51
|
Jiang N, Zhang Z, Chen X, Zhang G, Wang Y, Pan L, Yan C, Yang G, Zhao L, Han J, Xue T. Plasma Lipidomics Profiling Reveals Biomarkers for Papillary Thyroid Cancer Diagnosis. Front Cell Dev Biol 2021; 9:682269. [PMID: 34235148 PMCID: PMC8255691 DOI: 10.3389/fcell.2021.682269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to identify potential biomarkers and possible metabolic pathways of malignant and benign thyroid nodules through lipidomics study. A total of 47 papillary thyroid carcinomas (PTC) and 33 control check (CK) were enrolled. Plasma samples were collected for UPLC-Q-TOF MS system detection, and then OPLS-DA model was used to identify differential metabolites. Based on classical statistical methods and machine learning, potential biomarkers were characterized and related metabolic pathways were identified. According to the metabolic spectrum, 13 metabolites were identified between PTC group and CK group, and a total of five metabolites were obtained after further screening. Its metabolic pathways were involved in glycerophospholipid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, glycosylphosphatidylinositol (GPI)—anchor biosynthesis, Phosphatidylinositol signaling system and the metabolism of arachidonic acid metabolism. The metabolomics method based on PROTON nuclear magnetic resonance (NMR) had great potential for distinguishing normal subjects from PTC. GlcCer(d14:1/24:1), PE-NME (18:1/18:1), SM(d16:1/24:1), SM(d18:1/15:0), and SM(d18:1/16:1) can be used as potential serum markers for the diagnosis of PTC.
Collapse
Affiliation(s)
- Nan Jiang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Zhenya Zhang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Xianyang Chen
- BaoFeng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Guofen Zhang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Ying Wang
- Department of Oncology, Tai'an City Central Hospital, Tai'an, China
| | - Lijie Pan
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Chengping Yan
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Guoshan Yang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Li Zhao
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Jiarui Han
- BaoFeng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Teng Xue
- Zhongguancun Biological and Medical Big Data Center, Beijing, China
| |
Collapse
|
52
|
Lomphithak T, Akara-Amornthum P, Murakami K, Hashimoto M, Usubuchi H, Iwabuchi E, Unno M, Cai Z, Sasano H, Jitkaew S. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Sci Rep 2021; 11:11743. [PMID: 34083572 PMCID: PMC8175514 DOI: 10.1038/s41598-021-89977-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Necroptosis, a regulated form of necrosis, has emerged as a novel therapeutic strategy that could enhance cancer immunotherapy. However, its role in tumorigenesis is still debated because recent studies have reported both anti- and pro-tumoral effects. Here, we aimed to systematically evaluate the associations between tumor necroptosis (mixed lineage kinase domain-like protein, MLKL; phosphorylated MLKL, pMLKL; and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3, RIPK1-RIPK3 interaction) and tumor-infiltrating immune cells (CD8+ and FOXp3+ T cells and CD163+ M2 macrophages) and tumor PD-L1 by immunohistochemistry in 88 cholangiocarcinoma (CCA) patients who had undergone surgical resection. Their associations with clinicopathological characteristics, survival data, and prognosis were evaluated. MLKL was found to be an unfavorable prognostic factor (p-value = 0.023, HR = 2.070) and was inversely correlated with a clinically favorable immune cell signature (high CD8+/high FOXp3+/low CD163+). Both pMLKL and RIPK1-RIPK3 interaction were detected in CCA primary tissues. In contrast to MLKL, pMLKL status was significantly positively correlated with a favorable immune signature (high CD8+/high FOXp3+/low CD163+) and PD-L1 expression. Patients with high pMLKL-positive staining were significantly associated with an increased abundance of CD8+ T cell intratumoral infiltration (p-value = 0.006). Patients with high pMLKL and PD-L1 expressions had a longer overall survival (OS). The results from in vitro experiments showed that necroptosis activation in an RMCCA-1 human CCA cell line selectively promoted proinflammatory cytokine and chemokine expression. Jurkat T cells stimulated with necroptotic RMCCA-1-derived conditioned medium promoted PD-L1 expression in RMCCA-1. Our findings demonstrated the differential associations of necroptosis activation (pMLKL) and MLKL with a clinically favorable immune signature and survival rates and highlighted a novel therapeutic possibility for combining a necroptosis-based therapeutic approach with immune checkpoint inhibitors for more efficient treatment of CCA patients.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Perawatt Akara-Amornthum
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Keigo Murakami
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Masatoshi Hashimoto
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Hajime Usubuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Erina Iwabuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University School of Medicine, Sendai, Miyagi, 98-8075, Japan
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Siriporn Jitkaew
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
53
|
Amelio I, Melino G, Levine AJ. Bispecific antibodies come to the aid of cancer immunotherapy. Mol Oncol 2021; 15:1759-1763. [PMID: 33942515 PMCID: PMC8253090 DOI: 10.1002/1878-0261.12977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Three collaborative studies published by the groups of Vogelstein, Gabelli, and Zhou report the development of specially designed bispecific antibodies that may help in overcoming the limitations of current immunotherapies. The bispecific antibodies have been designed to couple cells harboring HLA-presented tumor-specific antigens from Tp53 mutant or Ras mutant with CD4 and CD8 T cells, thus facilitating immune-mediated clearance of the cancer cells.
