51
|
Zhang B, Yang L, Zeng Z, Feng Y, Wang X, Wu X, Luo H, Zhang J, Zhang M, Pakvasa M, Wagstaff W, He F, Mao Y, Qin K, Ding H, Zhang Y, Niu C, Wu M, Zhao X, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Athiviraham A, Moriatis Wolf J, Lee MJ, Hynes K, Strelzow J, El Dafrawy M, Xia Y, He TC. Leptin Potentiates BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells Through the Activation of JAK/STAT Signaling. Stem Cells Dev 2020; 29:498-510. [PMID: 32041483 DOI: 10.1089/scd.2019.0292] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors that have the ability to differentiate into multiple lineages, including bone, cartilage, and fat. We previously demonstrated that the least known bone morphogenetic protein (BMP)9 (also known as growth differentiation factor 2) is one of the potent osteogenic factors that can induce both osteogenic and adipogenic differentiation of MSCs. Nonetheless, the molecular mechanism underlying BMP9 action remains to be fully understood. Leptin is an adipocyte-derived hormone in direct proportion to the amount of body fat, and exerts pleiotropic functions, such as regulating energy metabolism, bone mass, and mineral density. In this study, we investigate the potential effect of leptin signaling on BMP9-induced osteogenic differentiation of MSCs. We found that exogenous leptin potentiated BMP9-induced osteogenic differentiation of MSCs both in vitro and in vivo, while inhibiting BMP9-induced adipogenic differentiation. BMP9 was shown to induce the expression of leptin and leptin receptor in MSCs, while exogenous leptin upregulated BMP9 expression in less differentiated MSCs. Mechanistically, we demonstrated that a blockade of JAK signaling effectively blunted leptin-potentiated osteogenic differentiation induced by BMP9. Taken together, our results strongly suggest that leptin may potentiate BMP9-induced osteogenesis by cross-regulating BMP9 signaling through the JAK/STAT signaling pathway in MSCs. Thus, it is conceivable that a combined use of BMP9 and leptin may be explored as a novel approach to enhancing efficacious bone regeneration and fracture healing.
Collapse
Affiliation(s)
- Bo Zhang
- Departments of Orthopaedic Surgery and Obstetrics and Gynecology, Institute of Bone and Joint Research, The First and Second Hospitals of Lanzhou University, Lanzhou, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Lijuan Yang
- Departments of Orthopaedic Surgery and Obstetrics and Gynecology, Institute of Bone and Joint Research, The First and Second Hospitals of Lanzhou University, Lanzhou, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Departments of Breast Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Departments of Breast Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Departments of Breast Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Departments of Breast Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Huimin Ding
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Department of Orthopaedic Surgery, BenQ Medical Center Affiliated with Nanjing Medical University, Nanjing, China
| | - Yongtao Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Department of Laboratory Diagnostic Medicine, Chongqing General Hospital, Chongqing, China
| | - Meng Wu
- Departments of Orthopaedic Surgery and Obstetrics and Gynecology, Institute of Bone and Joint Research, The First and Second Hospitals of Lanzhou University, Lanzhou, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Departments of Breast Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dayao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois.,Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Yayi Xia
- Departments of Orthopaedic Surgery and Obstetrics and Gynecology, Institute of Bone and Joint Research, The First and Second Hospitals of Lanzhou University, Lanzhou, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
