51
|
Role of the Janus kinase 2/signal transducers and activators of transcription 3 pathway in the protective effect of remote ischemia preconditioning against cerebral ischemia-reperfusion injury in rats. Neuroreport 2019; 30:664-670. [PMID: 30969244 PMCID: PMC6530975 DOI: 10.1097/wnr.0000000000001257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Remote ischemia preconditioning (RIPC) is a convenient and effective method for alleviating cerebral ischemia-reperfusion injury (CIRI). However, to date, the underlying mechanism has not been fully elucidated. The aim of this research was to explore the protective mechanism of RIPC on the brain after CIRI. Four groups of rats were included in this experiment: the sham group, the middle cerebral artery occlusion (MCAO) group, the RIPC group, and the AG490 group. As an inhibitor of Janus kinase 2 (JAK2), AG490 was used after MCAO in the AG490 group to explore the role of JAK2/signal transducers and activators of transcription 3 (STAT3) after CIRI. Brain tissue was collected for evaluation after 2 h of ischemia and 24 h of reperfusion. ELISA for interleukin (IL)-6, IL-1β and tumor necrosis factor-α, western blot for phosphorylated-JAK2 and phosphorylated-STAT3, the neurological severity score and Longa scoring system for neurological deficit evaluation, triphenyltetrazolium chloride staining for cerebral infarction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining for apoptotic cells in the brain tissue were performed. Neurological function in the RIPC group was notably better than that in the MCAO group. There were smaller infarction sizes and fewer apoptotic cells in the ischemic area in the RIPC group than in the MCAO group. In the RIPC group, the expression levels of IL-1β, tumor necrosis factor-α, IL-6, and phosphorylated-JAK2 and phosphorylated-STAT3 were significantly lower than those in the MCAO group. The findings in the RIPC and AG490 groups were similar. The inflammatory response and apoptosis are two important processes involved in brain dysfunction after CIRI. The JAK2/STAT3 signaling pathway has an underlying relationship with these two processes. These findings suggest that RIPC can alleviate the damage to brain tissue by CIRI by regulating the JAK2/STAT3 signaling pathway negatively.
Collapse
|
52
|
Yuzhalin AE, Lim SY, Gordon-Weeks AN, Fischer R, Kessler BM, Yu D, Muschel RJ. Proteomics analysis of the matrisome from MC38 experimental mouse liver metastases. Am J Physiol Gastrointest Liver Physiol 2019; 317:G625-G639. [PMID: 31545917 PMCID: PMC6879896 DOI: 10.1152/ajpgi.00014.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/31/2023]
Abstract
Dissemination of primary tumors to distant anatomical sites has a substantial negative impact on patient prognosis. The liver is a common site for metastases from colorectal cancer, and patients with hepatic metastases have generally much shorter survival, raising a need to develop and implement novel strategies for targeting metastatic disease. The extracellular matrix (ECM) is a meshwork of highly crosslinked, insoluble high-molecular-mass proteins maintaining tissue integrity and establishing cell-cell interactions. Emerging evidence identifies the importance of the ECM in cancer cell migration, invasion, intravasation, and metastasis. Here, we isolated the ECM from MC38 mouse liver metastases using our optimized method of mild detergent solubilization followed by biochemical enrichment. The matrices were subjected to label-free quantitative mass spectrometry analysis, revealing proteins highly abundant in the metastatic matrisome. The resulting list of proteins upregulated in the ECM significantly predicted survival in patients with colorectal cancer but not other cancers with strong involvement of the ECM component. One of the proteins upregulated in liver metastatic ECM, annexin A1, was not previously studied in the context of cancer-associated matrisome. Here, we show that annexin A1 was markedly upregulated in colon cancer cell lines compared with cancer cells of other origin and also over-represented in human primary colorectal lesions, as well as hepatic metastases, compared with their adjacent healthy tissue counterparts. In conclusion, our study provides a comprehensive ECM characterization of MC38 experimental liver metastases and proposes annexin A1 as a putative target for this disease.NEW & NOTEWORTHY Here, the authors provide an extensive proteomics characterization of murine colorectal cancer liver metastasis matrisome (the ensemble of all extracellular matrix molecules). The findings presented in this study may enable identification of therapeutic targets or biomarkers of hepatic metastases.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Cancer Research United Kingdom/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Su Yin Lim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Alex N Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruth J Muschel