Collapse
Affiliation(s)
- Ivano Amelio
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Arnold J Levine
- Institute for Advanced Study, Simons Center for Systems Biology, Princeton, NJ, USA
| |
Collapse
|
54
|
What is the future of immunotherapy in multiple myeloma? Blood 2021; 136:2491-2497. [PMID: 32735639 DOI: 10.1182/blood.2019004176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
The treatment of multiple myeloma (MM) is currently being redefined by humoral and cellular immunotherapies. For decades, there was limited belief in immune-based anti-MM therapy as a result of the moderate graft-versus-myeloma effect of allogeneic stem cell transplantation. Today, monoclonal antibodies comprise the new backbone of anti-MM therapy, and T-cell therapies targeting BCMA are emerging as the most potent single agents for MM treatment. Herein, we present our assessment of and vision for MM immunotherapy in the short and midterm.
Collapse
|
55
|
Combating pancreatic cancer chemoresistance by triggering multiple cell death pathways. Pancreatology 2021; 21:522-529. [PMID: 33516629 DOI: 10.1016/j.pan.2021.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is the fourth most common cause of cancer-associated death in western countries, where the incidence and number of deaths are increasing every year. Intrinsic or acquired resistance of tumor cells to chemotherapy agents is the major reason for failure of traditional cancer treatment. Several factors are implicated in this impressive resistance; however, of these, it is important to highlight the extensive cellular heterogeneity of these tumors. This heterogeneity is linked to a wide range of sensitivity that different clones in the same tumor display to chemotherapeutic agents. Accordingly, recent findings in this field have discovered new therapeutic targets in order to develop new combinatory treatments, as well as to induce several cell death pathways and reduce therapy-threshold and likelihood of future resistance. Accordingly, recent research has focused on targeting mitochondria, an organelle with key roles regulating cell death signaling pathways, such as apoptosis, necroptosis, autophagy, ferroptosis, or parthanatos. These findings - identifying new compounds, alone or in combination, that can target pancreatic ductal adenocarcinoma cell resistance - could be the key to future treatments.
Collapse
|
56
|
GE11 Peptide Conjugated Liposomes for EGFR-Targeted and Chemophotothermal Combined Anticancer Therapy. Bioinorg Chem Appl 2021; 2021:5534870. [PMID: 33868396 PMCID: PMC8035035 DOI: 10.1155/2021/5534870] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
How to actively target tumor sites manipulating the controllable release of the encapsulated anticancer drugs and photosensitizers for synergistic anticancer therapy remains a big challenge. In this study, a cancer cell-targeted, near-infrared (NIR) light-triggered and anticancer drug loaded liposome system (LPs) was developed for synergistic cancer therapy. Photosensitizer indocyanine green (ICG) and chemotherapy drug Curcumin (CUR) were coencapsulated into the liposomes, followed by the surface conjugation of GE11 peptide for epidermal growth factor receptor (EGFR) targeting on the cancer cell surface. Strictly controlled by NIR light, GE11 peptide modified and CUR/ICG-loaded LPs (GE11-CUR/ICG-LPs) could introduce hyperthermia in EGFR overexpressed A549 cancer cells for photothermal therapy, which could also trigger the increased release of CUR for enhanced cancer cell inhibition. GE11-CUR/ICG-LPs synergized photochemotherapy could induce reactive oxygen species (ROS) generation and cytoskeleton disruption to activate stronger apoptotic signaling events than the photothermal therapy or chemotherapy alone by regulating Bax/Bcl-2 and PI3K/AKT pathways. This EGFR-targeted drug-delivery nanosystem with NIR sensitivity may potentially serve in more effective anticancer therapeutics with reduced off-target effects.
Collapse
|
57
|
Zhu H, Toan S, Mui D, Zhou H. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf) 2021; 231:e13590. [PMID: 33270362 DOI: 10.1111/apha.13590] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. As mitochondrial dysfunction critically contributes to the pathogenesis of MI, intensive research is focused on the development of therapeutic strategies targeting mitochondrial homeostasis. Mitochondria possess a quality control system which maintains and restores their structure and function by regulating mitochondrial fission, fusion, biogenesis, degradation and death. In response to slight damage such as transient hypoxia or mild oxidative stress, mitochondrial metabolism shifts from oxidative phosphorylation to glycolysis, in order to reduce oxygen consumption and maintain ATP output. Mitochondrial dynamics are also activated to modify mitochondrial shape and structure, in order to meet cardiomyocyte energy requirements through augmenting or reducing mitochondrial mass. When damaged mitochondria cannot be repaired, poorly structured mitochondria will be degraded through mitophagy, a process which is often accompanied by mitochondrial biogenesis. Once the insult is severe enough to induce lethal damage in the mitochondria and the cell, mitochondrial death pathway activation is an inevitable consequence, and the cardiomyocyte apoptosis or necrosis program will be initiated to remove damaged cells. Mitochondrial quality surveillance is a hierarchical system preserving mitochondrial function and defending cardiomyocytes against stress. A failure of this system has been regarded as one of the potential pathologies underlying MI. In this review, we discuss the recent findings focusing on the role of mitochondrial quality surveillance in MI, and highlight the available therapeutic approaches targeting mitochondrial quality surveillance during MI.
