51
|
Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat Commun 2019; 10:5627. [PMID: 31819054 PMCID: PMC6901541 DOI: 10.1038/s41467-019-13344-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability. Here, Bhattacharya et al. chemically mutagenize Leishmania and identify genes associated with resistance to miltefosine and paromomycin by next generation sequencing. The study shows that a protein kinase (CDPK1) can mediate resistance to paromomycin by affecting translation.
Collapse
|
52
|
Nakayama H, Yamauchi Y, Nobe Y, Sato K, Takahashi N, Shalev-Benami M, Isobe T, Taoka M. Method for Direct Mass-Spectrometry-Based Identification of Monomethylated RNA Nucleoside Positional Isomers and Its Application to the Analysis of Leishmania rRNA. Anal Chem 2019; 91:15634-15643. [DOI: 10.1021/acs.analchem.9b03735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ko Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Biotechnology, Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
53
|
Halfon Y, Jimenez-Fernandez A, La Rosa R, Espinosa Portero R, Krogh Johansen H, Matzov D, Eyal Z, Bashan A, Zimmerman E, Belousoff M, Molin S, Yonath A. Structure of Pseudomonas aeruginosa ribosomes from an aminoglycoside-resistant clinical isolate. Proc Natl Acad Sci U S A 2019; 116:22275-22281. [PMID: 31611393 PMCID: PMC6825255 DOI: 10.1073/pnas.1909831116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resistance to antibiotics has become a major threat to modern medicine. The ribosome plays a fundamental role in cell vitality by the translation of the genetic code into proteins; hence, it is a major target for clinically useful antibiotics. We report here the cryo-electron microscopy structures of the ribosome of a pathogenic aminoglycoside (AG)-resistant Pseudomonas aeruginosa strain, as well as of a nonresistance strain isolated from a cystic fibrosis patient. The structural studies disclosed defective ribosome complex formation due to a conformational change of rRNA helix H69, an essential intersubunit bridge, and a secondary binding site of the AGs. In addition, a stable conformation of nucleotides A1486 and A1487, pointing into helix h44, is created compared to a non-AG-bound ribosome. We suggest that altering the conformations of ribosomal protein uL6 and rRNA helix H69, which interact with initiation-factor IF2, interferes with proper protein synthesis initiation.
Collapse
Affiliation(s)
- Yehuda Halfon
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Alicia Jimenez-Fernandez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Rocio Espinosa Portero
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Donna Matzov
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Zohar Eyal
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ella Zimmerman
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Matthew Belousoff
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, 3800 Clayton, VIC, Australia
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel;
| |
Collapse
|
54
|
Meleppattu S, Arthanari H, Zinoviev A, Boeszoermenyi A, Wagner G, Shapira M, Léger-Abraham M. Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major. Nucleic Acids Res 2019; 46:3791-3801. [PMID: 29562352 PMCID: PMC5909430 DOI: 10.1093/nar/gky194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites’ life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5′ mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.
Collapse
Affiliation(s)
- Shimi Meleppattu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alexandra Zinoviev
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Andras Boeszoermenyi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mélissa Léger-Abraham
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
55
|
Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K, Yamauchi Y, Hirota K, Nakayama H, Takahashi N, Isobe T. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res 2019; 46:9289-9298. [PMID: 30202881 PMCID: PMC6182160 DOI: 10.1093/nar/gky811] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023] Open
Abstract
During ribosome biogenesis, ribosomal RNAs acquire various chemical modifications that ensure the fidelity of translation, and dysregulation of the modification processes can cause proteome changes as observed in cancer and inherited human disorders. Here, we report the complete chemical modifications of all RNAs of the human 80S ribosome as determined with quantitative mass spectrometry. We assigned 228 sites with 14 different post-transcriptional modifications, most of which are located in functional regions of the ribosome. All modifications detected are typical of eukaryotic ribosomal RNAs, and no human-specific modifications were observed, in contrast to a recently reported cryo-electron microscopy analysis. While human ribosomal RNAs appeared to have little polymorphism regarding the post-transcriptional modifications, we found that pseudouridylation at two specific sites in 28S ribosomal RNA are significantly reduced in ribosomes of patients with familial dyskeratosis congenita, a genetic disease caused by a point mutation in the pseudouridine synthase gene DKC1. The landscape of the entire epitranscriptomic ribosomal RNA modifications provides a firm basis for understanding ribosome function and dysfunction associated with human disease.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuka Yamaki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ko Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hideaki Ishikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Keiichi Izumikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
