51
|
Van de Gucht M, Dufait I, Kerkhove L, Corbet C, de Mey S, Jiang H, Law KL, Gevaert T, Feron O, De Ridder M. Inhibition of Phosphoglycerate Dehydrogenase Radiosensitizes Human Colorectal Cancer Cells under Hypoxic Conditions. Cancers (Basel) 2022; 14:cancers14205060. [PMID: 36291844 PMCID: PMC9599856 DOI: 10.3390/cancers14205060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most prevalent cancer worldwide. Treatment options for these patients consist of surgery combined with chemotherapy and/or radiotherapy. However, a subset of tumors will not respond to therapy or acquire resistance during the course of the treatment, leading to patient relapse. The interplay between reprogramming cancer metabolism and radiotherapy has become an appealing strategy to improve a patient’s outcome. Due to the overexpression of certain enzymes in a variety of cancer types, including colorectal cancer, the serine synthesis pathway has recently become an attractive metabolic target. We demonstrated that by inhibiting the first enzyme of this pathway, namely phosphoglycerate dehydrogenase (PHGDH), tumor cells that are deprived of oxygen (as is generally the case in solid tumors) respond better to radiation, leading to increased tumor cell killing in an experimental model of human colorectal cancer. Abstract Augmented de novo serine synthesis activity is increasingly apparent in distinct types of cancers and has mainly sparked interest by investigation of phosphoglycerate dehydrogenase (PHGDH). Overexpression of PHGDH has been associated with higher tumor grade, shorter relapse time and decreased overall survival. It is well known that therapeutic outcomes in cancer patients can be improved by reprogramming metabolic pathways in combination with standard treatment options, for example, radiotherapy. In this study, possible metabolic changes related to radioresponse were explored upon PHGDH inhibition. Additionally, we evaluated whether PHGDH inhibition could improve radioresponse in human colorectal cancer cell lines in both aerobic and radiobiological relevant hypoxic conditions. Dysregulation of reactive oxygen species (ROS) homeostasis and dysfunction in mitochondrial energy metabolism and oxygen consumption rate were indicative of potential radiomodulatory effects. We demonstrated that PHGDH inhibition radiosensitized hypoxic human colorectal cancer cells while leaving intrinsic radiosensitivity unaffected. In a xenograft model, the first hints of additive effects between PHGDH inhibition and radiotherapy were demonstrated. In conclusion, this study is the first to show that modulation of de novo serine biosynthesis enhances radioresponse in hypoxic colorectal cancer cells, mainly mediated by increased levels of intracellular ROS.
Collapse
Affiliation(s)
- Melissa Van de Gucht
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Lisa Kerkhove
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 53, 1200 Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ka Lun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 53, 1200 Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-4776144
| |
Collapse
|
52
|
The role of metabolic reprogramming in cancer metastasis and potential mechanism of traditional Chinese medicine intervention. Biomed Pharmacother 2022; 153:113376. [DOI: 10.1016/j.biopha.2022.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
|
53
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
54
|
Neddylation inhibition induces glutamine uptake and metabolism by targeting CRL3 SPOP E3 ligase in cancer cells. Nat Commun 2022; 13:3034. [PMID: 35641493 PMCID: PMC9156729 DOI: 10.1038/s41467-022-30559-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/03/2022] [Indexed: 01/12/2023] Open
Abstract
Abnormal neddylation activation is frequently observed in human cancers and neddylation inhibition has been proposed as a therapy for cancer. Here, we report that MLN4924, a small-molecule inhibitor of neddylation activating enzyme, increases glutamine uptake in breast cancer cells by causing accumulation of glutamine transporter ASCT2/SLC1A5, via inactivation of CRL3-SPOP E3 ligase. We show the E3 ligase SPOP promotes ASCT2 ubiquitylation, whereas SPOP itself is auto-ubiquitylated upon glutamine deprivation. Thus, SPOP and ASCT2 inversely regulate glutamine uptake and metabolism. SPOP knockdown increases ASCT2 levels to promote growth which is rescued by ASCT2 knockdown. Adding ASCT2 inhibitor V-9302 enhances MLN4924 suppression of tumor growth. In human breast cancer specimens, SPOP and ASCT2 levels are inversely correlated, whereas lower SPOP with higher ASCT2 predicts a worse patient survival. Collectively, our study links neddylation to glutamine metabolism via the SPOP-ASCT2 axis and provides a rational drug combination for enhanced cancer therapy. Neddylation inhibition has been reported as a therapy for cancer. Here, the authors show that neddylation inhibition increases glutamine metabolism by stabilizing glutamine transporter ASCT2, therefore targeting ASCT2 improves the anti-cancer effect of neddylation inhibitors.