Collapse
Affiliation(s)
- Hang Zhu
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| | - Sam Toan
- Department of Chemical Engineering University of Minnesota‐Duluth Duluth MN USA
| | - David Mui
- Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Hao Zhou
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| |
Collapse
|
58
|
Pore-forming toxins in infection and immunity. Biochem Soc Trans 2021; 49:455-465. [PMID: 33492383 DOI: 10.1042/bst20200836] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
The integrity of the plasma membranes is extremely crucial for the survival and proper functioning of the cells. Organisms from all kingdoms of life employ specialized pore-forming proteins and toxins (PFPs and PFTs) that perforate cell membranes, and cause detrimental effects. PFPs/PFTs exert their damaging actions by forming oligomeric pores in the membrane lipid bilayer. PFPs/PFTs play important roles in diverse biological processes. Many pathogenic bacteria secrete PFTs for executing their virulence mechanisms. The immune system of the higher vertebrates employs PFPs to kill pathogen-infected cells and transformed cancer cells. The most obvious consequence of membrane pore-formation by the PFPs/PFTs is the killing of the target cells due to the disruption of the permeability barrier function of the plasma membranes. PFPs/PFTs can also activate diverse cellular processes that include activation of the stress-response pathways, induction of programmed cell death, and inflammation. Upon attack by the PFTs, host cells may also activate pathways to repair the injured membranes, restore cellular homeostasis, and trigger inflammatory immune responses. In this article, we present an overview of the diverse cellular responses that are triggered by the PFPs/PFTs, and their implications in the process of pathogen infection and immunity.
Collapse
|
59
|
Martínez-Rodríguez OP, González-Torres A, Álvarez-Salas LM, Hernández-Sánchez H, García-Pérez BE, Thompson-Bonilla MDR, Jaramillo-Flores ME. Effect of naringenin and its combination with cisplatin in cell death, proliferation and invasion of cervical cancer spheroids. RSC Adv 2020; 11:129-141. [PMID: 35423031 PMCID: PMC8690252 DOI: 10.1039/d0ra07309a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023] Open
Abstract
The main treatment alternative for cervical cancer is cisplatin chemotherapy. However, the resistance of tumor cells to cisplatin, in addition to side effects, limits its use. The flavonoid naringenin has shown cytotoxic effects on tumor cells and may be considered as a coadjuvant in the treatment of cervical cancer. In the present study, the effect of naringenin on cell viability, cytotoxicity, proliferation, apoptosis and invasion was evaluated in HeLa spheroid cultures. Naringenin impaired the cell viability as indicated by low ATP levels and caused concentration- and time-dependent cytotoxicity via the loss of cell membrane integrity. Furthermore, it did not activate caspases 3, 7, 8, and 9, suggesting that the cytotoxic effect was by necrotic cell death instead of apoptosis. Additionally, proliferation in the G0/G1 phase of the cell cycle was inhibited. Cell invasion also decreased as time progressed. Later, we determined if naringenin could improve the anti-tumor effect of cisplatin. The combination of naringenin with low concentrations of cisplatin improved the effect of the drug by significantly decreasing cell viability, potentiating the induction of cytotoxicity and decreasing the invasive capacity of the spheroids. Since these effects are regulated by some key proteins, molecular docking results indicated the interaction of naringenin with RIP3 and MLKL, cyclin B and with matrix metalloproteases 2 and 9. The results showed the anti-tumor effect of naringenin on the HeLa spheroids and improved effect of the cisplatin at low concentrations in combination with naringenin, placing flavonoids as a potential adjuvant in the therapy against cervical cancer.