56
|
Chikne V, Shanmugha Rajan K, Shalev-Benami M, Decker K, Cohen-Chalamish S, Madmoni H, Biswas VK, Kumar Gupta S, Doniger T, Unger R, Tschudi C, Ullu E, Michaeli S. Small nucleolar RNAs controlling rRNA processing in Trypanosoma brucei. Nucleic Acids Res 2019; 47:2609-2629. [PMID: 30605535 PMCID: PMC6411936 DOI: 10.1093/nar/gky1287] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
In trypanosomes, in contrast to most eukaryotes, the large subunit (LSU) ribosomal RNA is fragmented into two large and four small ribosomal RNAs (srRNAs) pieces, and this additional processing likely requires trypanosome-specific factors. Here, we examined the role of 10 abundant small nucleolar RNAs (snoRNAs) involved in rRNA processing. We show that each snoRNA involved in LSU processing associates with factors engaged in either early or late biogenesis steps. Five of these snoRNAs interact with the intervening sequences of rRNA precursor, whereas the others only guide rRNA modifications. The function of the snoRNAs was explored by silencing snoRNAs. The data suggest that the LSU rRNA processing events do not correspond to the order of rRNA transcription, and that srRNAs 2, 4 and 6 which are part of LSU are processed before srRNA1. Interestingly, the 6 snoRNAs that affect srRNA1 processing guide modifications on rRNA positions that span locations from the protein exit tunnel to the srRNA1, suggesting that these modifications may serve as check-points preceding the liberation of srRNA1. This study identifies the highest number of snoRNAs so far described that are involved in rRNA processing and/or rRNA folding and highlights their function in the unique trypanosome rRNA maturation events.
Collapse
Affiliation(s)
- Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kathryn Decker
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Viplov K Biswas
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| |
Collapse
|
57
|
Cryo-EM in drug discovery. Biochem Soc Trans 2019; 47:281-293. [PMID: 30647139 DOI: 10.1042/bst20180267] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/11/2023]
Abstract
The impact of structural biology on drug discovery is well documented, and the workhorse technique for the past 30 years or so has been X-ray crystallography. With the advent of several technological improvements, including direct electron detectors, automation, better microscope vacuums and lenses, phase plates and improvements in computing power enabled by GPUs, it is now possible to record and analyse images of protein structures containing high-resolution information. This review, from a pharmaceutical perspective, highlights some of the most relevant and interesting protein structures for the pharmaceutical industry and shows examples of how ligand-binding sites, membrane proteins, both big and small, pseudo symmetry and complexes are being addressed by this technique.
Collapse
|
58
|
Natesh R. Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [PMCID: PMC7121590 DOI: 10.1007/978-3-030-05282-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing have gained importance in the last few years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D structure better than ~2.5 Å is a standard approach in pharma companies to design and optimize therapeutic compounds against drug targets like proteins. Protein crystallography is the main technique in solving the structures of drug targets at atomic resolution. However, this technique requires protein crystals which in turn is a major bottleneck. It was not possible to obtain the structure of proteins better than 2.5 Å resolution by any other methods apart from protein crystallography until 2015. Recent advances in single-particle cryo-EM and 3D image processing have led to a resolution revolution in the field of structural biology that has led to high-resolution protein structures, thus breaking the cryo-EM resolution barriers to facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among these, five cryo-EM 3D reconstructions of proteins in the EMDB have their associated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/ ligand. Thus, for the first time, single-particle cryo-EM was included in the structure-based drug design (SBDD) pipeline for solving protein structures independently or where crystallography has failed to crystallize the protein. Further, this technique can be complementary and supplementary to protein crystallography field in solving 3D structures. Thus, single-particle cryo-EM can become a standard approach in pharmaceutical industry in the design, validation, and optimization of therapeutic compounds targeting therapeutically important protein molecules during preclinical drug discovery research. The present chapter will describe briefly the history and the principles of single-particle cryo-EM and 3D image processing to obtain atomic-resolution structure of proteins and their complex with their drug targets/ligands.
