like ellagic acid, guggulsterone E, guggulsterone Z, 5-(hydroxymethyl) furfural, corilagin, cinnamic acid, ferulic acid, gallic acid and protocatechuic acid in PN-G. In conclusion, this study has succinctly demonstrated that PN-G is capable of relieving the clinical symptoms of osteoarthritis, which is measurable through the established osteoarthritic serum biomarker, Cartilage Oligomeric Matrix Protein (COMP).
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| | - Sandeep Sinha
- Department of Biology, Patanjali Research Institute, Haridwar, India
| | - Shadrak Karumuri
- Department of Biology, Patanjali Research Institute, Haridwar, India
| | | | - Swati Haldar
- Department of Microbiology, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
70
|
Chakraborty S, Gupta NV, Sastri KT, M S, Chand P, Kumar H, M. Osmani RA, Gowda DV, Jaind V. Current progressions in transdermal drug delivery systems for management of rheumatoid and osteoarthritis: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
71
|
Barter MJ, Butcher A, Wang H, Tsompani D, Galler M, Rumsby EL, Culley KL, Clark IM, Young DA. HDAC6 regulates NF-κB signalling to control chondrocyte IL-1-induced MMP and inflammatory gene expression. Sci Rep 2022; 12:6640. [PMID: 35459919 PMCID: PMC9033835 DOI: 10.1038/s41598-022-10518-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Elevated pro-inflammatory signalling coupled with catabolic metalloproteinase expression is a common feature of arthritis, leading to cartilage damage, deterioration of the joint architecture and the associated pain and immobility. Countering these processes, histone deacetylase inhibitors (HDACi) have been shown to suppress matrix metalloproteinase (MMP) expression, block cytokine-induced signalling and reduce the cartilage degradation in animal models of the arthritis. In order to establish which specific HDACs account for these chondro-protective effects an HDAC1-11 RNAi screen was performed. HDAC6 was required for both the interleukin (IL)-1 induction of MMP expression and pro-inflammatory interleukin expression in chondrocytes, implicating an effect on NF-κB signalling. Depletion of HDAC6 post-transcriptionally up-regulated inhibitor of κB (IκB), prevented the nuclear translocation of NF-κB subunits and down-regulated NF-κB reporter activation. The pharmacological inhibition of HDAC6 reduced MMP expression in chondrocytes and cartilage collagen release. This work highlights the important role of HDAC6 in pro-inflammatory signalling and metalloproteinase gene expression, and identifies a part for HDAC6 in the NF-κB signalling pathway. By confirming the protection of cartilage this work supports the inhibition of HDAC6 as a possible therapeutic strategy in arthritis.
Collapse
Affiliation(s)
- Matt J Barter
- Biosciences Institute, Central Parkway, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Andrew Butcher
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Hui Wang
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Dimitra Tsompani
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Martin Galler
- Biosciences Institute, Central Parkway, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ellen L Rumsby
- Northern Care Alliance NHS Foundation Trust, Mayo Building, Salford Royal, Stott Lane, Salford, M6 8HD, UK
| | - Kirsty L Culley
- Anglia Innovation Partnership LLP, Centrum, Norwich Research Park, Norwich, UK
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - David A Young
- Biosciences Institute, Central Parkway, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
72
|
Kim GM, Park H, Lee SY. Roles of osteoclast-associated receptor in rheumatoid arthritis and osteoarthritis. Joint Bone Spine 2022; 89:105400. [DOI: 10.1016/j.jbspin.2022.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
73
|
Gao X, Kang X, Lu H, Xue E, Chen R, Pan J, Ma J. Piceatannol suppresses inflammation and promotes apoptosis in rheumatoid arthritis‑fibroblast‑like synoviocytes by inhibiting the NF‑κB and MAPK signaling pathways. Mol Med Rep 2022; 25:180. [PMID: 35322865 PMCID: PMC8972314 DOI: 10.3892/mmr.2022.12696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that mainly targets the synovial membrane, thus causing stiffness, deformity and dysfunction of joints. To date, no effective anti-inflammatory treatments are available for RA. Piceatannol (PIC) is a natural derivative of resveratrol, which has been reported to attenuate the inflammatory response. To evaluate the effect of PIC on RA and to determine the underlying molecular target of PIC, both in vitro and in vivo experiments were performed in the present study. A CIA rat model was established to evaluate the therapeutic effects of PIC. TNF-α, IL-1β and IL-6 levels in blood were measured by ELISA. Western blotting, immunofluorescence analysis and reverse transcription-quantitative PCR (RT-qPCR) were used to analyze the expression levels of protein and mRNA. In vitro, RA-fibroblast-like synoviocytes (FLSs) were pretreated with PIC and subsequently stimulated with TNF-α. The results revealed that PIC significantly upregulated the expression levels of proapoptotic proteins such as Bax and cleaved caspase-3. PIC also significantly reduced the production of proinflammatory cytokines, including PGE2, IL-6 and IL-1β, and significantly downregulated the expression of cyclooxygenase-2 at both the mRNA and protein expression levels. Furthermore, PIC downregulated the expression of MMP-3 and MMP-13, which have been found to be highly expressed in the synovium of patients with RA. Mechanistically, PIC was capable of significantly downregulating the expression levels of proteins involved in the NF-κB and MAPK signaling pathways. The results of the in vivo experiments using a rat collagen-induced arthritis model demonstrated that PIC decreased the arthritis score and exerted beneficial effects in cartilage and significantly reduced the expression of MMP-13. In conclusion, the findings of the present study revealed that PIC could suppress the inflammatory response, promote apoptosis, and exert a significant regulatory effect on the NF-κB and MAPK signaling pathways in RA-FLSs. Therefore, PIC may represent a potential drug for the future treatment of RA.