Collapse
Affiliation(s)
- Oswaldo Pablo Martínez-Rodríguez
- Laboratorio de Biopolímeros, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Av Wilfrido Masseiu Esq. Manuel Stampa S/N, Unidad Profesional Adolfo López Mateos CP 07738 Ciudad de México México
| | - Alejandro González-Torres
- Laboratorio de Biopolímeros, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Av Wilfrido Masseiu Esq. Manuel Stampa S/N, Unidad Profesional Adolfo López Mateos CP 07738 Ciudad de México México
| | - Luis Marat Álvarez-Salas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. Av. I.P.N. 2508 CP 07360 Ciudad de México México
| | - Humberto Hernández-Sánchez
- Laboratorio de Biopolímeros, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Av Wilfrido Masseiu Esq. Manuel Stampa S/N, Unidad Profesional Adolfo López Mateos CP 07738 Ciudad de México México
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Carpio y Plan de Ayala. Casco de Santo Tomás CP 11340 Ciudad de México México
| | - María Del Rocío Thompson-Bonilla
- Laboratorio de Medicina Genómica, Hospital 1ro de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado Av. I.P.N. 1669 CP 07300 Ciudad de México México
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Biopolímeros, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Av Wilfrido Masseiu Esq. Manuel Stampa S/N, Unidad Profesional Adolfo López Mateos CP 07738 Ciudad de México México
| |
Collapse
|
60
|
Wang M, Wang S, Desai J, Trapani JA, Neeson PJ. Therapeutic strategies to remodel immunologically cold tumors. Clin Transl Immunology 2020; 9:e1226. [PMID: 35136604 PMCID: PMC8809427 DOI: 10.1002/cti2.1226] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) induce a durable response in a wide range of tumor types, but only a minority of patients outside these 'responsive' tumor types respond, with some totally resistant. The primary predictor of intrinsic immune resistance to ICIs is the complete or near-complete absence of lymphocytes from the tumor, so-called immunologically cold tumors. Here, we propose two broad approaches to convert 'cold' tumors into 'hot' tumors. The first is to induce immunogenic tumor cell death, through the use of oncolytic viruses or bacteria, conventional cancer therapies (e.g. chemotherapy or radiation therapy) or small molecule drugs. The second approach is to target the tumor microenvironment, and covers diverse options such as depleting immune suppressive cells; inhibiting transforming growth factor-beta; remodelling the tumor vasculature or hypoxic environment; strengthening the infiltration and activation of antigen-presenting cells and/or effector T cells in the tumor microenvironment with immune modulators; and enhancing immunogenicity through personalised cancer vaccines. Strategies that successfully modify cold tumors to overcome their resistance to ICIs represent mechanistically driven approaches that will ultimately result in rational combination therapies to extend the clinical benefits of immunotherapy to a broader cancer cohort.
Collapse
Affiliation(s)
- Minyu Wang
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| | - Sen Wang
- South Australian Genomics CentreSouth Australian Health and Medical Research InstituteAdelaideSAAustralia
- Medical Genomics PlatformHudson Institute of Medical ResearchClaytonVICAustralia
| | - Jayesh Desai
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Division of Medical OncologyPeter MacCallum Cancer CentreMelbourneVICAustralia
| | - Joseph A Trapani
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| | - Paul J Neeson
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| |
Collapse
|
61
|
Abstract
Immunogenic cell death (ICD) is a type of cancer cell death triggered by certain chemotherapeutic drugs, oncolytic viruses, physicochemical therapies, photodynamic therapy, and radiotherapy. It involves the activation of the immune system against cancer in immunocompetent hosts. ICD comprises the release of damage-associated molecular patterns (DAMPs) from dying tumor cells that result in the activation of tumor-specific immune responses, thus eliciting long-term efficacy of anticancer drugs by combining direct cancer cell killing and antitumor immunity. Remarkably, subcutaneous injection of dying tumor cells undergoing ICD has been shown to provoke anticancer vaccine effects in vivo. DAMPs include the cell surface exposure of calreticulin (CRT) and heat-shock proteins (HSP70 and HSP90), extracellular release of adenosine triphosphate (ATP), high-mobility group box-1 (HMGB1), type I IFNs and members of the IL-1 cytokine family. In this review, we discuss the cell death modalities connected to ICD, the DAMPs exposed during ICD, and the mechanism by which they activate the immune system. Finally, we discuss the therapeutic potential and challenges of harnessing ICD in cancer immunotherapy.
Collapse
Affiliation(s)
- Asma Ahmed
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowUK
| | - Stephen W.G. Tait
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowUK
| |
Collapse
|
62
|
Necroptosis in Intestinal Inflammation and Cancer: New Concepts and Therapeutic Perspectives. Biomolecules 2020; 10:biom10101431. [PMID: 33050394 PMCID: PMC7599789 DOI: 10.3390/biom10101431] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Necroptosis is a caspases-independent programmed cell death displaying intermediate features between necrosis and apoptosis. Albeit some physiological roles during embryonic development such tissue homeostasis and innate immune response are documented, necroptosis is mainly considered a pro-inflammatory cell death. Key actors of necroptosis are the receptor-interacting-protein-kinases, RIPK1 and RIPK3, and their target, the mixed-lineage-kinase-domain-like protein, MLKL. The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. Altered necroptosis at the intestinal epithelium leads to uncontrolled microbial translocation and deleterious inflammation. Indeed, necroptosis plays a role in many disease conditions and inhibiting necroptosis is currently considered a promising therapeutic strategy. In this review, we focus on the molecular mechanisms of necroptosis as well as its involvement in human diseases. We also discuss the present developing therapies that target necroptosis machinery.
Collapse
|
63
|
Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, Desind S, Davra V, Birge RB. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells 2020; 9:cells9102207. [PMID: 33003477 PMCID: PMC7599747 DOI: 10.3390/cells9102207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological fate of cells that die by apoptosis is their prompt and efficient removal by efferocytosis. During these processes, apoptotic cells release intracellular constituents that include purine nucleotides, lysophosphatidylcholine (LPC), and Sphingosine-1-phosphate (S1P) that induce migration and chemo-attraction of phagocytes as well as mitogens and extracellular membrane-bound vesicles that contribute to apoptosis-induced compensatory proliferation and alteration of the extracellular matrix and the vascular network. Additionally, during efferocytosis, phagocytic cells produce a number of anti-inflammatory and resolving factors, and, together with apoptotic cells, efferocytic events have a homeostatic function that regulates tissue repair. These homeostatic functions are dysregulated in cancers, where, aforementioned events, if not properly controlled, can lead to cancer progression and immune escape. Here, we summarize evidence that apoptosis and efferocytosis are exploited in cancer, as well as discuss current translation and clinical efforts to harness signals from dying cells into therapeutic strategies.