- Cancer Research United Kingdom/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
53
|
Chen Y, Liu S, Chen G. Aggravation of Cerebral Ischemia/Reperfusion Injury by Peroxisome Proliferator-Activated Receptor-Gamma Deficiency via Endoplasmic Reticulum Stress. Med Sci Monit 2019; 25:7518-7526. [PMID: 31588926 PMCID: PMC6792513 DOI: 10.12659/msm.915914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Ischemic stroke is a dominant contributor to disability and mortality worldwide and is recognized as an important health concern. As a transcription factor triggered via stress, peroxisome proliferator-activated receptor-gamma (PPAR-γ) has a crucial impact on differentiation, cell death, and cell growth. However, the role of PPAR-γ and its precise mechanism in cerebral ischemia injury (CII) remain unclear. MATERIAL AND METHODS The male C57Bl/6 mice (12 weeks old, n=52) were subjected to middle cerebral artery occlusion (MCAO). Infarct volume was evaluated by 2, 3, 5-Triphenyltetrazolium chloride staining. Cell apoptosis was measured by terminal dUTP nick-end labeling (TUNEL) staining. The expression of apoptotic-related protein was examined by Western blotting. Neuron2A cells were transfected with PPAR-γ-specific siRNA and then were subjected to oxygen-glucose exhaustion and reoxygenation. RESULTS It was observed that PPAR-γ-deficient mice displayed extended infarct trigon in the MCAO stroke model. Neuronal deficiency was more severe in PPAR-γ-deficient models. Additionally, expression of cell death-promoting Bcl-2 associated X and active caspase-3 was reinforced, while that of cell death-counteracting Bcl-2 was repressed in PPAR-γ-deficient mice. This was characterized by reinforced endoplasmic reticulum (ER) stress reactions in in vivo brain specimens as well as in vitro neurons in ischemia/reperfusion (I/R) injury. CONCLUSIONS This research proved that PPAR-γ protected the brain from cerebral I/R injury by repressing ER stress and indicated that PPAR-γ is a potential target in the treatment of ischemia.
Collapse
Affiliation(s)
- Yueping Chen
- Clinical Laboratory, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China (mainland)
| | - Shihui Liu
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China (mainland)
| |
Collapse
|
54
|
Ai QD, Chen C, Chu S, Zhang Z, Luo Y, Guan F, Lin M, Liu D, Wang S, Chen N. IMM-H004 therapy for permanent focal ischemic cerebral injury via CKLF1/CCR4-mediated NLRP3 inflammasome activation. Transl Res 2019; 212:36-53. [PMID: 31176667 DOI: 10.1016/j.trsl.2019.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023]
Abstract
Chemokine-like factor 1 (CKLF1) is a potential target for ischemic stroke therapy. The NOD-like receptor protein 3 (NLRP3) inflammasome has been postulated to mediate inflammatory responses during ischemic/reperfusion (I/R) injury. The compound IMM-H004 is a novel coumarin derivative that can improve cerebral I/R injury. This study aims to investigate the effects of IMM-H004 on ischemia stroke injury and further elucidate the molecular mechanisms. The standard pMCAO model of focal ischemia was used in this paper. Drugs were administered at 6 hours after ischemia, and behavioral assessment, euthanasia, and outcome measures were evaluated at 9 hours after ischemia. The effects of IMM-H004 on ischemic stroke injury were determined using 2,3,5-triphenyltetrazolium chloride (TTC) staining, behavioral tests, enzyme-linked immunosorbent assay (ELISA), and Nissl staining. Immunohistologic staining, immunofluorescence staining, quantitative RT-PCR (qPCR), western blotting, and coimmunoprecipitation (CO-IP) assays were used to elucidate the underlying mechanisms. IMM-H004 treatment provided significant protection against ischemia stroke through a CKLF1-dependent anti-inflammatory pathway in rats. IMM-H004 downregulated the amount of CKLF1 binding with C-C chemokine receptor type 4, further suppressing the activation of NLRP3 inflammasome and the following inflammatory response, ultimately protecting the ischemic brain. This preclinical study established the efficacy of IMM-H004 as a potential therapeutic medicine for permanent cerebral ischemia. These results support further efforts to develop IMM-H004 for human clinical trials in acute cerebral ischemia, particularly for patients who are not suitable for reperfusion therapy.