52
|
Imiquimod Acts Synergistically with BMP9 through the Notch Pathway as an Osteoinductive Agent In Vitro. Plast Reconstr Surg 2020; 144:1094-1103. [PMID: 31385892 DOI: 10.1097/prs.0000000000006159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Autologous bone grafts used for surgical reconstruction are limited by infection or insufficient supply of host material. Experimental agents that promote differentiation of stem cells into mature bone are currently being studied for future use in the repair of bone defects. The authors hypothesized that imiquimod, a synthetic immune response modifier, increases Notch pathway gene expression and acts synergistically with bone morphogenetic protein (BMP) 9 to induce differentiation of mesenchymal stem cells toward an osteogenic phenotype. METHODS Alkaline phosphatase activity was used to assess the osteogenic potential of cultured mouse immortalized multipotent adipose-derived cells (iMADs) treated with 0, 4, 6, and 8 μg/ml of imiquimod with and without BMP9. Adenoviral vectors expressing human BMP9 and a dominant-negative mutant of mouse Notch1 were used to assess BMP9 and Notch blockade on osteogenic activity, respectively. Expression of Notch signaling mediators and osteogenic markers were assayed by quantitative polymerase chain reaction. Alizarin red staining was used to assess the synergism between BMP9 and imiquimod. RESULTS Imiquimod exposure enhanced osteogenic differentiation of iMADs by 2.8-fold (p < 0.001) and potentiated BMP9-induced osteogenic differentiation of iMADs by 1.6-fold (p < 0.001), shown by increased alkaline phosphatase activity and augmented matrix mineralization. Quantitative-real time polymerase chain reaction analysis demonstrated that imiquimod induced the expression of downstream genes (p < 0.01) of the Notch signaling pathway Hey1, Hey2, and Hes1, by increases of 9.7-, 22-, and 2.7-fold, respectively. CONCLUSIONS These findings identify a novel role for imiquimod to shift mesenchymal stem cells toward an osteogenic phenotype. Imiquimod may be useful clinically when scaffolds are applied to treat bone defects.
Collapse
|
53
|
Wu L, Xiang S, Hu X, Mo M, Zhao C, Cai Y, Tong S, Jiang H, Chen L, Wang Z, Xiong W, Ou Z. Prostate-specific antigen modulates the osteogenic differentiation of MSCs via the cadherin 11-Akt axis. Clin Transl Med 2020; 10:363-373. [PMID: 32508049 PMCID: PMC7240859 DOI: 10.1002/ctm2.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A high prevalence of osteoblastic bone metastases is characteristic of prostate cancer. Prostate-specific antigen (PSA) is a serine protease uniquely produced by prostate cancer cells and is an important serological marker for prostate cancer. However, whether PSA modulates the osteogenic process remains largely unknown. In this study, we explored the effect of PSA on modulating the osteoblastic differentiation of mesenchymal stem cells (MSCs). In this study, we used flow cytometry, CCK-8 assay, Alizarin red S (ARS) staining and quantification, alkaline phosphatase (ALP) activity and staining, Western blotting, and quantitative real-time PCR (qRT-PCR) to explore the effect of PSA on osteogenic differentiation of MSCs. RESULTS We first demonstrated that although PSA did not affect the proliferation, morphology, or phenotype of MSCs, it significantly promoted the osteogenic differentiation of MSCs in a concentration-dependent manner. Furthermore, we demonstrated that PSA promoted the osteogenic differentiation of MSCs by elevating the expression of Cadherin 11 in MSCs and, thus, activating the Akt signaling pathway. CONCLUSIONS In conclusion, we demonstrated that PSA could promote the osteogenesis of MSCs through Akt signaling pathway activation by elevating the expression of cadherin-11 in MSCs. These findings imply a possible role of PSA in osteoblastic bone metastases in prostate cancer.