Collapse
Affiliation(s)
- Xuezhong Gao
- Department of Cardiovascular Disease, People's Hospital of Aksu, Aksu, Xinjiang 843000, P.R. China
| | - Xiaodiao Kang
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hongwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Enxing Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Rong Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jianfeng Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
74
|
Zhang H, Zheng W, Li D, Zheng J. MiR-379-5p Promotes Chondrocyte Proliferation via Inhibition of PI3K/Akt Pathway by Targeting YBX1 in Osteoarthritis. Cartilage 2022; 13:19476035221074024. [PMID: 35255737 PMCID: PMC9137300 DOI: 10.1177/19476035221074024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We evaluated the ability of miR-379-5p to influence the proliferation of osteoarthritis chondrocytes and elucidated the regulatory mechanism of miR-379-5p in osteoarthritis. METHODS Real time polymerase chain reaction (RT- PCR) was used to detect the expression of miR-379-5p and YBX1 in knee articular cartilages of human. Cell proliferation, inflammatory factors, extracellular matrix (ECM) degradation-associated proteins and proteins in PI3K/Akt pathway were assessed in rat primary chondrocytes treated with interleukin (IL)-1β or/and miR-379-5p mimics or miR-379-5p inhibitor via cell counting assay kit-8 (CCK-8), enzyme-linked immunosorbent assay (ELISA), immunofluorescence and Western blotting (WB). The target of miR-379-5p predicted by TargetScan and miRwalk software was verified by luciferase reporter assay. Safranin O-fast green staining, immunohistochemistry, and WB were performed to observe the effect of miR-379-5p agomir on development of osteoarthritis in rats. RESULTS MiR-379-5p was down-regulated in human osteoarthritic tissues and negatively correlated with YBX1 expression. High level of miR-379-5p in chondrocytes with IL-1β stimulated increased cell viability, the expression of proliferation-related protein and extracellular matrix (ECM)-related proteins collagen II and aggrecan. However, the expression of inflammatory factors and ECM-related proteins matrix metalloproteinases (MMP-1) and MMP-13 was decreased. Luciferase reporting assay verified the targeting relationship between miR-379-5p and YBX1. This function of miR-379-5p was exerted through PI3K/Akt pathway and could be blocked by the PI3K/Akt pathway inhibitor LY294002. MiR-379-5p agomir promoted the articular chondrocytes proliferation and alleviated cartilage degradation in vivo. CONCLUSION Our findings reveal that miR-379-5p can promote the articular chondrocytes proliferation in osteoarthritis (OA) by interacting with YBX1 and regulating PI3K/Akt pathway. Restoring miR-379-5p might be a future therapeutic strategy for OA.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Wendi Zheng
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Du Li
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China,Jia Zheng, Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China.
| |
Collapse
|
75
|
Schonfeldova B, Zec K, Udalova IA. Synovial single-cell heterogeneity, zonation and interactions: a patchwork of effectors in arthritis. Rheumatology (Oxford) 2022; 61:913-925. [PMID: 34559213 PMCID: PMC8889290 DOI: 10.1093/rheumatology/keab721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite extensive research, there is still no treatment that would lead to remission in all patients with rheumatoid arthritis as our understanding of the affected site, the synovium, is still incomplete. Recently, single-cell technologies helped to decipher the cellular heterogeneity of the synovium; however, certain synovial cell populations, such as endothelial cells or peripheral neurons, remain to be profiled on a single-cell level. Furthermore, associations between certain cellular states and inflammation were found; whether these cells cause the inflammation remains to be answered. Similarly, cellular zonation and interactions between individual effectors in the synovium are yet to be fully determined. A deeper understanding of cell signalling and interactions in the synovium is crucial for a better design of therapeutics with the goal of complete remission in all patients.
Collapse
Affiliation(s)
- Barbora Schonfeldova
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Kristina Zec
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Irina A Udalova
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| |
Collapse
|
76
|
Yamada D, Takao T, Nakamura M, Kitano T, Nakata E, Takarada T. Identification of Surface Antigens That Define Human Pluripotent Stem Cell-Derived PRRX1+Limb-Bud-like Mesenchymal Cells. Int J Mol Sci 2022; 23:ijms23052661. [PMID: 35269809 PMCID: PMC8910499 DOI: 10.3390/ijms23052661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cell-based therapies and experimental methods rely on efficient induction of human pluripotent stem cells (hPSCs). During limb development, the lateral plate mesoderm (LPM) produces limb-bud mesenchymal (LBM) cells that differentiate into osteochondroprogenitor cells and form cartilage tissues in the appendicular skeleton. Previously, we generated PRRX1-tdTomato reporter hPSCs to establish the protocol for inducing the hPSC-derived PRRX1+ LBM-like cells. However, surface antigens that assess the induction efficiency of hPSC-derived PRRX1+ LBM-like cells from LPM have not been identified. Here, we used PRRX1-tdTomato reporter hPSCs and found that high pluripotent cell density suppressed the expression of PRRX1 mRNA and tdTomato after LBM-like induction. RNA sequencing and flow cytometry suggested that PRRX1-tdTomato+ LBM-like cells are defined as CD44high CD140Bhigh CD49f−. Importantly, other hPSC lines, including four human induced pluripotent stem cell lines (414C2, 1383D2, HPS1042, HPS1043) and two human embryonic stem cell lines (SEES4, SEES7), showed the same results. Thus, an appropriate cell density of hPSCs before differentiation is a prerequisite for inducing the CD44high CD140Bhigh CD49f− PRRX1+ LBM-like cells.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (D.Y.); (T.T.); (T.K.)
| | - Tomoka Takao
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (D.Y.); (T.T.); (T.K.)
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
| | - Toki Kitano
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (D.Y.); (T.T.); (T.K.)
| | - Eiji Nakata
- Department Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan;
| | - Takeshi Takarada
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (D.Y.); (T.T.); (T.K.)