Collapse
|
55
|
Van Bortle K, Marciano DP, Liu Q, Chou T, Lipchik AM, Gollapudi S, Geller BS, Monte E, Kamakaka RT, Snyder MP. A cancer-associated RNA polymerase III identity drives robust transcription and expression of snaR-A noncoding RNA. Nat Commun 2022; 13:3007. [PMID: 35637192 PMCID: PMC9151912 DOI: 10.1038/s41467-022-30323-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase III (Pol III) includes two alternate isoforms, defined by mutually exclusive incorporation of subunit POLR3G (RPC7α) or POLR3GL (RPC7β), in mammals. The contributions of POLR3G and POLR3GL to transcription potential has remained poorly defined. Here, we discover that loss of subunit POLR3G is accompanied by a restricted repertoire of genes transcribed by Pol III. Particularly sensitive is snaR-A, a small noncoding RNA implicated in cancer proliferation and metastasis. Analysis of Pol III isoform biases and downstream chromatin features identifies loss of POLR3G and snaR-A during differentiation, and conversely, re-establishment of POLR3G gene expression and SNAR-A gene features in cancer contexts. Our results support a model in which Pol III identity functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease factor. RNA polymerase III changes its subunit composition during mammalian development. Here the authors report that loss of subunit POLR3G, which re-emerges in cancer, promotes expression of small NF90-associated RNA (snaR-A), a noncoding RNA implicated in cell proliferation and metastasis.
Collapse
|
56
|
Sun D, Zhang M, Wei M, Wang Z, Qiao W, Liu P, Zhong X, Liang Y, Chen Y, Huang Y, Yu W. Ox-LDL-mediated ILF3 overexpression in gastric cancer progression by activating the PI3K/AKT/mTOR signaling pathway. Aging (Albany NY) 2022; 14:3887-3909. [PMID: 35507914 PMCID: PMC9134943 DOI: 10.18632/aging.204051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Background: This study aimed to investigate the relationship of dyslipidemia and interleukin-enhancer binding factor 3 (ILF3) in gastric cancer, and provide insights into the potential application of statins as an agent to prevent and treat gastric cancer. Methods: The expression levels of ILF3 in gastric cancer were examined with publicly available datasets such as TCGA, and western blotting and immunohistochemistry were performed to determine the expression of ILF3 in clinical specimens. The effects of ox-LDL on expression of ILF3 were further verified with western blot analyses. RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) pathway analyses were performed to reveal the potential downstream signaling pathway targets of ILF3. The effects of statins and ILF3 on PI3K/AKT/mTOR signaling pathway, cell proliferation, cell cycle, migration and invasion of gastric cancer cells were investigated with Edu assay, flow cytometry and transwell assay. Results: Immunohistochemistry and western blot demonstrated that the positive expression rates of ILF3 in gastric cancer tissues were higher than adjacent mucosa tissues. The ox-LDL promoted the expression of ILF3 in a time-concentration-dependent manner. ILF3 promoted the proliferation, cell cycle, migration and invasion by activating the PI3K/AKT/mTOR signaling pathway. Statins inhibited the proliferation, cell cycle, migration and invasion of gastric cancer by inhibiting the expression of ILF3. Conclusions: These findings demonstrate that ox-LDL promotes ILF3 overexpression to regulate gastric cancer progression by activating the PI3K/AKT/mTOR signaling pathway. Statins inhibits the expression of ILF3, which might be a new targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Danping Sun
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Meng Wei
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhaoyang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Liu
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xin Zhong
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yize Liang
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuanyuan Chen
- Department of Nursing Department, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yadi Huang
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wenbin Yu
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
57
|
3,3′-Diindolylmethane Enhances Fluorouracil Sensitivity via Inhibition of Pyrimidine Metabolism in Colorectal Cancer. Metabolites 2022; 12:metabo12050410. [PMID: 35629914 PMCID: PMC9144298 DOI: 10.3390/metabo12050410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chemoresistance limits treatment outcomes in colorectal cancer (CRC) patients. A dimeric metabolite of indole-3-carbinol, 3,3′-diindolylmethane (DIM) is abundant in cruciferous vegetables and has shown anticancer efficacy. The role of DIM in regulating chemosensitivity in CRC remains unknown. In this study, we demonstrated that DIM treatment inhibits the malignant progression of CRC. RNA sequencing indicated that pyrimidine synthesis genes are attenuated by DIM treatment. Stable 13C-labeled glucose tracing revealed that DIM inhibits de novo pyrimidine biosynthesis in CRC. DIM increases 5-FU cytotoxicity in CRC via regulation of the expression of pyrimidine metabolism-related genes. DIM synergizes with 5-FU to enhance its inhibitory effects on CRC both in vivo and in vitro. Our results suggest that DIM improves the therapeutic outcomes of FU-based chemotherapy in CRCs by inhibiting pyrimidine metabolism, identifying a new strategy for clinical therapy.