Collapse
Affiliation(s)
- Longxiang Wu
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Shiqi Xiang
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaP.R. China
| | - Xiheng Hu
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Miao Mo
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Cheng Zhao
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Yi Cai
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Shiyu Tong
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Huichuan Jiang
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Linxiao Chen
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Zhi Wang
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Wei Xiong
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Zhenyu Ou
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| |
Collapse
|
54
|
Peng Q, Chen B, Wang H, Zhu Y, Wu J, Luo Y, Zuo G, Luo J, Zhou L, Shi Q, Weng Y, Huang A, He TC, Fan J. Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes. Aging (Albany NY) 2019; 11:11520-11540. [PMID: 31831718 PMCID: PMC6932923 DOI: 10.18632/aging.102552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Liver has numerous critical metabolic functions including lipid metabolism, which is usually dysregulated in obesity, the metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). Increasing evidence indicates bone morphogenetic proteins (BMPs) play an important role in adipogenesis and thermogenic balance in adipogenic progenitors and adipose tissue. However, the direct impact of BMPs on hepatic steatosis and possible association with NAFLD are poorly understood. Here, we found that BMP4 was up-regulated in oleic acid-induced steatosis and during the development of high fat diet (HFD)-induced NAFLD. Exogenous BMP4 reduced lipid accumulation and up-regulated the genes involved in lipid synthesis, storage and breakdown in hepatocytes. Exogenous BMP4 inhibited hepatic steatosis, reduced serum triglyceride levels and body weight, and alleviated progression of NAFLD in vivo. Mechanistically, BMP4 overexpression in hepatocytes down-regulated most components of the mTORC1 signaling axis. Collectively, these findings strongly suggest that BMP4 may play an essential role in regulating hepatic lipid metabolism and the molecular pathogenesis of NAFLD. Manipulating BMP4 and/or mTORC1 signaling axis may lead to the development of novel therapeutics for obesity, metabolic syndrome, and NAFLD.
Collapse
Affiliation(s)
- Qi Peng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bin Chen
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ying Zhu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yetao Luo
- Clinical Epidemiology and Biostatistics Department, Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guowei Zuo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jinyong Luo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lan Zhou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
55
|
Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells. Cell Tissue Res 2019; 379:169-179. [PMID: 31781870 DOI: 10.1007/s00441-019-03130-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a tightly regulated process realized by progenitor cell osteoblasts. Notch signaling pathway plays a critical role in skeletal development and bone remodeling. Controversial data exist regarding the role of Notch activation in promoting or preventing osteogenic differentiation. This study aims to investigate the effect of several Notch components and their dosage on osteogenic differentiation of mesenchymal stem cells of adipose tissue. Osteogenic differentiation was induced in the presence of either of Notch components (NICD, Jag1, Dll1, Dll4) dosed by lentiviral transduction. We show that osteogenic differentiation was increased by NICD and Jag1 transduction in a dose-dependent manner; however, a high dosage of both NICD and Jag1 decreased the efficiency of osteogenic differentiation. NICD dose-dependently increased activity of the CSL luciferase reporter but a high dosage of NICD caused a decrease in the activity of the reporter. A high dosage of both Notch components NICD and Jag1 induced apoptosis. In co-culture experiments where only half of the cells were transduced with either NICD or Jag1, only NICD increased osteogenic differentiation according to the dosage, while Jag1-transduced cells differentiated almost equally independently on dosage. In conclusion, activation of Notch promotes osteogenic differentiation in a tissue-specific dose-dependent manner; both NICD and Jag1 are able to increase osteogenic potential but at moderate doses only and a high dosage of Notch activation is detrimental to osteogenic differentiation. This result might be especially important when considering possibilities of using Notch activation to promote osteogenesis in clinical applications to bone repair.