- Correspondence:
| |
Collapse
|
77
|
Inhibition of Pathological Increased Matrix Metalloproteinase (MMP) Activity for Improvement of Bone Regeneration in Diabetes. Life (Basel) 2022; 12:life12020134. [PMID: 35207422 PMCID: PMC8879894 DOI: 10.3390/life12020134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Patients with diabetes suffer from poor fracture healing. Molecular reasons are not fully understood and our previous gene expression microarray analyses of regenerating bones from mice with type 2 diabetes (db−/db−) revealed accelerated activation of pathways concerning matrix metalloproteases (MMPs). Thus, we picked out the pathological MMP acceleration as a target for profound gene expression analyses and additional therapeutic intervention in the present study. In the first part, gene expression of ECM degrading proteinases and inhibitors was investigated three and seven days postoperatively. Mmp3, Mmp9, Mmp13 and gene expression of MMP inhibitor Timp2 was significantly higher in regenerating bone fractures of db−/db− compared to wild type animals. Timp1 and metalloproteinase AdamTS4 showed no differences. In the second part, we locally applied a single dose (1 µL of 5 µM solution) of the broad-spectrum molecular MMP inhibitor Marimastat on tibial defects in db−/db−. We performed immunohistochemical and histological stainings seven days post operation. Impaired bone healing, collagen content, angiogenesis, and osteoclast invasion in db−/db− were restored significantly by application of Marimastat compared to PBS controls (n = 7/group). Hence, local intervention of bone defects by the molecular MMP inhibitor Marimastat might be an alternative therapeutic intervention for bone healing in diabetes.
Collapse
|
78
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
79
|
Shively D, Amin N. Platelet-Rich Plasma for Rheumatoid Arthritis: A Case Series. Cureus 2021; 13:e19629. [PMID: 34926082 PMCID: PMC8673679 DOI: 10.7759/cureus.19629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/16/2021] [Indexed: 02/01/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic disease characterized by severe inflammation that leads to degradation of articular cartilage and the formation of bony erosions. Currently, certain anesthesiologist-led pain management clinics have begun to take on a collaborative role in the treatment of patients with RA, as this progressive disease impairs work capacity due to chronic pain. We present three clinical cases in which platelet-rich plasma (PRP) was used for the treatment of RA in patients seeking a new therapy for pain control and improved range of motion, specifically in certain joints of the hand. The Patient Activity Scale II was employed as a standardized method to assess RA disease severity, recorded on the day of injection, at one month, at three months, and at six months. All of the included patients, ages 49, 60, and 63, had an established diagnosis of RA affecting the proximal interphalangeal and metacarpophalangeal joints of the hand. Over the course of six months, two out of three patients reported a 20% reduction in pain from the initial visit and a 30% improvement in overall well-being. The third patient noted a 50% decrease in pain from the initial visit and a 50% improvement in overall well-being. PRP treatment consistently resulted in functional improvement for each of the three patients treated, while also reducing long term pain and inflammation. Initial clinical and laboratory studies have shown that autologous plasma rich in platelets serves as a source of an abundance of growth factors once activated. The multitude of these growth factors injected into and around the diseased joints improves functionality in patients with RA indicating PRP may be a safe and beneficial therapy in patients with RA primarily affecting the joints of the hand.
Collapse
Affiliation(s)
- Dana Shively
- Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, USA
| | - Neel Amin
- Anesthesiology and Pain Management, University of Washington, Seattle, USA
| |
Collapse
|
80
|
Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 2021; 18:67-84. [PMID: 34934171 DOI: 10.1038/s41584-021-00724-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Mechanical stimuli have fundamental roles in articular cartilage during health and disease. Chondrocytes respond to the physical properties of the cartilage extracellular matrix (ECM) and the mechanical forces exerted on them during joint loading. In osteoarthritis (OA), catabolic processes degrade the functional ECM and the composition and viscoelastic properties of the ECM produced by chondrocytes are altered. The abnormal loading environment created by these alterations propagates cell dysfunction and inflammation. Chondrocytes sense their physical environment via an array of mechanosensitive receptors and channels that activate a complex network of downstream signalling pathways to regulate several cell processes central to OA pathology. Advances in understanding the complex roles of specific mechanosignalling mechanisms in healthy and OA cartilage have highlighted molecular processes that can be therapeutically targeted to interrupt pathological feedback loops. The potential for combining these mechanosignalling targets with the rapidly expanding field of smart mechanoresponsive biomaterials and delivery systems is an emerging paradigm in OA treatment. The continued advances in this field have the potential to enable restoration of healthy mechanical microenvironments and signalling through the development of precision therapeutics, mechanoregulated biomaterials and drug systems in the near future.
Collapse
|
81
|
Adipose Tissue-Derived Mesenchymal Stem Cells as a Potential Restorative Treatment for Cartilage Defects: A PRISMA Review and Meta-Analysis. Pharmaceuticals (Basel) 2021; 14:ph14121280. [PMID: 34959680 PMCID: PMC8705514 DOI: 10.3390/ph14121280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Cartilage defects are a predisposing factor for osteoarthritis. Conventional therapies are mostly palliative and there is an interest in developing newer therapies that target the disease’s progression. Mesenchymal stem cells (MSCs) have been suggested as a promising therapy to restore hyaline cartilage to cartilage defects, though the optimal cell source has remained under investigation. A PRISMA systematic review was conducted utilising five databases (MEDLINE, EMBASE, Cochrane Library, Scopus, Web of Science) which identified nineteen human studies that used adipose tissue-derived MSC (AMSC)-based therapies, including culture-expanded AMSCs and stromal vascular fraction, to treat cartilage defects. Clinical, imaging and histological outcomes, as well as other relevant details pertaining to cartilage regeneration, were extracted from each study. Pooled analysis revealed a significant improvement in WOMAC scores (mean difference: −25.52; 95%CI (−30.93, −20.10); p < 0.001), VAS scores (mean difference: −3.30; 95%CI (−3.72, −2.89); p < 0.001), KOOS scores and end point MOCART score (mean: 68.12; 95%CI (62.18, 74.05)), thus showing improvement. The studies in this review demonstrate the safety and efficacy of AMSC-based therapies for cartilage defects. Establishing standardised methods for MSC extraction and delivery, and performing studies with long follow-up should enable future high-quality research to provide the evidence needed to bring AMSC-based therapies into the market.