Collapse
|
58
|
Tang Y, Zhu L, Chen H, Meng S. Metabolomics analysis reveals Oct4 overexpression drives metabolic reprogramming and enhanced glycolysis and pentose phosphate pathway in lung adenocarcinoma cells. Biomed Chromatogr 2022; 36:e5367. [PMID: 35274324 DOI: 10.1002/bmc.5367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
Poor prognosis in the underlying mechanisms involved in lung adenocarcinoma and its treatment leads to low survival rates in patients. Emerging evidence indicates that cancer is primarily a metabolic disease and metabolic reprogramming is a well-established hallmark and driving force of cancer. Oct4, acting as an oncogene, is a major regulator of cell pluripotency. It can reprogram the differentiated cells into cancer stem cells (CSCs) and plays an oncogenic role when pathologically hijacked. However, data that Oct4, the genetic reprogramming factor, could induce metabolic reprogramming has been very limited and the direct evidence in metabolic level whether Oct4 reprograms metabolome is lacking. In the present study, integrated untargeted and targeted metabolomics analyses were utilized to investigate metabolic changes induced by Oct4 overexpression in lung adenocarcinoma cells. The results suggested that elevated expression levels of Oct4 drives metabolic reprogramming. Oct4 overexpression redirects glucose catabolism to glycolysis pathway and to the oxidative pentose phosphate pathway (PPP). This study identifies unique pathways that are candidate therapeutic targets for the treatment of lung adenocarcinoma. This study also aims to improve our understanding of the cancer-promoting activity of Oct4 and help identify novel diagnostic and therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Yabin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Meng
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China.,Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, College of Basic Medical Sciences, Shanghai, China
| |
Collapse
|
59
|
Jeon M, Chauhan KM, Szeto GL, Kyoung M, An S. Subcellular regulation of glucose metabolism through multienzyme glucosome assemblies by EGF-ERK1/2 signaling pathways. J Biol Chem 2022; 298:101675. [PMID: 35122791 PMCID: PMC8892083 DOI: 10.1016/j.jbc.2022.101675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
A multienzyme metabolic assembly for human glucose metabolism, namely the glucosome, has been previously demonstrated to partition glucose flux between glycolysis and building block biosynthesis in an assembly size-dependent manner. Among three different sizes of glucosome assemblies, we have shown that large-sized glucosomes are functionally associated with the promotion of serine biosynthesis in the presence of epidermal growth factor (EGF). However, due to multifunctional roles of EGF in signaling pathways, it is unclear which EGF-mediated signaling pathways promote these large glucosome assemblies in cancer cells. In this study, we used Luminex multiplexing assays and high-content single-cell imaging to demonstrate that EGF triggers temporal activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in Hs578T cells. Subsequently, we found that treatments with a pharmacological inhibitor of ERK1/2, SCH772984, or short-hairpin RNAs targeting ERK1/2 promote the dissociation of large-sized assemblies to medium-sized assemblies in Hs578T cells. In addition, our Western blot analyses revealed that EGF treatment does not increase the expression levels of enzymes that are involved in both glucose metabolism and serine biosynthesis. The observed spatial transition of glucosome assemblies between large and medium sizes appears to be mediated by the degree of dynamic partitioning of glucosome enzymes without changing their expression levels. Collectively, our study demonstrates that EGF–ERK1/2 signaling pathways play an important role in the upregulation of large-sized glucosomes in cancer cells, thus functionally governing the promotion of glycolysis-derived serine biosynthesis.