Collapse
|
56
|
Zheng W, Chen Q, Zhang Y, Xia R, Gu X, Hao Y, Yu Z, Sun X, Hu D. BMP9 promotes osteogenic differentiation of SMSCs by activating the JNK/Smad2/3 signaling pathway. J Cell Biochem 2019; 121:2851-2863. [PMID: 31680322 DOI: 10.1002/jcb.29519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022]
Abstract
Synovial mesenchymal stem cells (SMSCs) with high proliferation and multi differentiation ability, and low immunogenicity have attracted research attention for their potential application in tissue engineering. Once their ability of osteogenesis is strengthened, it will be of practical value to apply the SMSCs in the field of bone regeneration. The current study aimed to investigate the osteogenic characteristics of SMSCs induced by bone morphogenetic protein 9 (BMP9) both in vitro and in vivo and to elucidate the mechanism underlying these characteristics. Specifically, different BMPs were assessed to determine the protein that would be the most favorable for stimulating osteogenic differentiation of SMSCs following their separation. The BMP9-enhanced osteogenesis of SMSCs was fully investigated in vitro and in vivo, and the c-Jun N-terminal kinase (JNK)/Smad2/3 signaling pathway stimulated by BMP9 was further explored. Our data suggested that BMP9 could significantly promote gene and protein expression of runt-related transcription factor 2, alkaline phosphatase, osteopontin, and osteocalcin, and SP600125, a JNK-specific inhibitor, could effectively decrease this tendency. Similar results were also confirmed in rats with cranial defects. In conclusion, our study indicated that BMP9 promotes bone formation both in vitro and in vivo possibly by activating the JNK/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qian Chen
- Laboratory Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yu Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Xia
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueping Gu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zepeng Yu
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dan Hu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
57
|
Zhu Y, Shi Q, Peng Q, Gao Y, Yang T, Cheng Y, Wang H, Luo Y, Huang A, He TC, Fan J. A simplified 3D liver microsphere tissue culture model for hepatic cell signaling and drug-induced hepatotoxicity studies. Int J Mol Med 2019; 44:1653-1666. [PMID: 31485603 PMCID: PMC6777685 DOI: 10.3892/ijmm.2019.4321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
Although a number of experimental models have been developed for liver research, each has its own advantages and disadvantages. The present study attempted to develop a simple and effective 3‑dimensional mouse liver microsphere tissue culture (LMTC) model in vitro for the analysis of hepatic functions. Hepatic characteristics and potential applications of this model were compared with that of mouse model in vivo and mouse primary hepatocytes in vitro. Using freshly‑perfused mouse liver tissue passed through 80‑mesh sift strainer (sift80), it was demonstrated that under the optimal culture conditions, the sift80 microsphere tissue cultured in 2% bovine calf serum medium remained viable with marked proliferating cell nuclear antigen and anti‑Myc proto‑oncogene protein expression, exhibited normal hepatic functions including indocyanine green (ICG) uptake/release and periodic acid‑Schiff staining, and expressed hepatocyte‑specific genes for up to 2 weeks. The microsphere tissue was responsive to bone morphogenic protein 9 (BMP9) stimulation leading to upregulation of downstream targets of BMP9 signaling. Furthermore, 3 commonly‑used liver‑damaging drugs were indicated to effectively inhibit hepatic ICG uptake, and induce the expression of hepatotoxicity‑associated genes. Therefore, this simplified LMTC model may be a useful in vitro tissue culture model to investigate drug‑induced liver injury and metabolism, and hepatocyte‑based cell singling.
Collapse
Affiliation(s)
- Ying Zhu
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qi Peng
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yue Gao
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Yang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu Cheng
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yetao Luo
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400037, P.R. China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
58
|
Xu Y, An JJ, Tabys D, Xie YD, Zhao TY, Ren HW, Liu N. Effect of Lactoferrin on the Expression Profiles of Long Non-coding RNA during Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20194834. [PMID: 31569432 PMCID: PMC6801644 DOI: 10.3390/ijms20194834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lactoferrin (LF) has demonstrated stimulation of osteogenic differentiation of mesenchymal stem cells (MSCs). Long non-coding RNAs (lncRNAs) participate in regulating the osteogenic differentiation processes. However, the impact of LF on lncRNA expression in MSC osteogenic differentiation is poorly understood. Our aim was to investigate the effects of LF on lncRNAs expression profiles, during osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), by RNA sequencing. A total number of 1331 putative lncRNAs were identified in rBMSCs during osteogenic differentiation in the study. LF influenced the expression of 120 lncRNAs (differentially expressed lncRNAs [DELs], Fold change > 1.5 or < −1.5; p < 0.05) in rBMSCs on day 14 of osteogenic differentiation, consisted of 60 upregulated and 60 down-regulated. Furthermore, the potential functions of DELs were of prediction by searching their target cis- and trans-regulated protein-coding genes. The bioinformatic analysis of DELs target gene revealed that LF led to the disfunction of transforming growth factor beta stimulus (TGF-β) and positive regulation of I-κappa B kinase/NF-κappa B signaling pathway, which may relate to osteogenic differentiation of rBMSCs. Our work is the first profiling of lncRNA in osteogenic differentiation of rBMSCs induced by LF, and provides valuable insights into the potential mechanisms for LF promoting osteogenic activity.