Collapse
|
82
|
wei W, He S, Wang Z, Dong J, Xiang D, Li Y, Ren L, Kou N, Lv J. LINC01534 Promotes the Aberrant Metabolic Dysfunction and Inflammation in IL-1β-Simulated Osteoarthritic Chondrocytes by Targeting miR-140-5p. Cartilage 2021; 13:898S-907S. [PMID: 31735077 PMCID: PMC8804787 DOI: 10.1177/1947603519888787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Long non-coding RNA 01534 (LINC01534) is highly expressed in the tissues of patients with osteoarthritis (OA). This study investigated the mechanism of LINC01534 on abnormal metabolic dysfunction in OA chondrocytes induced by interleukin-1β (IL-1β). METHODS The quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expressions of LINC01534, aggrecan, collagen II, and matrix metalloproteinase (MMPs) in OA cartilage tissue or OA chondrocyte model induced by IL-1β. The expressions of aggrecan and collagen II in the chondrocyte were detected by Western blot. The levels of tumor necrosis factor-α (TNF-α), IL-8, IL-6, MMP-13, MMP-9, MMP-3, and prostaglandin E2 (PGE2) in chondrocyte were determined by enzyme-linked immunosorbernt assay. Bioinformatics, dual luciferin gene reporting, RNA pulldown, and Northern blot were used to determine the interaction between LINC01534 and miR-140-5p. RESULTS The results showed that LINC01534 was upregulated in both OA cartilage tissue and OA chondrocyte model. In addition, silencing LINC01534 significantly alleviated the inhibitory effect of IL-1β on expressions of aggrecan and collagen II in chondrocytes, and significantly downregulated the expression of matrix metalloproteinases in IL-1β-induced chondrocytes. Meanwhile, silencing LINC01534 also significantly inhibited the productions of proinflammatory factors NO, PGE2, TNF-α, IL-6, and IL-8 in the IL-1β-induced chondrocytes. Furthermore, miR-140-5p was confirmed to be a direct target of LINC01534. More importantly, inhibition of miR-140-5p significantly reversed the inhibitory effect of silencing LINC01534 on abnormal matrix degradation in the IL-1β-induced chondrocyte model of OA. CONCLUSION Therefore, LINC01534 could promote the abnormal matrix degradation and inflammatory response of OA chondrocytes through the targeted binding of miR-140-5p.
Collapse
Affiliation(s)
- Wei wei
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| | - Shaoxuan He
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| | - Zhihua Wang
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| | - Junjie Dong
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| | - Dong Xiang
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| | - Yunxuan Li
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| | - Lirong Ren
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| | - Nannan Kou
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| | - Jia Lv
- Department of Traumatology, The Second
Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province,
People’s Republic of China
| |
Collapse
|
83
|
Cho Y, Jeong S, Kim H, Kang D, Lee J, Kang SB, Kim JH. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp Mol Med 2021; 53:1689-1696. [PMID: 34848838 PMCID: PMC8640059 DOI: 10.1038/s12276-021-00710-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis. It is characterized by progressive destruction of articular cartilage and the development of chronic pain and constitutes a considerable socioeconomic burden. Currently, pharmacological treatments mostly aim to relieve the OA symptoms associated with inflammation and pain. However, with increasing understanding of OA pathology, several potential therapeutic targets have been identified, enabling the development of disease-modifying OA drugs (DMOADs). By targeting inflammatory cytokines, matrix-degrading enzymes, the Wnt pathway, and OA-associated pain, DMOADs successfully modulate the degenerative changes in osteoarthritic cartilage. Moreover, regenerative approaches aim to counterbalance the loss of cartilage matrix by stimulating chondrogenesis in endogenous stem cells and matrix anabolism in chondrocytes. Emerging strategies include the development of senolytic drugs or RNA therapeutics to eliminate the cellular or molecular sources of factors driving OA. This review describes the current developmental status of DMOADs and the corresponding results from preclinical and clinical trials and discusses the potential of emerging therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Yongsik Cho
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Sumin Jeong
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Department of Business Administration, Business School, Seoul National University, Seoul, 08826 South Korea
| | - Hyeonkyeong Kim
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Donghyun Kang
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Jeeyeon Lee
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Boramae Hospital, Seoul, 07061, South Korea.
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea. .,Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
84
|
Shestovskaya MV, Bozhkova SA, Sopova JV, Khotin MG, Bozhokin MS. Methods of Modification of Mesenchymal Stem Cells and Conditions of Their Culturing for Hyaline Cartilage Tissue Engineering. Biomedicines 2021; 9:biomedicines9111666. [PMID: 34829895 PMCID: PMC8615732 DOI: 10.3390/biomedicines9111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
The use of mesenchymal stromal cells (MSCs) for tissue engineering of hyaline cartilage is a topical area of regenerative medicine that has already entered clinical practice. The key stage of this procedure is to create conditions for chondrogenic differentiation of MSCs, increase the synthesis of hyaline cartilage extracellular matrix proteins by these cells and activate their proliferation. The first such works consisted in the indirect modification of cells, namely, in changing the conditions in which they are located, including microfracturing of the subchondral bone and the use of 3D biodegradable scaffolds. The most effective methods for modifying the cell culture of MSCs are protein and physical, which have already been partially introduced into clinical practice. Genetic methods for modifying MSCs, despite their effectiveness, have significant limitations. Techniques have not yet been developed that allow studying the effectiveness of their application even in limited groups of patients. The use of MSC modification methods allows precise regulation of cell culture proliferation, and in combination with the use of a 3D biodegradable scaffold, it allows obtaining a hyaline-like regenerate in the damaged area. This review is devoted to the consideration and comparison of various methods used to modify the cell culture of MSCs for their use in regenerative medicine of cartilage tissue.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Svetlana A. Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
| | - Julia V. Sopova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Mikhail G. Khotin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Mikhail S. Bozhokin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
85
|
Betulin suppresses TNF-α and IL-1β production in osteoarthritis synovial fibroblasts by inhibiting the MEK/ERK/NF-κB pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
86
|