Collapse
|
64
|
Fu G, Wang B, He B, Feng M, Yu Y. LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res 2020; 41:32-37. [PMID: 32580628 DOI: 10.1080/10799893.2020.1783682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necroptosis is a new type of cell death. However, the role of necroptosis in LPS-related cardiomyocyte damage has not been fully understood. The aim of our study is to explore the molecular mechanism underlying inflammation-mediated cardiomyocyte necroptosis. H9C2 cardiomyocyte cell line was treated with LPS. Then, cell viability and necroptosis were measured through qPCR and ELISA. Pathway analysis was performed to verify whether Ripk3/Pgam5 signaling pathway is implicated into the regulation of cardiomyocyte necroptosis. The results demonstrated that LPS reduced cardiomyocyte viability and activated necroptosis. At the molecular levels, oxidative stress and inflammation were triggered by LPS and these alterations may contribute to the activation of necroptosis. Finally, we found that Ripk3/Pgam5 signaling pathway was activated by LPS in cardiomyocyte and this signaling pathway may explain the regulatory mechanism underlying LPS-mediated necroptosis. Altogether, our results demonstrated that septic cardiomyopathy is associated with an activation of necroptosis through the Ripk3/Pgam5 signaling pathway.
Collapse
Affiliation(s)
- Guohua Fu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Binhao Wang
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Bin He
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Mingjun Feng
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yibo Yu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
65
|
Dong Q, Jie Y, Ma J, Li C, Xin T, Yang D. Wnt/β-catenin signaling pathway promotes renal ischemia-reperfusion injury through inducing oxidative stress and inflammation response. J Recept Signal Transduct Res 2020; 41:15-18. [PMID: 32580617 DOI: 10.1080/10799893.2020.1783555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammation response have been found to be associated with renal ischemia reperfusion (I/R) injury through an undefined mechanism. The aim of our study is to explore the influence of Wnt/β-catenin signaling pathway on oxidative stress and inflammation response during renal I/R injury. The results of our study demonstrated that oxidative stress was induced whereas antioxidative factors were suppressed by renal I/R injury. Besides, the transcriptions and activities of pro-inflammation factors were also upregulated by renal I/R injury. Interestingly, inhibition of Wnt/β-catenin signaling pathway significantly attenuated I/R-mediated oxidative stress and inflammation response. Therefore, our results report a novel pathway responsible for renal I/R injury. Inhibition of Wnt/β-catenin signaling pathway would be considered as an effective approach to regulate oxidative stress and inflammation response in reperfused kidney.
Collapse
Affiliation(s)
- Qi Dong
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| | - Yingxin Jie
- Department of Emergency, Tianjin Hospital, Tianjin, P.R. China
| | - Jian Ma
- Tianjin Women's and Children's Health Center, Tianjin Hospital, Tianjin, P.R. China
| | - Chen Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, P.R. China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Dingwei Yang
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| |
Collapse
|
66
|
Snyder AG, Hubbard NW, Messmer MN, Kofman SB, Hagan CE, Orozco SL, Chiang K, Daniels BP, Baker D, Oberst A. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci Immunol 2020; 4:4/36/eaaw2004. [PMID: 31227597 DOI: 10.1126/sciimmunol.aaw2004] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Although the signaling events that induce different forms of programmed cell death are well defined, the subsequent immune responses to dying cells in the context of cancer remain relatively unexplored. Necroptosis occurs downstream of the receptor-interacting protein kinases RIPK1 and RIPK3, whose activation leads to lytic cell death accompanied by de novo production of proinflammatory mediators. Here, we show that ectopic introduction of necroptotic cells to the tumor microenvironment promotes BATF3+ cDC1- and CD8+ leukocyte-dependent antitumor immunity accompanied by increased tumor antigen loading by tumor-associated antigen-presenting cells. Furthermore, we report the development of constitutively active forms of the necroptosis-inducing enzyme RIPK3 and show that delivery of a gene encoding this enzyme to tumor cells using adeno-associated viruses induces tumor cell necroptosis, which synergizes with immune checkpoint blockade to promote durable tumor clearance. These findings support a role for RIPK1/RIPK3 activation as a beneficial proximal target in the initiation of tumor immunity. Considering that successful tumor immunotherapy regimens will require the rational application of multiple treatment modalities, we propose that maximizing the immunogenicity of dying cells within the tumor microenvironment through specific activation of the necroptotic pathway represents a beneficial treatment approach that may warrant further clinical development.