Collapse
Affiliation(s)
- Miji Jeon
- Departments of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, 21250
| | - Krishna M Chauhan
- Departments of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, 21250
| | - Gregory L Szeto
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, 21250; Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Minjoung Kyoung
- Departments of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, 21250; Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Songon An
- Departments of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, 21250; Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201.
| |
Collapse
|
60
|
Chi C, Liu T, Yang S, Wang B, Han W, Li J. ISLR affects colon cancer progression by regulating the epithelial-mesenchymal transition signaling pathway. Anticancer Drugs 2022; 33:e670-e679. [PMID: 34520435 PMCID: PMC8670340 DOI: 10.1097/cad.0000000000001233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/28/2021] [Indexed: 11/27/2022]
Abstract
This study aims to determine the mechanism of ISLR on the progression of colon cancer. TCGA database was used to analyze ISLR expression in colon cancer tumor tissues. QRT-PCR and western blotting were used to detect ISLR expression in colon cancer cells. CCK-8, colony formation, EDU, wound healing and transwell assays were used to measure cell viability, proliferation, migration and invasion of colon cancer cells, respectively. The signaling pathway enrichment analysis of ISLR was analyzed on the basis of the KEGG database. The protein expression of genes related to signaling pathway was measured by western blotting. Results of TCGA analysis, qRT-PC and western blotting showed that ISLR was upregulated in colon cancer tumor tissues and cells. High level of ISLR was related to low overall survival of patients with colon cancer. ISLR silence significantly inhibited cell viability, proliferation, migration and invasion of colon cancer cells. ISLR overexpression markedly enhanced the cell viability, proliferation, migration and invasion of colon cancer cells. KEGG database analyzed showed that ISLR can activate the EMT signaling pathway. Inhibition of the EMT signaling pathway can suppress the growth, migration, and invasion of colon cancer cells and eliminate the promoted effect of ISLR overexpression on colon cancer progression. ISLR promotes the progression of colon cancer by activating the EMT signaling pathway.
Collapse
Affiliation(s)
- Chunhua Chi
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Tongming Liu
- Department of Anorectal Surgery, Feicheng People’s hospital, Tai An
| | - Shengnan Yang
- Department of Proctology, Changqing District Hospital of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Benjun Wang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Weiwei Han
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Jiansheng Li
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| |
Collapse
|
61
|
Zang B, Wang W, Wang Y, Li P, Xia T, Liu X, Chen D, Piao HL, Qi H, Ma Y. Metabolomic Characterization Reveals ILF2 and ILF3 Affected Metabolic Adaptions in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:721990. [PMID: 34568427 PMCID: PMC8459612 DOI: 10.3389/fmolb.2021.721990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is a common malignant disease in eastern countries. However, a study of the metabolomic characteristics associated with other biological factors in esophageal squamous cell carcinoma (ESCC) is limited. Interleukin enhancer binding factor 2 (ILF2) and ILF3, double-stranded RNA-binding proteins, have been reported to contribute to the occurrence and development of various types of malignancy. Nevertheless, the underlying functions of ILF2 and ILF3 in ESCC metabolic reprogramming have never been reported. This study aimed to contribute to the metabolic characterization of ESCC and to investigate the metabolomic alterations associated with ILF2 and ILF3 in ESCC tissues. Here, we identified 112 differential metabolites, which were mainly enriched in phosphatidylcholine biosynthesis, fatty acid metabolism, and amino acid metabolism pathways, based on liquid chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry approaches using ESCC tissues and paired para-cancer tissues from twenty-eight ESCC patients. In addition, ILF2 and ILF3 expression were significantly elevated in EC tissues compared to the histologically normal samples, and closely associated with PI3K/AKT and MAPK signaling pathways in ESCC. Moreover, in ESCC tissues with a high ILF2 expression, several short-chain acyl-carnitines (C3:0, C4:0, and C5:0) related to the BCAA metabolic pathway and long-chain acyl-carnitines (C14:0, C16:0, C16:0-OH, and C18:0) involved in the oxidation of fatty acids were obviously upregulated. Additionally, a series of intermediate metabolites involved in the glycolysis pathway, including G6P/F6P, F1,6BP, DHAP, G3P, and 2,3BPG, were remarkably downregulated in highly ILF3-expressed ESCC tissues compared with the corresponding para-cancer tissues. Overall, these findings may provide evidence for the roles of ILF2 and ILF3 during the process of ESCC metabolic alterations, and new insights into the development of early diagnosis and treatment for ESCC. Further investigation is needed to clarify the underlying mechanism of ILF2 and ILF3 on acyl-carnitines and the glycolysis pathway, respectively.