Collapse
Affiliation(s)
- Q D Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and Hunan University of Chinese Medicine First-Class Disciple Construction Project of Chinese Materia Medica, Changsha, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Guan
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Peking Union Medicine College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and Hunan University of Chinese Medicine First-Class Disciple Construction Project of Chinese Materia Medica, Changsha, China
| | - Dandan Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shasha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and Hunan University of Chinese Medicine First-Class Disciple Construction Project of Chinese Materia Medica, Changsha, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
55
|
Liu Z, Wang W, Huang T, Wang C, Huang Y, Tang Y, Huang J. CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer's disease. PLoS One 2019; 14:e0222757. [PMID: 31545823 PMCID: PMC6756745 DOI: 10.1371/journal.pone.0222757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/07/2019] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and is the most common type of cognitive impairment and dementia. There is a pressing need to improve the clinical efficacy and quality of life for AD patients, as limited treatments options for AD patients have been developed until now. In this study, we aim to investigate the protective effect of CH(II), a cerebroprotein hydrolysate consisted of abundant biological peptides, on preclinical model of AD. We found that CH(II) treatment effectively protects oxygen glucose deprivation (OGD)-induced N2A cell viability impairment and cell apoptosis. In addition, CH(II) significantly reduces H2O2-induced ROS accumulation and exhibits the protective activities against H2O2-induced oxidative injury. Intriguingly, we found that CH(II) treatment can effectively promote neurite outgrowth of N2A cells. Moreover, CH(II) obviously improve the cognitive and memorial function in scopolamine-induced amnesia mice model. Taken together, this study provides evidences of the neuroprotective activities of CH(II) and offers a potential therapeutic strategy for AD patients.
Collapse
Affiliation(s)
- Zehui Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanyan Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tingyu Huang
- Guangdong Long Fu Pharmaceutical Co., Ltd, Guangdong, China
| | - Cunfang Wang
- Guangdong Long Fu Pharmaceutical Co., Ltd, Guangdong, China
| | - Ying Huang
- Guangdong Institute for Drug Control, Guangdong, China
| | - Yong Tang
- Department of Urology, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Jin Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
56
|
Zhou L, Ao LY, Yan YY, Li WT, Ye AQ, Li CY, Shen WY, Liang BW, Xiong-Zhu, Li YM. JLX001 Ameliorates Ischemia/Reperfusion Injury by Reducing Neuronal Apoptosis via Down-Regulating JNK Signaling Pathway. Neuroscience 2019; 418:189-204. [PMID: 31487541 DOI: 10.1016/j.neuroscience.2019.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023]
Abstract
JLX001, a novel compound with similar structure with cyclovirobuxine D (CVB-D), has been proved to exert therapeutical effects on permanent focal cerebral ischemia. However, the protective effects of JLX001 on cerebral ischemia/reperfusion (I/R) injury and its anti-apoptotic effects have not been reported. We investigated the efficacy of JLX001 in two pharmacodynamic tests (pre-treatment test and post-treatment) with rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The pharmacodynamic tests demonstrated that JLX001 ameliorated I/R injury by reducing infarct sizes and brain edema. The results of Morris water maze, neurological scores, cylinder test and posture reflex test implied that JLX001 improved the learning, memory and motor ability after MCAO/R in the long term. Anti-apoptotic effects of JLX001 and its regulation of cytosolic c-Jun N-terminal Kinases (JNKs) signal pathway were confirmed in vivo by co-immunofluorescence staining and western immunoblotting. Furthermore, primary cortical neuron cultures were prepared and exposed to oxygen glucose deprivation/reoxygenation (OGD/R) for in vitro studies. Cytotoxicity test and mitochondrial membrane potential (MMP) test showed that JLX001 enhanced cell survival rate and maintained MMP. Flow cytometry and TdT-mediated dUTP-X nick end labeling (TUNEL) staining demonstrated the anti-apoptotic effects of JLX001 in vitro. Likewise, JLX001 regulated JNK signal pathway in vivo, which was also confirmed by western immunoblotting. Collectively, this study presents the first evidence that JLX001 exerted protective effects against I/R injury by reducing neuronal apoptosis via down-regulating JNK signaling pathway.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wan-Ting Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - An-Qi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Yang Shen
- School of Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bing-Wen Liang
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China
| | - Xiong-Zhu
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China; Medicine & Chemical Institute, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
57
|
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309:106-124. [PMID: 31323244 DOI: 10.1016/j.jconrel.2019.07.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The selective infiltration of cell membranes and tissue barriers often blocks the entry of most active molecules. This natural defense mechanism prevents the invasion of exogenous substances and limits the therapeutic value of most available molecules. Therefore, it is particularly important to find appropriate ways of membrane translocation and therapeutic agent delivery to its target site. Cell penetrating peptides (CPPs) are a group of short peptides harnessed in this condition, possessing a significant capacity for membrane transduction and could be exploited to transfer various biologically active cargoes into the cells. Since their discovery, CPPs have been employed for delivery of a wide variety of therapeutic molecules to treat various disorders including cranial nerve involvement, ocular inflammation, myocardial ischemia, dermatosis and cancer. The promising results of CPPs-derived therapeutics in various tumor models demonstrated a potential and worthwhile scope of CPPs in chemotherapy. This review describes the detailed description of CPPs and CPPs-assisted molecular delivery against various tissues and organs disorders. An emphasis is focused on summarizing the novel insights and achievements of CPPs in surmounting the natural membrane barriers during the last 5 years.