Collapse
Affiliation(s)
- Annelise G Snyder
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Nicholas W Hubbard
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Michelle N Messmer
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Sigal B Kofman
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Cassidy E Hagan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Susana L Orozco
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98109, USA
| | - Kristy Chiang
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98109, USA
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98109, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
67
|
Li P, Wang J, Zhao X, Ru J, Tian T, An Y, Tang L, Bai Y. PTEN inhibition attenuates endothelial cell apoptosis in coronary heart disease via modulating the AMPK-CREB-Mfn2-mitophagy signaling pathway. J Cell Physiol 2020; 235:4878-4889. [PMID: 31654396 DOI: 10.1002/jcp.29366] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Atherosclerosis (AS) is a major pathogenic factor in patients with cardiovascular diseases, and endothelial dysfunction (ED) plays a primary role in the occurrence and development of AS. In our study, we attempted to evaluate the role of phosphatase and tensin homolog (PTEN) in endothelial cell apoptosis under oxidized low-density lipoprotein (ox-LDL) stimulation and identify the associated mechanisms. The results of our study demonstrated that ox-LDL induced human umbilical vein endothelial cell (HUVEC) death via mitochondrial apoptosis, as evidenced by reduced mitochondrial potential, increased mitochondria permeability transition pore opening, cellular calcium overload, and caspase-9/-3 activation. In addition, ox-LDL also suppressed cellular energy production via downregulating the mitochondrial respiratory complex. Moreover, ox-LDL impaired HUVECs migration. Western blot analysis showed that PTEN expression was upregulated after exposure to ox-LDL and knockdown of PTEN could attenuate ox-LDL-mediated endothelial cell damage. Furthermore, we found that ox-LDL impaired mitophagy activity, whereas PTEN deletion could improve mitophagic flux and this effect relied on the activity of the AMP-activated protein kinase (AMPK)-cAMP-response element-binding protein (CREB)-Mitofusin-2 (Mfn2) axis. When the AMPK-CREB-Mfn2 pathway was inhibited, PTEN deletion-associated HUVECs protection was significantly reduced, suggesting that the AMPK-CREB-Mfn2-mitophagy axis is required for PTEN deletion-mediated endothelial cell survival under ox-LDL. Taken together, our results indicate that ox-LDL-induced endothelial cell damage is associated with PTEN overexpression, and inhibition of PTEN could promote endothelial survival via activating the AMPK-CREB-Mfn2-mitophagy signaling pathway.
Collapse
Affiliation(s)
- Pei Li
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xia Zhao
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Ru
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Tian Tian
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yun An
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Liying Tang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yuzhi Bai
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
68
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
69
|
Singh N, Lee YG, Shestova O, Ravikumar P, Hayer KE, Hong SJ, Lu XM, Pajarillo R, Agarwal S, Kuramitsu S, Orlando EJ, Mueller KT, Good CR, Berger SL, Shalem O, Weitzman MD, Frey NV, Maude SL, Grupp SA, June CH, Gill S, Ruella M. Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discov 2020. [PMID: 32001516 DOI: 10.13039/100000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy (CART19) occurs in 10% to 20% of patients with acute lymphoblastic leukemia (ALL); however, the mechanisms of this resistance remain elusive. Using a genome-wide loss-of-function screen, we identified that impaired death receptor signaling in ALL led to rapidly progressive disease despite CART19 treatment. This was mediated by an inherent resistance to T-cell cytotoxicity that permitted antigen persistence and was subsequently magnified by the induction of CAR T-cell functional impairment. These findings were validated using samples from two CAR T-cell clinical trials in ALL, where we found that reduced expression of death receptor genes was associated with worse overall survival and reduced T-cell fitness. Our findings suggest that inherent dysregulation of death receptor signaling in ALL directly leads to CAR T-cell failure by impairing T-cell cytotoxicity and promoting progressive CAR T-cell dysfunction. SIGNIFICANCE: Resistance to CART19 is a significant barrier to efficacy in the treatment of B-cell malignancies. This work demonstrates that impaired death receptor signaling in tumor cells causes failed CART19 cytotoxicity and drives CART19 dysfunction, identifying a novel mechanism of antigen-independent resistance to CAR therapy.See related commentary by Green and Neelapu, p. 492.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Pranali Ravikumar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Seok Jae Hong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xueqing Maggie Lu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elena J Orlando
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Charly R Good
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ophir Shalem
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Cell and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Noelle V Frey
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shannon L Maude
- Divison of Oncology, Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Stephan A Grupp
- Divison of Oncology, Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Saar Gill
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marco Ruella
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
70
|