Collapse
Affiliation(s)
- Bin Zang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yiqian Wang
- Department of Radiotherapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yegang Ma
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
62
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
63
|
Hong S, Li S, Bi M, Yu H, Yan Z, Liu T, Wang H. lncRNA ILF3-AS1 promotes proliferation and metastasis of colorectal cancer cells by recruiting histone methylase EZH2. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:1012-1023. [PMID: 34141456 PMCID: PMC8167202 DOI: 10.1016/j.omtn.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
The role of long non-coding RNA (lncRNA) has been displayed in colorectal cancer (CRC). Here, we aimed to discuss the role of lncRNA interleukin enhancer-binding factor 3-antisense RNA 1 (ILF3-AS1)/enhancer of zeste homolog 2 (EZH2)/cyclin-dependent kinase inhibitor 2 (CDKN2A)/histone 3 (H3) lysine 27 trimethylation (H3K27me3) in cell proliferation and metastasis of CRC. ILF3-AS1, EZH2, and CDKN2A levels in CRC tissues and cells were detected. The relationship between ILF3-AS1/EZH2 expression and the clinicopathological features of CRC was analyzed. High/low expression of ILF3-AS1/EZH2 plasmids were composed to explore the function of ILF3-AS1/EZH2 in invasion, migration, proliferation, colony formation, and apoptosis of CRC cells. The growth status of nude mice was observed to verify the in vitro results from in vivo experiment. ILF3-AS1 and EZH2 increased, whereas CDKN2A reduced in CRC tissues and cells. ILF3-AS1 and EZH2 expression was linked to Dukes stage, distant metastasis, vascular invasion, and lymph node metastasis of CRC patients. Depleted ILF3-AS1 or reduced EZH2 suppressed proliferation, migration, colony-formation, and invasion ability, as well as facilitated apoptosis of CRC cells and attenuated the tumor growth in CRC mice. ILF3-AS1 accelerates the proliferation and metastasis of CRC cells by recruiting histone methylase EZH2 to induce trimethylation of H3K27 and downregulate CDKN2A.
Collapse
Affiliation(s)
- Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Miaomiao Bi
- Department of Ophthalmology, The China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130022, Jilin, People’s Republic of China
| | - Haiyao Yu
- Chief Pharmacist, Changchun Food and Drug Inspection Center, Changchun, Jilin, People’s Republic of China
| | - Zhenkun Yan
- Endoscopy Center, The China-Japan Union Hospital of Jilin University, Changchun 130022, Jilin, People’s Republic of China
| | - Tao Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Helei Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| |
Collapse
|
64
|
Gong C, Yang H, Wang S, Liu J, Li Z, Hu Y, Chen Y, Huang Y, Luo Q, Wu Y, Liu E, Xiao Y. hTERT Promotes CRC Proliferation and Migration by Recruiting YBX1 to Increase NRF2 Expression. Front Cell Dev Biol 2021; 9:658101. [PMID: 34079797 PMCID: PMC8165255 DOI: 10.3389/fcell.2021.658101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
High human telomerase reverse transcriptase (hTERT) expression is related to severe Colorectal Cancer (CRC) progression and negatively related to CRC patient survival. Previous studies have revealed that hTERT can reduce cancer cellular reactive oxygen species (ROS) levels and accelerate cancer progression; however, the mechanism remains poorly understood. NFE2-related factor 2 (NRF2) is a molecule that plays a significant role in regulating cellular ROS homeostasis, but whether there is a correlation between hTERT and NRF2 remains unclear. Here, we showed that hTERT increases CRC proliferation and migration by inducing NRF2 upregulation. We further found that hTERT increases NRF2 expression at both the mRNA and protein levels. Our data also revealed that hTERT primarily upregulates NRF2 by increasing NRF2 promoter activity rather than by regulating NRF2 mRNA or protein stability. Using DNA pull-down/MS analysis, we found that hTERT can recruit YBX1 to upregulate NRF2 promoter activity. We also found that hTERT/YBX1 may localize to the P2 region of the NRF2 promoter. Taken together, our results demonstrate that hTERT facilitates CRC proliferation and migration by upregulating NRF2 expression through the recruitment of the transcription factor YBX1 to activate the NRF2 promoter. These results provide a new theoretical basis for CRC treatment.