Lee HP, Liu SC, Wang YH, Chen BC, Chen HT, Li TM, Huang WC, Hsu CJ, Wu YC, Tang CH. Cordycerebroside A suppresses VCAM-dependent monocyte adhesion in osteoarthritis synovial fibroblasts by inhibiting MEK/ERK/AP-1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
87
|
Foo JB, Looi QH, How CW, Lee SH, Al-Masawa ME, Chong PP, Law JX. Mesenchymal Stem Cell-Derived Exosomes and MicroRNAs in Cartilage Regeneration: Biogenesis, Efficacy, miRNA Enrichment and Delivery. Pharmaceuticals (Basel) 2021; 14:1093. [PMID: 34832875 PMCID: PMC8618513 DOI: 10.3390/ph14111093] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Qi Hao Looi
- My Cytohealth Sdn. Bhd., D353a, Menara Suezcap 1, KL Gateway, no. 2, Jalan Kerinchi, Gerbang Kerinchi Lestari, Kuala Lumpur 59200, Malaysia;
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Pei Pei Chong
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
88
|
Sumsuzzman DM, Choi J, Khan ZA, Kamenos G, Hong Y. Melatonin Maintains Anabolic-Catabolic Equilibrium and Regulates Circadian Rhythm During Osteoarthritis Development in Animal Models: A Systematic Review and Meta-analysis. Front Pharmacol 2021; 12:714974. [PMID: 34603028 PMCID: PMC8484877 DOI: 10.3389/fphar.2021.714974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The driving force behind osteoarthritis (OA) pathogenesis is an anabolic-catabolic (a/c) imbalance. Melatonin (MT) is a key player in maintaining a/c stability and mitigates OA pathogenesis, but mechanisms underlying its effects remain poorly understood. Objectives: We performed a systematic review analyzing the experimental data that support the clinical applicability of MT in the treatment of OA pathogenesis, placing particular emphasis on the regulation of circadian rhythms and a/c balance. Methods: Major electronic databases and grey literature were used to identify related original articles. Methodological quality of all selected studies was evaluated using the SYRCLE risk of bias tool. Pooled mean differences (MDs)/standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to estimate the effect size. Results: Eleven trials were included in this systematic review. Compared with the control group, MT significantly decreased the levels of interleukin-1β (IL-1β; SMD = −5.45; 95% CI [−6.78, −4.12]; p < 0.00001, and histological grading scale (SMD = −3.46; 95% CI, [−5.24, −1.68]; p < 0.0001). MT significantly increased the transforming growth factor-β1 (TGF-β1; SMD = 1.17; 95% CI [0.31, 2.03]; p < 0.0007). Furthermore, core circadian clock genes Per2 and Cry1 mRNA levels were regulated by MT treatment in OA progression. Conclusion: MT may maintain a/c balance and regulate circadian rhythms during OA development. MT could be used in as adjunct with other interventions to manage pain and OA severity.
Collapse
Affiliation(s)
- Dewan Md Sumsuzzman
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Department of Physical Therapy, College of Healthcare Medical Science and Engineering, Gimhae, Korea
| | - Jeonghyun Choi
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Department of Physical Therapy, College of Healthcare Medical Science and Engineering, Gimhae, Korea
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Department of Physical Therapy, College of Healthcare Medical Science and Engineering, Gimhae, Korea
| | - George Kamenos
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Department of Physical Therapy, College of Healthcare Medical Science and Engineering, Gimhae, Korea.,Department of Medicine, Division of Hematology/Oncology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MAUnited States
| |
Collapse
|
89
|
Wu W, Liang D. Expression and related mechanisms of miR-330-3p and S100B in an animal model of cartilage injury. J Int Med Res 2021; 49:3000605211039471. [PMID: 34590918 PMCID: PMC8489778 DOI: 10.1177/03000605211039471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the roles of and relationship between microRNA (miR)-330-3p and S100 calcium-binding protein B (S100B) in an animal model of cartilage injury. Methods This study included 30 New Zealand male rabbits randomly divided into three groups: an intervention group, a model group and a sham surgery control group. Modelling was performed in the intervention and model groups, but in the sham surgery group, only the skin was cut. After modelling, the intervention and model groups were injected with the miR-330-3p overexpression vector GV268-miR-330-3p or the control GV268-N-ODN vector, respectively, twice a week for 7 weeks. Results Levels of interleukin-1β and tumour necrosis factor-α in the synovial fluid were significantly higher in the model group than in the intervention and control groups. The level of miR-330-3p in the cartilage tissue was significantly higher in the control group than in the model group but it was significantly lower compared with the intervention group. Levels of S100B, fibroblast growth factor receptor 1 and fibroblast growth factor-2 in the cartilage tissue of rabbits in the model group were significantly higher compared with the control and intervention groups. Conclusion These findings demonstrate that the upregulation of miR-330-3p can inhibit the expression of S100B.
Collapse
Affiliation(s)
- Wenming Wu
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Dongming Liang
- Lirimax (Tianjin) Medical Technical Co., Ltd, Tianjin, China
| |
Collapse
|
90
|
Jensen R, Christensen AF, Hartlev LB, Thomsen JS, Boel L, Laursen M, Revald PH, Varnum C, Keller KK, Hauge EM. Calcified cartilage differs in patients with end-stage primary osteoarthritis and secondary osteoarthritis due to rheumatoid arthritis of the hip joint. Scand J Rheumatol 2021; 51:441-451. [PMID: 34514946 DOI: 10.1080/03009742.2021.1952754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objectives: Despite distinct aetiologies, the end-stages of primary osteoarthritis (OA) and secondary OA are described by common radiological features. However, the morphology of the bone-cartilage unit may differ depending on the pathogenesis. In this cross-sectional study, we aimed to investigate the histological differences in the bone-cartilage unit of the femoral head between patients with primary OA and secondary OA due to rheumatoid arthritis (RA).Method: Femoral heads were obtained from 12 patients with primary OA, six patients with secondary OA due to RA, and 12 control subjects. The femoral heads were investigated using stereological methods to ensure unbiased quantification.Results: The volume (mean difference [95% confidence interval]) (2.1 [0.5;3.8] cm3, p = 0.016) and thickness (413 [78.9;747] µm, p = 0.029) of the articular cartilage and the thickness of the calcified cartilage (56.4 [0.4;113] µm, p = 0.017) were larger in patients with primary OA than in patients with secondary OA due to RA. Femoral head volume (1.2 [-3.6;6.1] cm3, p = 0.598), bone volume fraction (-1.1 [-2.8;5.1] cm3, p = 0.553), subchondral bone thickness (-2.5 [-212;207] µm, p = 0.980), and osteophyte area (25.3 [-53.6;104] cm2, p = 0.506) did not differ between patients.Conclusion: The thicker calcified cartilage in primary OA preceding the loss of articular cartilage can be attributed to endochondral ossification. Patients with secondary OA due to RA had severely thinner calcified cartilage as the pathogenesis is driven by inflammation and is characterized by a generalized and more severe loss of articular cartilage.