Singh N, Lee YG, Shestova O, Ravikumar P, Hayer KE, Hong SJ, Lu XM, Pajarillo R, Agarwal S, Kuramitsu S, Orlando EJ, Mueller KT, Good CR, Berger SL, Shalem O, Weitzman MD, Frey NV, Maude SL, Grupp SA, June CH, Gill S, Ruella M. Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discov 2020; 10:552-567. [PMID: 32001516 PMCID: PMC7416790 DOI: 10.1158/2159-8290.cd-19-0813] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/27/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy (CART19) occurs in 10% to 20% of patients with acute lymphoblastic leukemia (ALL); however, the mechanisms of this resistance remain elusive. Using a genome-wide loss-of-function screen, we identified that impaired death receptor signaling in ALL led to rapidly progressive disease despite CART19 treatment. This was mediated by an inherent resistance to T-cell cytotoxicity that permitted antigen persistence and was subsequently magnified by the induction of CAR T-cell functional impairment. These findings were validated using samples from two CAR T-cell clinical trials in ALL, where we found that reduced expression of death receptor genes was associated with worse overall survival and reduced T-cell fitness. Our findings suggest that inherent dysregulation of death receptor signaling in ALL directly leads to CAR T-cell failure by impairing T-cell cytotoxicity and promoting progressive CAR T-cell dysfunction. SIGNIFICANCE: Resistance to CART19 is a significant barrier to efficacy in the treatment of B-cell malignancies. This work demonstrates that impaired death receptor signaling in tumor cells causes failed CART19 cytotoxicity and drives CART19 dysfunction, identifying a novel mechanism of antigen-independent resistance to CAR therapy.See related commentary by Green and Neelapu, p. 492.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Pranali Ravikumar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Seok Jae Hong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xueqing Maggie Lu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elena J Orlando
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Charly R Good
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ophir Shalem
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Cell and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Noelle V Frey
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shannon L Maude
- Divison of Oncology, Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Stephan A Grupp
- Divison of Oncology, Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Saar Gill
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marco Ruella
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
71
|
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21:85-100. [PMID: 31636403 DOI: 10.1038/s41580-019-0173-8] [Citation(s) in RCA: 1542] [Impact Index Per Article: 308.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
72
|
Zhang M, Zhou D, Ouyang Z, Yu M, Jiang Y. Sphingosine kinase 1 promotes cerebral ischemia-reperfusion injury through inducing ER stress and activating the NF-κB signaling pathway. J Cell Physiol 2020; 235:6605-6614. [PMID: 31985036 DOI: 10.1002/jcp.29546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/15/2020] [Indexed: 01/02/2023]
Abstract
Endoplasm reticulum stress and inflammation response have been found to be linked to cerebral ischemia-reperfusion (IR) injury. Sphingosine kinase 1 (SPHK1) has been reported to be a novel endoplasm reticulum regulator. The aim of our study is to figure out the role of SPHK1 in cerebral IR injury and verify whether it has an ability to regulate inflammation and endoplasm reticulum stress. Hydrogen peroxide was used to induce cerebral IR injury. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, western blots, and immunofluorescence were used to measure the alterations of cell viability, inflammation response, and endoplasm reticulum stress. The results demonstrated that after exposure to hydrogen peroxide, cell viability was reduced whereas SPHK1 expression was significantly elevated. Knockdown of SPHK1 attenuated hydrogen peroxide-mediated cell death and reversed cell viability. Our data also demonstrated that SPHK1 deletion reduced endoplasm reticulum stress and alleviated inflammation response in hydrogen peroxide-treated cells. In addition, we also found that SHPK1 modulated endoplasm reticulum stress and inflammation response to through the NF-κB signaling pathway. Inhibition of NF-κB signaling pathway has similar results when compared with the cells with SPHK1 deletion. Altogether, our results demonstrated that SPHK1 upregulation, induced by hydrogen peroxide, is responsible for cerebral IR injury through inducing endoplasm reticulum stress and inflammation response in a manner working through the NF-κB signaling pathway. This finding provides new insight into the molecular mechanism to explain the neuron death induced by cerebral IR injury.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingzhou Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhu Ouyang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
73
|
Szymańska E, Nowak P, Kolmus K, Cybulska M, Goryca K, Derezińska-Wołek E, Szumera-Ciećkiewicz A, Brewińska-Olchowik M, Grochowska A, Piwocka K, Prochorec-Sobieszek M, Mikula M, Miączyńska M. Synthetic lethality between VPS4A and VPS4B triggers an inflammatory response in colorectal cancer. EMBO Mol Med 2020; 12:e10812. [PMID: 31930723 PMCID: PMC7005644 DOI: 10.15252/emmm.201910812] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Somatic copy number alterations play a critical role in oncogenesis. Loss of chromosomal regions containing tumor suppressors can lead to collateral deletion of passenger genes. This can be exploited therapeutically if synthetic lethal partners of such passenger genes are known and represent druggable targets. Here, we report that VPS4B gene, encoding an ATPase involved in ESCRT‐dependent membrane remodeling, is such a passenger gene frequently deleted in many cancer types, notably in colorectal cancer (CRC). We observed downregulation of VPS4B mRNA and protein levels from CRC patient samples. We identified VPS4A paralog as a synthetic lethal interactor for VPS4B in vitro and in mouse xenografts. Depleting both proteins profoundly altered the cellular transcriptome and induced cell death accompanied by the release of immunomodulatory molecules that mediate inflammatory and anti‐tumor responses. Our results identify a pair of novel druggable targets for personalized oncology and provide a rationale to develop VPS4 inhibitors for precision therapy of VPS4B‐deficient cancers.