Collapse
Affiliation(s)
- Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Endoscope, General Hospital of Shenyang Military Region, Shenyang, China
| | - Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuyun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
65
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
66
|
Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers (Basel) 2021; 13:cancers13061191. [PMID: 33801846 PMCID: PMC8002185 DOI: 10.3390/cancers13061191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hyperactivation of the de novo serine/glycine biosynthesis across different cancer types and its critical contribution in tumor initiation, progression, and therapy resistance indicate the relevance of serine/glycine metabolism-targeted therapies as therapeutic intervention in cancer. In this review, we specifically focus on the contribution of the de novo serine/glycine biosynthesis pathway to radioresistance. We provide a future perspective on how de novo serine/glycine biosynthesis inhibition and serine-free diets may improve the outcome of radiotherapy. Future research in this field is needed to better understand serine/glycine metabolic reprogramming of cancer cells in response to radiation and the influence of this pathway in the tumor microenvironment, which may provide the rationale for the optimal combination therapies. Abstract The activation of de novo serine/glycine biosynthesis in a subset of tumors has been described as a major contributor to tumor pathogenesis, poor outcome, and treatment resistance. Amplifications and mutations of de novo serine/glycine biosynthesis enzymes can trigger pathway activation; however, a large group of cancers displays serine/glycine pathway overexpression induced by oncogenic drivers and unknown regulatory mechanisms. A better understanding of the regulatory network of de novo serine/glycine biosynthesis activation in cancer might be essential to unveil opportunities to target tumor heterogeneity and therapy resistance. In the current review, we describe how the activation of de novo serine/glycine biosynthesis in cancer is linked to treatment resistance and its implications in the clinic. To our knowledge, only a few studies have identified this pathway as metabolic reprogramming of cancer cells in response to radiation therapy. We propose an important contribution of de novo serine/glycine biosynthesis pathway activation to radioresistance by being involved in cancer cell viability and proliferation, maintenance of cancer stem cells (CSCs), and redox homeostasis under hypoxia and nutrient-deprived conditions. Current approaches for inhibition of the de novo serine/glycine biosynthesis pathway provide new opportunities for therapeutic intervention, which in combination with radiotherapy might be a promising strategy for tumor control and ultimately eradication. Further research is needed to gain molecular and mechanistic insight into the activation of this pathway in response to radiation therapy and to design sophisticated stratification methods to select patients that might benefit from serine/glycine metabolism-targeted therapies in combination with radiotherapy.
Collapse
|
67
|
Chou PC, Choi HH, Huang Y, Fuentes-Mattei E, Velazquez-Torres G, Zhang F, Phan L, Lee J, Shi Y, Bankson JA, Wu Y, Wang H, Zhao R, Yeung SCJ, Lee MH. Impact of diabetes on promoting the growth of breast cancer. Cancer Commun (Lond) 2021; 41:414-431. [PMID: 33609419 PMCID: PMC8118590 DOI: 10.1002/cac2.12147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type II diabetes mellitus (DM2) is a significant risk factor for cancers, including breast cancer. However, a proper diabetic breast cancer mouse model is not well-established for treatment strategy design. Additionally, the precise diabetic signaling pathways that regulate cancer growth remain unresolved. In the present study, we established a suitable mouse model and demonstrated the pathogenic role of diabetes on breast cancer progression. METHODS We successfully generated a transgenic mouse model of human epidermal growth factor receptor 2 positive (Her2+ or ERBB2) breast cancer with DM2 by crossing leptin receptor mutant (Leprdb/+ ) mice with MMTV-ErbB2/neu) mice. The mouse models were administrated with antidiabetic drugs to assess the impacts of controlling DM2 in affecting tumor growth. Magnetic resonance spectroscopic imaging was employed to analyze the tumor metabolism. RESULTS Treatment with metformin/rosiglitazone in MMTV-ErbB2/Leprdb/db mouse model reduced serum insulin levels, prolonged overall survival, decreased cumulative tumor incidence, and inhibited tumor progression. Anti-insulin resistance medications also inhibited glycolytic metabolism in tumors in vivo as indicated by the reduced metabolic flux of hyperpolarized 13 C pyruvate-to-lactate reaction. The tumor cells from MMTV-ErbB2/Leprdb/db transgenic mice treated with metformin had reprogrammed metabolism by reducing levels of both oxygen consumption and lactate production. Metformin decreased the expression of Myc and pyruvate kinase isozyme 2 (PKM2), leading to metabolism reprogramming. Moreover, metformin attenuated the mTOR/AKT signaling pathway and altered adipokine profiles. CONCLUSIONS MMTV-ErbB2/Leprdb/db mouse model was able to recapitulate diabetic HER2+ human breast cancer. Additionally, our results defined the signaling pathways deregulated in HER2+ breast cancer under diabetic condition, which can be intervened by anti-insulin resistance therapy.