Collapse
Affiliation(s)
- Jiangkang Xu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Manfei Fu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Rujuan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
58
|
Up-regulation of ANXA1 suppresses polymorphonuclear neutrophil infiltration and myeloperoxidase activity by activating STAT3 signaling pathway in rat models of myocardial ischemia-reperfusion injury. Cell Signal 2019; 62:109325. [PMID: 31132398 DOI: 10.1016/j.cellsig.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is recognized as a major cause of morbidity and mortality which is commonly associated with coronary artery disease. In recent studies, annexin A1 gene (ANXA1) has been discovered to be involved in the treatment for MIRI. In this study, the primary focus was on the molecular mechanism of ANXA1 in polymorphonuclear neutrophil (PMN) infiltration and myeloperoxidase (MPO) activity in rats with MIRI. Initially, microarray analysis was carried out in order to identify differentially expressed genes. Moreover, a rat model of MIRI was established for evaluating the expression of ANXA1, signal transducer and activator of transcription 3 (STAT3) and vascular endothelial growth factor (VEGF) in myocardial tissues. Following this, the ANXA1 vector, siRNA-ANXA1, and Stattic (inhibitor of STAT3 signaling pathway) were utilized for analyzing the regulatory role of ANXA1 in physiological indexes, hemodynamic parameters, inflammatory factors, myocardial infarct size, MPO activity, PMN infiltration, and apoptosis of PMNs. Furthermore, the relationship between ANXA1 and STAT3 signaling pathway was analyzed. Initially, a reduction in the expression of ANXA1, STAT3 and VEGF in myocardial tissues of MIRI rats was found. To elaborate, overexpressed ANXA1 inhibited levels of inflammatory factors, the activation of PMN infiltration, reduced the degree of PMN infiltration, and decreased the apoptosis of PMNs. More importantly, down-regulated ANXA1 inhibited the activation of STAT3 signaling pathway, which thereby suppressed VEGF expression. With this all taken into account, the present study presents that up-regulated ANXA1 inhibits PMN infiltration and MPO activity by activation of STAT3 signaling pathway in rats with MIRI.
Collapse
|
59
|
Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 112:108625. [PMID: 30784920 DOI: 10.1016/j.biopha.2019.108625] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), with the capacity for self-renewal and differentiation into multiple cell types, exhibit the property of homing towards tumor sites and immunosuppression and have been used as tumor-tropic vectors for tumor therapy. However, few studies have investigated the underlying molecular mechanisms that link MSCs to targeted tumor cells. In this study, we elucidated the inhibitory effects and mechanisms of human bone marrow mesenchymal stem cells (hBMSCs) on human glioma U251 cells using a co-culture system in vitro. The anti-tumor activity of co-cultured hBMSCs was assessed by morphological changes, the MTT assay, and Hoechst 33258 staining. Cell apoptosis and cell cycle distribution were evaluated by flow cytometry. Cell migration and invasion were evaluated using a 24-well Transwell chamber. A proteomics approach was used to identify differentially expressed proteins after hBMSCs treatment in U251 cells, and quantitative polymerase chain reaction was used to validate the results. Bioinformatics analyses were also implemented to better understand the identified proteins, and Western blotting analyses were used to analyze the associated proteins. The results showed that hBMSCs could inhibit cell proliferation and induce cell cycle arrest in the G1 phase, resulting in apoptosis of U251 cells. Transwell and Matrigel invasion assays showed that hBMSCs reduced the migration and invasion of U251 cells. Using proteomics, 11 differentially expressed proteins were identified and observed. Bioinformatics analyses indicated that the identified proteins participated in several biological processes and exhibited various molecular functions, mainly related to the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Moreover, hBMSCs regulated changes in proteins linked to cell apoptosis and cell cycle progression and inhibited the epithelial-mesenchymal transition (EMT)-like and PI3K/AKT pathway. Taken together, the findings in our study suggest that hBMSCs inhibit U251 cells proliferation and the EMT-like by downregulating the PI3K/AKT signaling pathway, which indicates that hBMSCs have a potential antitumor characteristics and should be further explored in future glioma therapy.