Collapse
Affiliation(s)
- Ewelina Szymańska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Paulina Nowak
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Kolmus
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Magdalena Cybulska
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Edyta Derezińska-Wołek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Aleksandra Grochowska
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
74
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
75
|
Fan L, Wang J, Ma C. miR125a attenuates BMSCs apoptosis via the MAPK‐ERK pathways in the setting of craniofacial defect reconstruction. J Cell Physiol 2019; 235:2857-2865. [PMID: 31578723 DOI: 10.1002/jcp.29191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Longkun Fan
- Department of Medical Plastic Surgery, Cangzhou Central Hospital, Hebei, China
| | - Jingxian Wang
- Department of Medical Plastic Surgery, Cangzhou Central Hospital, Hebei, China
| | - Chao Ma
- Department of Medical Plastic Surgery, Cangzhou Central Hospital, Hebei, China
| |
Collapse
|
76
|
Liu Y, Fu Y, Hu X, Chen S, Miao J, Wang Y, Zhou Y, Zhang Y. Caveolin-1 knockdown increases the therapeutic sensitivity of lung cancer to cisplatin-induced apoptosis by repressing Parkin-related mitophagy and activating the ROCK1 pathway. J Cell Physiol 2019; 235:1197-1208. [PMID: 31270811 DOI: 10.1002/jcp.29033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the first-line treatment option for patients with lung cancer. However, therapeutic resistance occurs through an incompletely understood mechanism. Our research wants to investigate the influence of Caveolin-1 (Cav-1) on the therapeutic sensitivity of lung cancer in vitro. Results in this study demonstrated that Cav-1 levels were markedly inhibited in A549 lung cancer cells after exposure to cisplatin. Knockdown of caveolin further enhanced cisplatin-triggered cancer death in A549 cells. The functional investigation demonstrated that Cav-1 inhibition amplified the mitochondrial stress signaling induced by cisplatin, as evidenced by the mitochondrial reactive oxygen species burst, cellular metabolic disruption, mitochondrial membrane potential reduction, and mitochondrial caspase-9-related apoptosis activation. At the molecular level, cav-1 augmented cisplatin-mediated mitochondrial damage by inhibiting Parkin-related mitochondrial autophagy. Mitophagy activation effectively attenuated the promotive impact of Cav-1 knockdown on mitochondrial damage and cell death. Furthermore, our data indicated that Cav-1 affected Parkin-related mitophagy by activating the Rho-associated coiled-coil kinase 1 (ROCK1) pathway; inhibition of the ROCK1 axis prevented cav-1 knockdown-mediated cell death and mitochondrial damage. Taken together, our results provide ample data illuminate the necessary action exerted by Cav-1 on affecting cisplatin-related therapeutic resistance. Silencing of Cav-1 inhibited Parkin-related mitophagy, thus amplifying cisplatin-mediated mitochondrial apoptotic signaling. This finding identifies the Cav-1/ROCK1/Parkin/mitophagy axis as a potential target to overcome cisplatin-related resistance in lung cancer cells.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Yili Fu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Xianoxing Hu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Shuo Chen
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Jinbai Miao
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Yang Wang
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Ying Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, Yangpu, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, Yangpu, China
| |
Collapse
|
77
|
Fan J, Zhu Q, Wu Z, Ding J, Qin S, Liu H, Miao P. Protective effects of irisin on hypoxia-reoxygenation injury in hyperglycemia-treated cardiomyocytes: Role of AMPK pathway and mitochondrial protection. J Cell Physiol 2019; 235:1165-1174. [PMID: 31268170 DOI: 10.1002/jcp.29030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.
Collapse
Affiliation(s)
- Jiamao Fan
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Qing Zhu
- Department of Cardiology, Linfen Central Hospital, Linfen, China.,Institutes of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhenhua Wu
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Jiao Ding
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Shuai Qin
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Hui Liu
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Pengfei Miao
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| |
Collapse
|
78
|
Diederich M. Natural compound inducers of immunogenic cell death. Arch Pharm Res 2019; 42:629-645. [PMID: 30955159 DOI: 10.1007/s12272-019-01150-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
Accumulating evidence shows that the anti-cancer potential of the immune response that can be activated by modulation of the immunogenicity of dying cancer cells. This regulated cell death process is called immunogenic cell death (ICD) and constitutes a new innovating anti-cancer strategy with immune-modulatory potential thanks to the release of damage-associated molecular patterns (DAMPs). Some conventional clinically-used chemotherapeutic drugs, as well as preclinically-investigated compounds of natural origins such as anthracyclines, microtubule-destabilizing agents, cardiac glycosides or hypericin derivatives, possess such an immune-stimulatory function by triggering ICD. Here, we discuss the effects of ICD inducers on the release of DAMPs and the activation of corresponding signaling pathways triggering immune recognition. We will discuss potential strategies allowing to overcome resistance mechanisms associated with this treatment approach as well as co-treatment strategies to overcome the immunosuppressive microenvironment. We will highlight the potential role of metronomic immune modulation as well as targeted delivery of ICD-inducing compounds with nanoparticles or liposomal formulations to improving the immunogenicity of ICD inducers aiming at long-term clinical benefits.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Building 29 Room 223, 1 Gwanak-ro, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
79
|
Espiritu RA, Pedrera L, Ros U. Tuning the way to die: implications of membrane perturbations in necroptosis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/bs.abl.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
80
|
Death and fire-the concept of necroinflammation. Cell Death Differ 2018; 26:1-3. [PMID: 30470796 PMCID: PMC6294805 DOI: 10.1038/s41418-018-0218-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
|