Collapse
|
59
|
Krogh N, Nielsen H. Sequencing-based methods for detection and quantitation of ribose methylations in RNA. Methods 2018; 156:5-15. [PMID: 30503826 DOI: 10.1016/j.ymeth.2018.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022] Open
Abstract
Ribose methylation is one of the most abundant RNA modifications and is found in all domains of life and all major classes of RNA (rRNA, tRNA, and mRNA). Ribose methylations are introduced by stand-alone enzymes or by generic enzymes guided to the target by small RNA guides. Recent years have seen the development of several sequencing-based methods for RNA modifications relying on different principles. In this review, we compare mapping and quantitation studies of ribose methylations from yeast and human culture cells. The emphasis is on ribosomal RNA for which the results can be compared to results from RNA fingerprinting and mass spectrometry. One sequencing approach is consistent with these methods and paints a conservative picture of rRNA modifications. Other approaches detect many more sites. Similar discrepancies are found in measurements of modification stoichiometry. The results are discussed in relation to the more challenging task of mapping ribose methylations in mRNA.
Collapse
Affiliation(s)
- Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
60
|
Terwilliger TC, Adams PD, Afonine PV, Sobolev OV. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat Methods 2018; 15:905-908. [PMID: 30377346 PMCID: PMC6214191 DOI: 10.1038/s41592-018-0173-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
Abstract
We report a fully automated procedure for the optimization and interpretation of reconstructions from cryo-electron microscopy (cryo-EM) data, available in Phenix as phenix.map_to_model. We applied our approach to 476 datasets with resolution of 4.5 Å or better, including reconstructions of 47 ribosomes and 32 other protein-RNA complexes. The median fraction of residues in the deposited structures reproduced automatically was 71% for reconstructions determined at resolutions of 3 Å or better and 47% for those at resolutions worse than 3 Å.
Collapse
Affiliation(s)
- Thomas C Terwilliger
- Los Alamos National Laboratory, Los Alamos, NM, USA.
- New Mexico Consortium, Los Alamos, NM, USA.
| | - Paul D Adams
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Pavel V Afonine
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, China
| | - Oleg V Sobolev
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
61
|
Scapin G, Potter CS, Carragher B. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Cell Chem Biol 2018; 25:1318-1325. [PMID: 30100349 DOI: 10.1016/j.chembiol.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
We present a perspective of our view of the application of cryoelectron microscopy (cryo-EM) to structure-based drug design (SBDD). We discuss the basic needs and requirements for SBDD, the current state of cryo-EM, and the challenges that need to be overcome for this technique to reach its full potential in facilitating the process of drug discovery.
Collapse
Affiliation(s)
- Giovanna Scapin
- Department of Biochemical Engineering & Structure, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| |
Collapse
|
62
|
|
63
|
Haslam D, Sazzed S, Wriggers W, Kovcas J, Song J, Auer M, He J. A Pattern Recognition Tool for Medium-resolution Cryo-EM Density Maps and Low-resolution Cryo-ET Density maps. BIOINFORMATICS RESEARCH AND APPLICATIONS : 14TH INTERNATIONAL SYMPOSIUM, ISBRA 2018, BEIJING, CHINA, JUNE 8-11, 2018, PROCEEDINGS. ISBRA (CONFERENCE) (14TH : 2018 : BEIJING, CHINA) 2018; 10847:233-238. [PMID: 36383494 PMCID: PMC9645795 DOI: 10.1007/978-3-319-94968-0_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cryo-electron microscopy (Cryo-EM) and cryo-electron tomography (cryo-ET) produce 3-D density maps of biological molecules at a range of resolution levels. Pattern recognition tools are important in distinguishing biological components from volumetric maps with the available resolutions. One of the most distinct characters in density maps at medium (5-10 Å) resolution is the visibility of protein secondary structures. Although computational methods have been developed, the accurate detection of helices and β-strands from cryo-EM density maps is still an active research area. We have developed a tool for protein secondary structure detection and evaluation of medium resolution 3-D cryo-EM density maps which combines three computational methods (SSETracer, StrandTwister, and AxisComparison). The program was integrated in UCSF Chimera, a popular visualization software in the cryo-EM community. In related work, we have developed BundleTrac, a computational method to trace filaments in a bundle from lower resolution cryo-ET density maps. It has been applied to actin filament tracing in stereocilia with good accuracy and can be potentially added as a tool in Chimera.