Collapse
Affiliation(s)
- Yan Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jing-Jing An
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dina Tabys
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yin-Dan Xie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Tian-Yu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hao-Wei Ren
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Ning Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
59
|
Wang X, Yuan C, Huang B, Fan J, Feng Y, Li AJ, Zhang B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Wu D, Chen X, Liu B, Wagstaff W, He F, Wu X, Luo H, Zhang J, Zhang M, Haydon RC, Luu HH, Lee MJ, Moriatis Wolf J, Huang A, He TC, Zeng Z. Developing a Versatile Shotgun Cloning Strategy for Single-Vector-Based Multiplex Expression of Short Interfering RNAs (siRNAs) in Mammalian Cells. ACS Synth Biol 2019; 8:2092-2105. [PMID: 31465214 PMCID: PMC6760290 DOI: 10.1021/acssynbio.9b00203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
As an important post-transcriptional
regulatory machinery mediated
by ∼21nt short-interfering double-stranded RNA (siRNA), RNA
interference (RNAi) is a powerful tool to delineate gene functions
and develop therapeutics. However, effective RNAi-mediated silencing
requires multiple siRNAs for given genes, a time-consuming process
to accomplish. Here, we developed a user-friendly system for single-vector-based
multiplex siRNA expression by exploiting the unique feature of restriction
endonuclease BstXI. Specifically, we engineered a BstXI-based shotgun
cloning (BSG) system, which consists of three entry vectors with siRNA
expression units (SiEUs) flanked with distinct BstXI sites, and a
retroviral destination vector for shotgun SiEU assembly. For proof-of-principle
studies, we constructed multiplex siRNA vectors silencing β-catenin
and/or Smad4 and assessed their functionalities in mesenchymal stem
cells (MSCs). Pooled siRNA cassettes were effectively
inserted into respective entry vectors in one-step, and shotgun seamless
assembly of pooled BstXI-digested SiEU fragments into a retroviral
destination vector followed. We found these multiplex siRNAs effectively
silenced β-catenin and/or Smad4, and inhibited Wnt3A- or BMP9-specific
reporters and downstream target expression in MSCs. Furthermore, multiplex
silencing of β-catenin and/or Smad4 diminished Wnt3A and/or
BMP9-induced osteogenic differentiation. Collectively, the BSG system
is a user-friendly technology for single-vector-based multiplex siRNA
expression to study gene functions and develop experimental therapeutics.
Collapse
Affiliation(s)
- Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang, 443002, China
| | - Bo Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Clinical Laboratory Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, the First and Second Hospitals of Lanzhou University, Lanzhou, 730030, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
- Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing, 400013, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, the First and Second Hospitals of Lanzhou University, Lanzhou, 730030, China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266061, China
| | - Bin Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- The Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Zongyue Zeng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW This article reviews the past 2 years of research on Notch signaling as it relates to bone physiology, with the goal of reconciling seemingly discrepant findings and identifying fruitful areas of potential future research. RECENT FINDINGS Conditional animal models and high-throughput omics have contributed to a greater understanding of the context-dependent role of Notch signaling in bone. However, significant gaps remain in our understanding of how spatiotemporal context and epigenetic state dictate downstream Notch phenotypes. Biphasic activation of Notch signaling orchestrates progression of mesenchymal progenitor cells through the osteoblast lineage, but there is a limited understanding of ligand- and receptor-specific functions. Paracrine Notch signaling through non-osteoblastic cell types contributes additional layers of complexity, and we anticipate impactful future work related to the integration of these cell types and signaling mechanisms.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA
| |
Collapse
|
61
|
Wang H, Hu Y, He F, Li L, Li PP, Deng Y, Li FS, Wu K, He BC. All-trans retinoic acid and COX-2 cross-talk to regulate BMP9-induced osteogenic differentiation via Wnt/β-catenin in mesenchymal stem cells. Biomed Pharmacother 2019; 118:109279. [PMID: 31376651 DOI: 10.1016/j.biopha.2019.109279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