Collapse
Affiliation(s)
- R Jensen
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - A F Christensen
- Department of Internal Medicine, Lillebaelt Hospital, Vejle, Denmark
| | - L B Hartlev
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Randers Regional Hospital, Randers, Denmark
| | - J S Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lwt Boel
- Institute of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - M Laursen
- Orthopaedic Surgery Research Unit, Aalborg University Hospital, Aalborg, Denmark
| | - P H Revald
- Department of Orthopaedic Surgery, Lillebaelt Hospital, Vejle, Denmark
| | - C Varnum
- Department of Orthopaedic Surgery, Lillebaelt Hospital, Vejle, Denmark
| | - K K Keller
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - E-M Hauge
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
91
|
Sustained Intra-Articular Release and Biocompatibility of Tacrolimus (FK506) Loaded Monospheres Composed of [PDLA-PEG 1000]- b-[PLLA] Multi-Block Copolymers in Healthy Horse Joints. Pharmaceutics 2021; 13:pharmaceutics13091438. [PMID: 34575514 PMCID: PMC8465142 DOI: 10.3390/pharmaceutics13091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increasing interest in controlled release systems for local therapy in the treatment of human and equine joint diseases, aiming for optimal intra-articular concentrations with no systemic side effects. In this study, the intra-articular tolerability and suitability for local and sustained release of tacrolimus (FK506) from monospheres composed of [PDLA-PEG1000]-b-PLLA multiblock copolymers were investigated. Unloaded and tacrolimus-loaded (18.4 mg tacrolimus/joint) monospheres were injected into the joints of six healthy horses, with saline and hyaluronic acid (HA) in the contralateral joints as controls. Blood and synovial fluid were analysed for the tacrolimus concentration and biomarkers for inflammation and cartilage metabolism. After an initial burst release, sustained intra-articular tacrolimus concentrations (>20 ng/mL) were observed during the 42 days follow-up. Whole-blood tacrolimus levels were below the detectable level (<0.5 ng/mL). A transient inflammatory reaction was observed for all substances, evidenced by increases of the synovial fluid white blood cell count and total protein. Prostaglandin and glycosaminoglycan release were increased in joints injected with unloaded monospheres, which was mitigated by tacrolimus. Both tacrolimus-loaded monospheres and HA transiently increased the concentration of collagen II cleavage products (C2C). A histologic evaluation of the joints at the endpoint showed no pathological changes in any of the conditions. Together, these results indicate the good biocompatibility of intra-articular applied tacrolimus-loaded monospheres combined with prolonged local drug release while minimising the risk of systemic side effects. Further evaluation in a clinical setting is needed to determine if tacrolimus-loaded monospheres can be beneficial in the treatment of inflammatory joint diseases in humans and animals.
Collapse
|
92
|
Zhang S, Xie D, Zhang Q. Mesenchymal stem cells plus bone repair materials as a therapeutic strategy for abnormal bone metabolism: Evidence of clinical efficacy and mechanisms of action implied. Pharmacol Res 2021; 172:105851. [PMID: 34450314 DOI: 10.1016/j.phrs.2021.105851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
The regeneration process of human bones is very complicated, the management and treatment of bone damage caused by diseases are the main problems faced by clinicians worldwide. It is known that cell-based stem cell therapy together with biomaterials is a fast-developing method of tissue regeneration. This review focuses on the different types and main characteristics of scaffolds and stem cells suitable for bone regeneration, and aims to provide a state-of-the-art description of the current treatment of common bone metabolism related diseases such as osteoarthritis, osteoporosis and osteosarcoma and the strategies based on stem cell biological scaffolds used in bone tissue engineering. This method may provide a new treatment option for the treatment of common bone metabolism-related diseases that cannot be cured by ordinary and routine applications. Three databases (PubMed, CNKI and Web of Science) search terms used to write this review are: "arthritis", "osteoporosis", "osteosarcoma", "bone tissue engineering", "mesenchymal stem cells", "materials", "bioactive scaffolds" and their combinations, and the most relevant studies are selected. As a conclusion, it needs to be emphasized that despite the encouraging results, further development is needed due to the need for more in-depth research, standardization of stem cell manufacturing processes, large-scale development of clinical methods for bone tissue engineering, and market regulatory approval. Although the research and application of tissue regeneration technology and stem cells are still in their infancy, the application prospect is broad and it is expected to solve the current clinical problems.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510000, China.
| |
Collapse
|
93
|
Xie J, Wang W, Zhao R, Lu W, Chen L, Su W, Zeng M, Hu Y. Fabrication and characterization of microstructure-controllable COL-HA-PVA hydrogels for cartilage repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:100. [PMID: 34406511 PMCID: PMC8373762 DOI: 10.1007/s10856-021-06577-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/14/2021] [Indexed: 05/11/2023]
Abstract
Polyvinyl alcohol (PVA) hydrogel has gained interest in cartilage repair because of its highly swollen, porosity, and viscoelastic properties. However, PVA has some deficiencies, such as its poor biocompatibility and microstructure. This research aimed to design novel hydroxyapatite (HA)-collagen (COL)-PVA hydrogels. COL was added to improve cell biocompatibility, and the microstructure of the hydrogels was controlled by fused deposition modeling (FDM). The feasibility of the COL-HA-PVA hydrogels in cartilage repair was evaluated by in vitro and in vivo experiments. The scanning electron microscopy results showed that the hybrid hydrogels had interconnected macropore structures that contained a COL reticular scaffold. The diameter of the macropore was 1.08-1.85 mm, which corresponds to the diameter of the denatured PVA column. The chondrocytes were then seeded in hydrogels to assess the cell viability and formation of the cartilage matrix. The in vitro results revealed excellent cellular biocompatibility. Osteochondral defects (8 mm in diameter and 8 mm in depth) were created in the femoral trochlear of goats, and the defects were implanted with cell-seeded hydrogels, cell-free hydrogels, or a blank control. The in vivo results showed that the COL-HA-PVA hydrogels effectively repaired cartilage defects, especially the conditions inoculated with chondrocyte in advance. This research suggests that the COL-HA-PVA hydrogels have promising application in cartilage repair.