Collapse
Affiliation(s)
- Devin Haslam
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Salim Sazzed
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Julio Kovcas
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Junha Song
- Cell and Tissue Imaging, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Manfred Auer
- Cell and Tissue Imaging, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
64
|
Chen L, He J, Sazzed S, Walker R. An Investigation of Atomic Structures Derived from X-ray Crystallography and Cryo-Electron Microscopy Using Distal Blocks of Side-Chains. Molecules 2018. [PMID: 29518032 PMCID: PMC5967250 DOI: 10.3390/molecules23030610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a structure determination method for large molecular complexes. As more and more atomic structures are determined using this technique, it is becoming possible to perform statistical characterization of side-chain conformations. Two data sets were involved to characterize block lengths for each of the 18 types of amino acids. One set contains 9131 structures resolved using X-ray crystallography from density maps with better than or equal to 1.5 Å resolutions, and the other contains 237 protein structures derived from cryo-EM density maps with 2–4 Å resolutions. The results show that the normalized probability density function of block lengths is similar between the X-ray data set and the cryo-EM data set for most of the residue types, but differences were observed for ARG, GLU, ILE, LYS, PHE, TRP, and TYR for which conformations with certain shorter block lengths are more likely to be observed in the cryo-EM set with 2–4 Å resolutions.
Collapse
Affiliation(s)
- Lin Chen
- Department of Mathematics and Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA.
| | - Jing He
- Department of Computer Science, Old Dominion University; Norfolk, VA 23529, USA.
| | - Salim Sazzed
- Department of Computer Science, Old Dominion University; Norfolk, VA 23529, USA.
| | - Rayshawn Walker
- Department of Mathematics and Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA.
| |
Collapse
|
65
|
Pranke I, Bidou L, Martin N, Blanchet S, Hatton A, Karri S, Cornu D, Costes B, Chevalier B, Tondelier D, Girodon E, Coupet M, Edelman A, Fanen P, Namy O, Sermet-Gaudelus I, Hinzpeter A. Factors influencing readthrough therapy for frequent cystic fibrosis premature termination codons. ERJ Open Res 2018; 4:00080-2017. [PMID: 29497617 PMCID: PMC5827411 DOI: 10.1183/23120541.00080-2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/22/2017] [Indexed: 01/17/2023] Open
Abstract
Premature termination codons (PTCs) are generally associated with severe forms of genetic diseases. Readthrough of in-frame PTCs using small molecules is a promising therapeutic approach. Nonetheless, the outcome of preclinical studies has been low and variable. Treatment efficacy depends on: 1) the level of drug-induced readthrough, 2) the amount of target transcripts, and 3) the activity of the recoded protein. The aim of the present study was to identify, in the cystic fibrosis transmembrane conductance regulator (CFTR) model, recoded channels from readthrough therapy that may be enhanced using CFTR modulators. First, drug-induced readthrough of 15 PTCs was measured using a dual reporter system under basal conditions and in response to gentamicin and negamycin. Secondly, exon skipping associated with these PTCs was evaluated with a minigene system. Finally, incorporated amino acids were identified by mass spectrometry and the function of the predicted recoded CFTR channels corresponding to these 15 PTCs was measured. Nonfunctional channels were subjected to CFTR-directed ivacaftor-lumacaftor treatments. The results demonstrated that CFTR modulators increased activity of recoded channels, which could also be confirmed in cells derived from a patient. In conclusion, this work will provide a framework to adapt treatments to the patient's genotype by identifying the most efficient molecule for each PTC and the recoded channels needing co-therapies to rescue channel function.
Collapse
Affiliation(s)
- Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- Université Paris Descartes, Paris, France
- Both authors contributed equally
| | - Laure Bidou
- Sorbonne Universités, Université Pierre et Marie Curie, UPMC, Paris, France
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- Both authors contributed equally
| | - Natacha Martin
- INSERM, U955, Institut de Recherche Henri Mondor, Créteil, France
| | - Sandra Blanchet
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie Hatton
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- Université Paris Descartes, Paris, France
| | - Sabrina Karri
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David Cornu
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bruno Costes
- INSERM, U955, Institut de Recherche Henri Mondor, Créteil, France
- Université Paris-Est, Créteil, France
| | - Benoit Chevalier
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- Université Paris Descartes, Paris, France
| | - Danielle Tondelier
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- Université Paris Descartes, Paris, France
| | - Emmanuelle Girodon
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- Laboratoire de Génétique et Biologie Moléculaires, HUPC Hôpital Cochin, AP-HP, Paris, France
| | - Matthieu Coupet
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aleksander Edelman
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- Université Paris Descartes, Paris, France
| | - Pascale Fanen
- INSERM, U955, Institut de Recherche Henri Mondor, Créteil, France
- Université Paris-Est, Créteil, France
- Dept of Genetics, GH Henri Mondor, AP-HP, Créteil, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle Sermet-Gaudelus
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
- Université Paris Descartes, Paris, France
| |
Collapse
|