Collapse
Affiliation(s)
- Ping-Chieh Chou
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hyun Ho Choi
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Research Institute of Gastroenterology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| | - Yizhi Huang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Research Institute of Gastroenterology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| | - Enrique Fuentes-Mattei
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guermarie Velazquez-Torres
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fanmao Zhang
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liem Phan
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jaehyuk Lee
- Department of Imaging Physics, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yanxia Shi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - James A Bankson
- Department of Imaging Physics, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Wu
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ruiying Zhao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Research Institute of Gastroenterology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
68
|
Choi HH, Zou S, Wu J, Wang H, Phan L, Li K, Zhang P, Chen D, Liu Q, Qin B, Nguyen TAT, Yeung SJ, Fang L, Lee M. EGF Relays Signals to COP1 and Facilitates FOXO4 Degradation to Promote Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000681. [PMID: 33101846 PMCID: PMC7578864 DOI: 10.1002/advs.202000681] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/19/2020] [Indexed: 05/10/2023]
Abstract
Forkhead-Box Class O 4 (FOXO4) is involved in critical biological functions, but its response to EGF-PKB/Akt signal regulation is not well characterized. Here, it is reported that FOXO4 levels are downregulated in response to EGF treatment, with concurrent elevation of COP9 Signalosome subunit 6 (CSN6) and E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) levels. Mechanistic studies show that CSN6 binds and regulates FOXO4 stability through enhancing the E3 ligase activity of COP1, and that COP1 directly interacts with FOXO4 through a VP motif on FOXO4 and accelerates the ubiquitin-mediated degradation of FOXO4. Metabolomic studies demonstrate that CSN6 expression leads to serine and glycine production. It is shown that FOXO4 directly binds and suppresses the promoters of serine-glycine-one-carbon (SGOC) pathway genes, thereby diminishing SGOC metabolism. Evidence shows that CSN6 can regulate FOXO4-mediated SGOC gene expression. Thus, these data suggest a link of CSN6-FOXO4 axis and ser/gly metabolism. Further, it is shown that CSN6-COP1-FOXO4 axis is deregulated in cancer and that the protein expression levels of CSN6 and FOXO4 can serve as prognostic markers for cancers. The results illustrate a pathway regulation of FOXO4-mediated serine/glycine metabolism through the function of CSN6-COP1 axis. Insights into this pathway may be strategically designed for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Hyun Ho Choi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Shaomin Zou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Jian‐lin Wu
- State Key Laboratory of Quality Research in Chinese MedicineMacau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacao999078China
| | - Huashe Wang
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Liem Phan
- Department of Molecular and Cellular OncologyDivision of Basic Science ResearchThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Peng Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Qingxin Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Baifu Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | | | - Sai‐Ching J. Yeung
- Department of Emergency MedicineDivision of Internal MedicineThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Lekun Fang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Mong‐Hong Lee
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| |
Collapse
|
69
|
Bian X, Qian Y, Tan B, Li K, Hong X, Wong CC, Fu L, Zhang J, Li N, Wu JL. In-depth mapping carboxylic acid metabolome reveals the potential biomarkers in colorectal cancer through characteristic fragment ions and metabolic flux. Anal Chim Acta 2020; 1128:62-71. [PMID: 32825913 DOI: 10.1016/j.aca.2020.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/24/2022]
Abstract
Carboxylic acid metabolome plays vital roles in the study of pathological mechanisms about cancer. This study aimed to find potential biomarkers for colorectal cancer (CRC) using carboxylic acids profiling. However, the identification of much more carboxylic acids was limited due to poor ionization efficiency and lack of characteristic fragment ions. Derivatization-liquid chromatography-mass spectrometry, which contains characteristic MS/MS fragments ions, were performed for carboxylic acid metabolomics analysis in CRC serum samples. 1054 carboxylic acids were quickly and selectively identified after extraction using three characteristic fragment ions and elucidation using the most suitable CE at 30 eV. Among them, 605 carboxylic acids exhibit discriminating levels between healthy and CRC patients in training cohort. Furthermore, the differential metabolites were found to be mainly enriched in amino acid metabolism, fatty acid biosynthesis and TCA cycle by MetaboAnalyst and iPath analysis. Finally, serine, glycine, and methionine were determined as the potential biomarkers after further confirmation using validation cohort and in vitro metabolic flux analysis. The above results collectively demonstrated that a new set of carboxylic acids can be quickly and selectively discovered using characteristic fragment ions.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Yun Qian
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Binbin Tan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Carson International Cancer Research Centre, Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Xufen Hong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Chun Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Carson International Cancer Research Centre, Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
