51
|
Kong J, Wang Y, Qi W, Su R, He Z. Photo- and Aromatic Stacking-Induced Green Emissive Peptidyl Nanoparticles for Cell Imaging and Monitoring of Nucleic Acid Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15401-15410. [PMID: 30966742 DOI: 10.1021/acsami.9b03945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Owing to their potential applications in biomedicine and biotechnology, peptide nanostructures that exhibit stable intrinsic fluorescence in the visible range are highly desired. This research proposes a facile strategy to construct peptidyl virus-like nanoparticles (NVPs) that show green luminescence by coassembly of two bioactive ferrocene-diphenylalanine-based (Fc-FF) peptides. The green fluorescence of NVPs was originated from the highly ordered structures assembled by the amphiphilic Fc-FF-based peptides via strong π-π stacking interactions. In the assemblies, Fc-FF chromophore can be hydrolyzed under the natural light irradiation, which eliminates the fluorophore quenching effect of Fc and increases the aromatic stacking interactions, thereby giving rise to strong fluorescent nanoparticles. The NVPs could cross cytomembrane barriers by virtue of the HIV V3 peptide and the nuclear localization signal, and could thus be used for long-term cell imaging with excellent photostability and biocompatibility in physiological condition. In addition, NVPs could package DNA and be used to monitor the delivery of DNA, indicating great potential in the tracking and monitoring of genetic biological processes.
Collapse
Affiliation(s)
- Jia Kong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| |
Collapse
|
52
|
Majerle A, Schmieden DT, Jerala R, Meyer AS. Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry 2019; 58:2095-2104. [PMID: 30957491 DOI: 10.1021/acs.biochem.8b00922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nature is based on complex self-assembling systems that span from the nanoscale to the macroscale. We have already begun to design biomimetic systems with properties that have not evolved in nature, based on designed molecular interactions and regulation of biological systems. Synthetic biology is based on the principle of modularity, repurposing diverse building modules to design new types of molecular and cellular assemblies. While we are currently able to use techniques from synthetic biology to design self-assembling molecules and re-engineer functional cells, we still need to use guided assembly to construct biological assemblies at the macroscale. We review the recent strategies for designing biological systems ranging from molecular assemblies based on self-assembly of (poly)peptides to the guided assembly of patterned bacteria, spanning 7 orders of magnitude.
Collapse
Affiliation(s)
- Andreja Majerle
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Dominik T Schmieden
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , 2629 HZ Delft , The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Anne S Meyer
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|
53
|
Whitehouse WL, Noble JE, Ryadnov MG, Howorka S. Cholesterol Anchors Enable Efficient Binding and Intracellular Uptake of DNA Nanostructures. Bioconjug Chem 2019; 30:1836-1844. [PMID: 30821443 DOI: 10.1021/acs.bioconjchem.9b00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA nanostructures constitute a rapidly advancing tool-set for exploring cell-membrane functions and intracellular sensing or advancing delivery of biomolecular cargo into cells. Chemical conjugation with lipid anchors can mediate binding of DNA nanostructures to synthetic lipid bilayers, yet how such structures interact with biological membranes and internalize cells has not been shown. Here, an archetypal 6-duplex nanobundle is used to investigate how lipid conjugation influences DNA cell binding and internalization kinetics. Cellular interactions of DNA nanobundles modified with one and three cholesterol anchors were assessed using flow cytometry and confocal microscopy. Nuclease digestion was used to distinguish surface-bound DNA, which is nuclease accessible, from internalized DNA. Three cholesterol anchors were found to enhance cellular association by up to 10-fold when compared with unmodified DNA. The bundles were endocytosed efficiently within 24 h. The results can help design controlled DNA binding and trafficking into cells.
Collapse
Affiliation(s)
- William L Whitehouse
- Department of Chemistry, Institute of Structural and Molecular Biology , University College London , London WC1H 0AJ , United Kingdom
| | - James E Noble
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Stefan Howorka
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| |
Collapse
|
55
|
Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180293] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuto Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
57
|
Inaba H, Matsuura K. Peptide Nanomaterials Designed from Natural Supramolecular Systems. CHEM REC 2018; 19:843-858. [PMID: 30375148 DOI: 10.1002/tcr.201800149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
Natural supramolecular assemblies exhibit unique structural and functional properties that have been optimized over the course of evolution. Inspired by these natural systems, various bio-nanomaterials have been developed using peptides, proteins, and nucleic acids as components. Peptides are attractive building blocks because they enable the important domains of natural protein assemblies to be isolated and optimized while retaining the original structures and functions. Furthermore, the peptide subunits can be conjugated with exogenous molecules such as peptides, proteins, nucleic acids, and metal nanoparticles to generate advanced functions. In this personal account, we summarize recent progress in the construction of peptide-based nanomaterial designed from natural supramolecular systems, including (1) artificial viral capsids, (2) self-assembled nanofibers, and (3) protein-binding motifs. The peptides inspired by nature should provide new design principles for bio-nanomaterials.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| |
Collapse
|
58
|
Sánchez JM, Sánchez-García L, Pesarrodona M, Serna N, Sánchez-Chardi A, Unzueta U, Mangues R, Vázquez E, Villaverde A. Conformational Conversion during Controlled Oligomerization into Nonamylogenic Protein Nanoparticles. Biomacromolecules 2018; 19:3788-3797. [PMID: 30052033 DOI: 10.1021/acs.biomac.8b00924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein materials are rapidly gaining interest in materials sciences and nanomedicine because of their intrinsic biocompatibility and full biodegradability. The controlled construction of supramolecular entities relies on the controlled oligomerization of individual polypeptides, achievable through different strategies. Because of the potential toxicity of amyloids, those based on alternative molecular organizations are particularly appealing, but the structural bases on nonamylogenic oligomerization remain poorly studied. We have applied spectrofluorimetry and spectropolarimetry to identify the conformational conversion during the oligomerization of His-tagged cationic stretches into regular nanoparticles ranging around 11 nm, useful for tumor-targeted drug delivery. We demonstrate that the novel conformation acquired by the proteins, as building blocks of these supramolecular assemblies, shows different extents of compactness and results in a beta structure enrichment that enhances their structural stability. The conformational profiling presented here offers clear clues for understanding and tailoring the process of nanoparticle formation through the use of cationic and histidine rich stretches in the context of protein materials usable in advanced nanomedical strategies.
Collapse
Affiliation(s)
- Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina, CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba, Argentina , Av. Velez Sarsfield 1611 , X5016GCA Córdoba , Argentina
| | - Laura Sánchez-García
- Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | | | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau , 08025 Barcelona , Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau , 08025 Barcelona , Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| |
Collapse
|