Collapse
Affiliation(s)
- Jie Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wu Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruibo Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiping Su
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yihe Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
94
|
Lima AC, Reis RL, Ferreira H, Neves NM. Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Mol Pharm 2021; 18:3235-3246. [PMID: 34387081 DOI: 10.1021/acs.molpharmaceut.1c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have wide potential applications in the biomedical field. To promote targeted and controlled delivery of encapsulated drugs, it is fundamentally important to understand the factors regulating NP uptake by different cells. Thus, the goal of the present study is to assess the internalization rates of different NPs under normal and proinflammatory states in primary human articular chondrocytes (hACs), human umbilical vein endothelial cells (EA), and human monocytes (THP-1). Here, we compared chitosan-hyaluronic acid (Ch-HA) polymeric NPs, methoxypolyethylene glycol amine-glutathione-palmitic acid (mPEG-GSHn-PA) micelles, and cholesterol/l-α-phosphatidylcholine/DSPE-PEG-Mal (Chol/EPC/DSPE-PEG-Mal) unilamellar liposomes (LUVs). Our results reveal the importance of surface charge and chemistry in determining the levels of NP internalization. Under normal conditions, the cellular uptake was ≈30% for Ch-HA NPs and ≈100% for mPEG-GSHn-PA micelles and Chol/EPC/DSPE-PEG-Mal LUVs. A proinflammatory cell state promoted a higher uptake of the Ch-HA NPs by EA cells (93% after 24 h). Since the therapeutic efficacy of the NP-loaded cargo is dependent on trafficking routes after cellular internalization, we tested their internalization pathways. Accordingly, caveolae-mediated endocytosis or energy-independent non-endocytic pathways, which circumvent lysosomal degradation, were accomplished in hACs and EA by LUVs and in M1 polarized macrophages by micelles. The present outcomes highlight the importance of considering cellular uptake and internalization pathways by the target cell when designing functional NPs for therapeutic applications.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
95
|
Zhang H, Li S, Lu J, Jin J, Zhu G, Wang L, Yan Y, He L, Wang B, Wang X, Yu H. α-Cyperone (CYP) down-regulates NF-κB and MAPKs signaling, attenuating inflammation and extracellular matrix degradation in chondrocytes, to ameliorate osteoarthritis in mice. Aging (Albany NY) 2021; 13:17690-17706. [PMID: 34237707 PMCID: PMC8312409 DOI: 10.18632/aging.203259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/19/2021] [Indexed: 01/07/2023]
Abstract
Inflammation and extracellular matrix (ECM) degradation have been implicated in the pathological process of osteoarthritis (OA). α-Cyperone is the main active component of the traditional Chinese medicine Cyperus rotundus L. In this study, we found that α-Cyperone abolished the IL-1β-induced production of inflammatory cytokines in isolated rat chondrocytes, such as cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), in a dose-dependent manner (0.75, 1.5 or 3 μM). Also, the results showed that α-Cyperone downregulated the expression of metalloproteinases (MMPs) and thrombospondin motifs 5 (ADAMTS5), and upregulated the expression of type-2 collagen. Mechanistically, molecular docking tests revealed that α-Cyperone stably and effectively binds to p65, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). α-Cyperone inhibited NF-κB activation by blocking its nuclear transfer, and decreasing the phosphorylation of mitogen-activated protein kinase (MAPKs). In addition, in vivo studies based on a mouse model of arthritis showed that α-Cyperone prevented the development of osteoarthritis. Therefore, α-Cyperone may be a potential anti-OA drug.
Collapse
Affiliation(s)
- Huawei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Jiajie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Gaosheng Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Libo Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Yingzhao Yan
- Department of Orthopaedics Surgery, Zhejiang Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Linjie He
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Ben Wang
- Department of Orthopaedics Surgery, Zhongshan Hospital, Shanghai 200032, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Huachen Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
96
|
Wang B, Díaz-Payno PJ, Browe DC, Freeman FE, Nulty J, Burdis R, Kelly DJ. Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Acta Biomater 2021; 128:130-142. [PMID: 33866035 DOI: 10.1016/j.actbio.2021.04.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
3D bioprinting has emerged as a promising technology in the field of tissue engineering and regenerative medicine due to its ability to create anatomically complex tissue substitutes. However, it still remains challenging to develop bioactive bioinks that provide appropriate and permissive environments to instruct and guide the regenerative process in vitro and in vivo. In this study alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize an alginate-gelatin methacryloyl (GelMA) interpenetrating network (IPN) bioink to enable the bioprinting of cartilaginous tissues. The inclusion of alginate sulfate had a limited influence on the viscosity, shear-thinning and thixotropic properties of the IPN bioink, enabling high-fidelity bioprinting and supporting mesenchymal stem cell (MSC) viability post-printing. The stiffness of printed IPN constructs greatly exceeded that achieved by printing alginate or GelMA alone, while maintaining resilience and toughness. Furthermore, given the high affinity of alginate sulfate to heparin-binding growth factors, the sulfated IPN bioink supported the sustained release of transforming growth factor-β3 (TGF-β3), providing an environment that supported robust chondrogenesis in vitro, with little evidence of hypertrophy or mineralization over extended culture periods. Such bioprinted constructs also supported chondrogenesis in vivo, with the controlled release of TGF-β3 promoting significantly higher levels of cartilage-specific extracellular matrix deposition. Altogether, these results demonstrate the potential of bioprinting sulfated bioinks as part of a 'single-stage' or 'point-of-care' strategy for regenerating cartilaginous tissues. STATEMENT OF SIGNIFICANCE: This study highlights the potential of using sulfated interpenetrating network (IPN) bioink to support the regeneration of phenotypically stable articular cartilage. Construction of interpenetrating networks in the bioink enables unique high-fidelity bioprinting and provides synergistic increases in mechanical properties. The presence of alginate sulfate enables the capacity of high affinity-binding of TGF-β3, which promoted robust chondrogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Bin Wang
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro J Díaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - David C Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Fiona E Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Jessica Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
97
|
Han CK, Lee WF, Hsu CJ, Huang YL, Lin CY, Tsai CH, Huang CC, Fong YC, Wu MH, Liu JF, Tang CH. DPP4 reduces proinflammatory cytokine production in human rheumatoid arthritis synovial fibroblasts. J Cell Physiol 2021; 236:8060-8069. [PMID: 34192347 DOI: 10.1002/jcp.30494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that is characterized by increasing levels of proinflammatory cytokines. The ubiquitous enzyme dipeptidyl peptidase-4 (DPP4, also known as CD26) regulates different immune disorders, although the effects of DPP4 in RA are uncertain. Here, we found lower levels of DPP4 in RA synovial tissues compared with normal tissues. DPP4 levels were also lower in a rat collagen-induced arthritis model than in control (healthy) rats. Overexpression of DPP4 or exogenous treatment of RA synovial fibroblasts with DPP4 reduced levels of proinflammatory interleukin (IL)-1β, IL-6, and IL-13, and increased anti-inflammatory IL-10 synthesis, while DPP4 inhibitors sitagliptin and vildagliptin increased proinflammatory cytokine production, indicating an enhanced risk of RA development. The evidence suggests that increasing DPP4 expression is a novel strategy for RA disease.