70
|
Zhang Y, Li J, Dong X, Meng D, Zhi X, Yuan L, Yao L. PSAT1 Regulated Oxidation-Reduction Balance Affects the Growth and Prognosis of Epithelial Ovarian Cancer. Onco Targets Ther 2020; 13:5443-5453. [PMID: 32606761 PMCID: PMC7295540 DOI: 10.2147/ott.s250066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction A growing number of studies have found that the serine-glycine biosynthesis pathway is highly activated for biosynthesis in cancer progression and metastasis. Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second step of the serine-glycine biosynthesis pathway; the effects and mechanism of PSAT1 in epithelial ovarian cancer (EOC) remains unclear. Materials and Methods The expression of PSAT1 in clinical EOC samples and normal ovarian tissues was conducted by RT-PCR, Western blot, and immunohistochemical staining. Survival analysis of PSAT1 in ovarian cancer was performed by using the public database. Following the downregulation of PSAT1, the cell growth, cell apoptosis, and cell cycle in ovarian cancer cells were respectively examined by the soft agar colony formation assay and flow cytometry analysis. Then the glutathione (GSH) levels, the GSH/GSSG ratio, the NADPH/NADP ratio, and the cellular reactive oxygen species (ROS) levels were tested to analyze the oxidation-reduction balance in PSAT1-depleted ovarian cancer cells. Results PSAT1 is markedly over-expressed in clinical EOC samples (n = 90) compared to that in normal ovarian tissues (n = 10), and the expression of PSAT1 is correlated with histological subtype, FIGO stage, histological grade, lymph node metastasis, distant metastasis and the presence of ascites. Public database analysis shows that higher PSAT1 indicates poor survival in EOC patients. Downregulation of PSAT1 in EOC cells inhibits growth, induces apoptosis and cell cycle arrest in vitro. EOC cells with high PSAT1 levels have increased a higher GSH (reduced glutathione)/GSSG (oxidized glutathione) ratio and lower reactive oxygen species (ROS) content. The cancer-killing effects of PSAT1 knockdown are reversed by exogenous glutathione. PSAT1 participates in cancer growth by regulating oxidation-reduction balance. Conclusion Therefore, these results highlight the potential of PSAT1 inhibitors or metabolic substrate deprivation as therapeutic strategies for treating patients with EOC, especially those with advanced stages of cancer.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| | - Xuhui Dong
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai, People's Republic of China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai, People's Republic of China
| | - Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
71
|
Qin B, Zou S, Li K, Wang H, Wei W, Zhang B, Xiao L, Choi HH, Tang Q, Huang D, Liu Q, Pan Q, Meng M, Fang L, Lee MH. CSN6-TRIM21 axis instigates cancer stemness during tumorigenesis. Br J Cancer 2020; 122:1673-1685. [PMID: 32225170 PMCID: PMC7250844 DOI: 10.1038/s41416-020-0779-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cancer stem cells (CSCs) are responsible for tumour initiation, metastasis and recurrence. However, the mechanism of CSC formation, maintenance and expansion in colorectal cancer (CRC) remains poorly characterised. Methods The role of COP9 signalosome subunit 6 (CSN6) in regulating cancer stemness was evaluated by organoid formation and limited dilution analysis. The role of CSN6–TRIM21–OCT1–ALDH1A1 axis in CSC formation was evaluated in vitro and in vivo. The association of CSN6, TRIM21 and ALDH1A1 expression was validated by a tissue microarray with 267 CRC patients. Results The results showed that CSN6 is critical for sphere formation and maintaining the growth of patient-derived organoids (PDOs). We characterised the role of CSN6 in regulating cancer stemness, which involves the TRIM21 E3 ubiquitin ligase, transcription factor POU class 2 homeobox 1 (OCT1) and cancer stem cell marker aldehyde dehydrogenase 1 A1 (ALDH1A1). Our data showed that CSN6 facilitates ubiquitin-mediated degradation of TRIM21, which in turn decreases TRIM21-mediated OCT1 ubiquitination and subsequently stabilises OCT1. Consequently, OCT1 stabilisation leads to ALDH1A1expression and promotes cancer stemness. We further showed that the protein expression levels of CSN6, TRIM21 and ALDH1A1 can serve as prognostic markers for human CRC. Conclusions In conclusion, we validate a pathway for cancer stemness regulation involving ALDH1A1 levels through the CSN6–TRIM21 axis, which may be utilised as CRC molecular markers and be targeted for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Baifu Qin
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Shaomin Zou
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Kai Li
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Huashe Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Wenxia Wei
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Boyu Zhang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Lishi Xiao
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Hyun Ho Choi
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Qin Tang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Dandan Huang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Qingxin Liu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Qihao Pan
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Manqi Meng
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Lekun Fang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China. .,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China. .,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.
| | - Mong-Hong Lee
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China. .,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.
| |
Collapse
|