Collapse
Affiliation(s)
- Li Lu
- Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhangqi Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xuexi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China; School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
60
|
Wu DM, Wen X, Han XR, Wang S, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ, Hu B, Lu J, Chen GQ, Zheng YL. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-126-3p Inhibits Pancreatic Cancer Development by Targeting ADAM9. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:229-245. [PMID: 30925451 PMCID: PMC6439275 DOI: 10.1016/j.omtn.2019.02.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/30/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a lethal malignancy with relatively few effective therapies. Recent investigations have highlighted the role of microRNAs (miRNAs) as crucial regulators in various tumor processes including tumor progression. Hence the current study aimed to investigate the role of bone marrow mesenchymal stem cell (BMSC)-derived exosomal microRNA-126-3p (miR-126-3p) in pancreatic cancer. Initially, miRNA candidates and related genes associated with pancreatic cancer were screened. PANC-1 cells were transfected with miR-126-3p or silenced a disintegrin and a metalloproteinase-9 (ADAM9) to examine their regulatory roles in pancreatic cancer cells. Additionally, exosomes derived from BMSCs were isolated and co-cultured with pancreatic cancer cells to elucidate the effects of exosomes in pancreatic cancer. Furthermore, the effects of overexpressed miR-126-3p derived from BMSCs exosomes on proliferation, migration, invasion, apoptosis, tumor growth, and metastasis of pancreatic cancer cells were analyzed in connection with lentiviral packaged miR-126-3p in vivo. Restored miR-126-3p was observed to suppress pancreatic cancer through downregulating ADAM9. Notably, overexpressed miR-126-3p derived from BMSCs exosomes inhibited the proliferation, invasion, and metastasis of pancreatic cancer cells, and promoted their apoptosis both in vitro and in vivo. Taken together, the key findings of the study indicated that overexpressed miR-126-3p derived from BMSCs exosomes inhibited the development of pancreatic cancer through the downregulation of ADAM9, highlighting the potential of miR-126-3p as a novel biomarker for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, Jiangsu, China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
61
|
Zhong CJ, Chen MM, Lu M, Ding JH, Du RH, Hu G. Astrocyte-specific deletion of Kir6.1/K-ATP channel aggravates cerebral ischemia/reperfusion injury through endoplasmic reticulum stress in mice. Exp Neurol 2018; 311:225-233. [PMID: 30315808 DOI: 10.1016/j.expneurol.2018.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Abstract
ATP-sensitive potassium (K-ATP) channels, coupling cell metabolism to cell membrane potential, are involved in brain diseases including stroke. Emerging evidence shows that astrocytes play important roles in the pathophysiology of cerebral ischemia. Kir6.1, a pore-forming subunit of K-ATP channel, is prominently expressed in astrocytes and participates in regulating its function. However, the exact role of astrocytic Kir6.1-containg K-ATP channel (Kir6.1/K-ATP) in ischemic stroke remains unclear. Here, we found that astrocytic Kir6.1 knockout (KO) mice exhibited larger infarct areas and more severe brain edema and neurological deficits in middle cerebral artery occlusion stroke model. Both activated gliosis and neuronal loss were aggravated in astrocytic Kir6.1 KO mice. Furthermore, the protein levels of pro-apoptotic protein Bcl-2 associated X (Bax) and active caspase-3 were up-regulated and the expression of anti-apoptotic protein Bcl-2 was down-regulated in astrocytic Kir6.1 KO mice. This is accompanied by enhanced endoplasmic reticulum stress (ER stress) responses in brain tissues and in astrocytes during ischemia/reperfusion (I/R) injury. Finally, inhibition of ER stress rescued astrocyte apoptosis induced by Kir6.1 deletion during I/R injury. Collectively, our findings reveal that astrocytic Kir6.1/K-ATP channel protects brain from cerebral ischemia/reperfusion injury through inhibiting ER stress and suggest that astrocytic Kir6.1/K-ATP channel is a promising therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Chong-Jin Zhong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Miao-Miao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Ren-Hong Du
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Avenue, Nanjing, Jiangsu 211166, PR China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Avenue, Nanjing, Jiangsu 211166, PR China; Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin, PR China.
| |
Collapse
|