COX-2 specific inhibitor, which has been widely used, can delay bone fracture healing and reduce osteogenic potential of bone marrow stromal cells. However, it remains unknown how to prevent these side-effects of COX-2 inhibitor. In this study, we introduced BMP9-induced osteogenic differentiation as model to evaluate whether all-trans retinoic acid (ATRA) could ameliorate these adverse effects of COX-2 specific inhibitor on bone metabolism with in vitro and in vivo experiments, and uncover the possible mechanism underlying this process. Results showed that ATRA enhanced the potential of BMP9 to induce the osteogenic markers, such as alkaline phosphates (ALP) and mineralization; but retinoic acid receptor a (RARa) inhibitor showed the reversal effects. COX-2 specific inhibitor (NS398) reduced the osteogenic markers induced by BMP9, and ATRA almost eliminated the inhibitory effect of NS398. BMP9 up-regulated the protein level of β-catenin and promoted it translocate to nucleus, and both were reduced by NS398. On the contrary, ATRA notablely attenuated the inhibitory effect of NS398 on BMP9-increased β-catenin. Exogenous RXRa obviously ameliorated the inhibitory effect of silencing COX-2 on ectopic bone formation induced by BMP9. NS398 reduced the level of phosphorylated CREB, which was almost reversed by ATRA. Besides, RXRa interacted with phosphorylated CREB directly and both were recruited at β-catenin promoter region. Thus, we demonstrated that ATRA may reverse the side-effects of COX-2 inhibitor on bone metabolism through increasing the activation of Wnt/β-catenin pathway partly.
Collapse
Affiliation(s)
- Han Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ying Hu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fang He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Nephrology, First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ling Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Pei-Pei Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Deng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fu-Shu Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
62
|
Fu T, Liang P, Song J, Wang J, Zhou P, Tang Y, Li J, Huang E. Matrigel Scaffolding Enhances BMP9-induced Bone Formation in Dental Follicle Stem/Precursor Cells. Int J Med Sci 2019; 16:567-575. [PMID: 31171908 PMCID: PMC6535656 DOI: 10.7150/ijms.30801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering requires a combination of cells, efficient biochemical and physicochemical factors, and biocompatible scaffolds. In this study, we evaluated the potential use of injectable Matrigel as a scaffold for the delivery of rat dental follicle stem/precursor cells (rDFSCs) transduced by bone morphogenetic protein (BMP) 9 to enhance osteogenic differentiation in vitro and promote ectopic bone formation in vivo. Recombinant adenovirus was used to overexpress BMP9 in rDFSCs. Alkaline phosphatase activity was measured using a histochemical staining assay and a chemiluminescence assay kit. Quantitative real-time polymerase chain reaction was used to determine mRNA expression levels of bone-related genes including distal-less homeobox 5 (DLX5), osteopontin (OPN), osterix (Osx), and runt-related transcription factor 2 (Runx2). Matrix mineralization was examined by Alizarin Red S staining. rDFSCs proliferation was analyzed using the Cell Counting Kit-8 assay. Subcutaneous implantation of rDFSCs-containing Matrigel scaffolds was used, and micro-computed tomography analysis, histological evaluation, and trichrome staining of implants extracted at 6 weeks were performed. We found that BMP9 enhanced alkaline phosphatase activity and mineralization in rDFSCs. The expression of bone-related genes (DLX5, OPN, Osx, and Runx2) was also increased as a result of BMP9 stimulation. Micro-computed tomography analysis and histological evaluation revealed that the bone masses retrieved from BMP9-overexpressing rDFSCs were significantly more pronounced in those with than in those without Matrigel. Our results suggest that BMP9 effectively promote osteogenic differentiation of rDFSCs, and Matrigel facilitate BMP9-induced osteogenesis of rDFSCs in vivo.
Collapse
Affiliation(s)
- Tiwei Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinhua Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Pengfei Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yinhong Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Enyi Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|