Collapse
Affiliation(s)
- Chien-Kuo Han
- Department of Food and Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Yang Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Min-Huan Wu
- Bachelor of Science in Senior Wellness and Sports Science, Tunghai University, Taichung, Taiwan.,Tunghai University Sports Recreation and Health Management Degree Program, Tunghai University, Taichung, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chih-Hsin Tang
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
98
|
Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun 2021; 12:3624. [PMID: 34131132 PMCID: PMC8206096 DOI: 10.1038/s41467-021-23706-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/β-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.
Collapse
|
99
|
Minh NN, Nguyen NPT, Ngoc CN, Duy TT, Huy TN, Do BN, Viet TT. Application of ImageJ software for quantification of Hand Joint Space Narrowing in Patients with Rheumatoid Arthritis. Curr Rheumatol Rev 2021; 18:136-143. [PMID: 34080966 DOI: 10.2174/1573397117666210602113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND ImageJ software is used to quantify the joint space width (JSW) of hand and wrist in patients with rheumatoid arthritis (RA) as well as in the healthy control group. METHOD Forty-one RA patients and 31 healthy controls are included in this study. All of 72 participants underwent digital radiography of the bilateral hand and wrist, then all the images were opened by ImageJ software to measure the width of wrist and hand joint space (total 2160 joints). Joint space narrowing (JSN) was defined if the width was less than the mean - 2SD of the control group. RESULT The mean JSW of all sites of wrist and hand joints of RA patients was significantly reduced as compared to those in the control group (p<0.001). There were 37/41 (90.24%) RA patients who had JSN in at least one joint in hand or wrist. In total, 70.89% of joints on the right and 68.46% of joints on the left wrist and hand had JSN. CONCLUSION ImageJ software was simple and convenient , which helps rheumatologists quantify the width of joint space for diagnosis and follow-up in RA patients.
Collapse
Affiliation(s)
- Nui Nguyen Minh
- Department of Rheumatology, Military Hospital 103, Hanoi, Vietnam
| | | | - Chau Nguyen Ngoc
- Department of Rheumatology, Military Hospital 103, Hanoi, Vietnam
| | - Tien Tran Duy
- Department of Rheumatology, Military Hospital 103, Hanoi, Vietnam
| | - Thong Nguyen Huy
- Department of Rheumatology, Military Hospital 103, Hanoi, Vietnam
| | - Binh Nhu Do
- Division of Military Science, Military Hospital 103, Hanoi, Vietnam
| | | |
Collapse
|
100
|
Ebata T, Terkawi MA, Hamasaki M, Matsumae G, Onodera T, Aly MK, Yokota S, Alhasan H, Shimizu T, Takahashi D, Homan K, Kadoya K, Iwasaki N. Flightless I is a catabolic factor of chondrocytes that promotes hypertrophy and cartilage degeneration in osteoarthritis. iScience 2021; 24:102643. [PMID: 34142066 PMCID: PMC8187833 DOI: 10.1016/j.isci.2021.102643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/11/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Synovial macrophages that are activated by cartilage fragments initiate synovitis, a condition that promotes hypertrophic changes in chondrocytes leading to cartilage degeneration in OA. In this study, we analyzed the molecular response of chondrocytes under condition of this type of stimulation to identify a molecular therapeutic target. Stimulated macrophages promoted hypertrophic changes in chondrocytes resulting in production of matrix-degrading enzymes of cartilage. Among the top-upregulated genes, FliI was found to be released from activated chondrocytes and exerted autocrine/paracrine effects on chondrocytes leading to an increase in expression of catabolic and hypertrophic factors. Silencing FliI in stimulated cells significantly reduced expression of catabolic and hypertrophic factors in cocultured chondrocytes. Our further results demonstrated that the FliI-TLR4-ERK1/2 axis is involved in the hypertrophic signaling of chondrocytes and catabolism of cartilage. Our findings provide a new insight into the pathogenesis of OA and identify a potentially new molecular target for diagnostics and therapeutics. Activated macrophages promote the secretion of FliI from chondrocytes FliI acts as a DAMP-triggering molecule in cartilage FliI promotes chondrocyte hypertrophy and cartilage catabolism FliI represents attractive target for therapeutic intervention
Collapse
Affiliation(s)
- Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Masanari Hamasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Mahmoud Khamis Aly
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shunichi Yokota
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|