51
|
Mariani F, Quast T, Andronescu C, Gualandi I, Fraboni B, Tonelli D, Scavetta E, Schuhmann W. Needle-type organic electrochemical transistor for spatially resolved detection of dopamine. Mikrochim Acta 2020; 187:378. [PMID: 32518976 PMCID: PMC7283208 DOI: 10.1007/s00604-020-04352-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
In this work, the advantages of carbon nanoelectrodes (CNEs) and orgonic electrochemical transistors (OECTs) were merged to realise nanometre-sized, spearhead OECTs based on single- and double-barrel CNEs functionalised with a conducting polymer film. The needle-type OECT shows a high aspect ratio that allows its precise positioning by means of a macroscopic handle and its size is compatible with single-cell analysis. The device was characterised with respect to its electrolyte-gated behaviour and was employed as electrochemical sensor for the proof-of-concept detection of dopamine (DA) over a wide concentration range (10-12-10-6 M). Upon application of fixed drain and gate voltages (Vd = - 0.3 V, Vg = - 0.9 V, respectively), the nano-sized needle-type OECT sensor exhibited a linear response in the low pM range and from 0.002 to 7 μM DA, with a detection limit of 1 × 10-12 M. Graphical abstract.
Collapse
Affiliation(s)
- Federica Mariani
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and Center for Nanointegration (CENIDE), University Duisburg Essen, Carl-Benz-Str. 201, D-47057, Duisburg, Germany
| | - Isacco Gualandi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Domenica Tonelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Erika Scavetta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
52
|
Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev 2020; 49:7627-7670. [DOI: 10.1039/d0cs00106f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review article covers the materials and techniques employed to fabricate organic-based inverter circuits and highlights their novel architectures, ground-breaking performances and potential applications.
Collapse
Affiliation(s)
- Tim Leydecker
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- Institut National de la Recherche Scientifique (INRS)
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Fabrizio Torricelli
- Department of Information Engineering
- University of Brescia
- 25123 Brescia
- Italy
| | - Emanuele Orgiu
- Institut National de la Recherche Scientifique (INRS)
- EMT Center
- Varennes J3X 1S2
- Canada
| |
Collapse
|
53
|
Gualandi I, Tessarolo M, Mariani F, Tonelli D, Fraboni B, Scavetta E. Organic Electrochemical Transistors as Versatile Analytical Potentiometric Sensors. Front Bioeng Biotechnol 2019; 7:354. [PMID: 31824941 PMCID: PMC6882742 DOI: 10.3389/fbioe.2019.00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Potentiometric transduction is an important tool of analytical chemistry to record chemical signals, but some constraints in the miniaturization and low-cost fabrication of the reference electrode are a bottleneck in the realization of more-advanced devices such as wearable and lab-on-a-chip sensors. Here, an organic electrochemical transistor (OECT) has been designed with an alternative architecture that allows to record the potentiometric signals of gate electrodes, which have been chemically modified to obtain Ag/AgnX interfaces (X = Cl-, Br-, I-, and S2-), without the use of a reference electrode. When the OECT is immersed in a sample solution, it reaches an equilibrium state, because PEDOT:PSS exchanges charges with the electrolyte until its Fermi level is aligned to the one of Ag/AgnX. The latter is controlled by Xn- concentration in the solution. As a consequence, in this spontaneous process, the conductivity of PEDOT:PSS changes with the electrochemical potential of the modified gate electrode without any external bias. The sensor works by applying only a fixed drain current or drain voltage and thus the OECT sensor operates with just two terminals. It is also demonstrated that, in this configuration, gate potential values extracted from the drain current are in good agreement with the ones measured with respect to a reference electrode being perfectly correlated (linear slope equal to 1.00 ± 0.03). In the case of the sulfide anion, the OECT performance overcomes the limit represented by the Nernst equation, with a sensitivity of 0.52 V decade-1. The presented results suggest that OECTs could be a viable option to fabricate advanced sensors based on potentiometric transduction.
Collapse
Affiliation(s)
- Isacco Gualandi
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Bologna, Italy
| | - Marta Tessarolo
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
| | - Federica Mariani
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Bologna, Italy
| | - Domenica Tonelli
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Bologna, Italy
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
| | - Erika Scavetta
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Bologna, Italy
| |
Collapse
|
54
|
Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sens 2019; 4:2571-2587. [PMID: 31475522 DOI: 10.1021/acssensors.9b01114] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic thin-film transistors (OTFTs) have attracted intense attention as promising electronic devices owing to their various applications such as rollable active-matrix displays, flexible nonvolatile memories, and radiofrequency identification (RFID) tags. To further broaden the scope of the application of OTFTs, we focus on the host-guest chemistry combined with the electronic devices. Extended-gate types of OTFTs functionalized with artificial receptors were fabricated to achieve chemical sensing of targets in complete aqueous media. Organic and inorganic ions (cations and anions), neutral molecules, and proteins, which are regarded as target analytes in the field of host-guest chemistry, were electrically detected by artificial receptors. Molecular recognition phenomena on the extended-gate electrode were evaluated by several analytical methods such as photoemission yield spectroscopy in the air, contact angle goniometry, and X-ray photoelectron spectroscopy. Interestingly, the electrical responses of the OTFTs were highly sensitive to the chemical structures of the guests. Thus, the OTFTs will facilitate the selective sensing of target analytes and the understanding of chemical conversions in biological and environmental systems. Furthermore, such cross-reactive responses observed in our studies will provide some important insights into next-generation sensing systems such as OTFT arrays. We strongly believe that our approach will enable the development of new intriguing sensor platforms in the field of host-guest chemistry, analytical chemistry, and organic electronics.
Collapse
Affiliation(s)
- Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| |
Collapse
|
55
|
Paterson AF, Faber H, Savva A, Nikiforidis G, Gedda M, Hidalgo TC, Chen X, McCulloch I, Anthopoulos TD, Inal S. On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902291. [PMID: 31343087 DOI: 10.1002/adma.201902291] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Contact resistance is renowned for its unfavorable impact on transistor performance. Despite its notoriety, the nature of contact resistance in organic electrochemical transistors (OECTs) remains unclear. Here, by investigating the role of contact resistance in n-type OECTs, the first demonstration of source/drain-electrode surface modification for achieving state-of-the-art n-type OECTs is reported. Specifically, thiol-based self-assembled monolayers (SAMs), 4-methylbenzenethiol (MBT) and pentafluorobenzenethiol (PFBT), are used to investigate contact resistance in n-type accumulation-mode OECTs made from the hydrophilic copolymer P-90, where the deliberate functionalization of the gold source/drain electrodes decreases and increases the energetic mismatch at the electrode/semiconductor interface, respectively. Although MBT treatment is found to increase the transconductance three-fold, contact resistance is not found to be the dominant factor governing OECT performance. Additional morphology and surface energy investigations show that increased performance comes from SAM-enhanced source/drain electrode surface energy, which improves wetting, semiconductor/metal interface quality, and semiconductor morphology at the electrode and channel. Overall, contact resistance in n-type OECTs is investigated, whilst identifying source/drain electrode treatment as a useful device engineering strategy for achieving state of the art n-type OECTs.
Collapse
Affiliation(s)
- Alexandra F Paterson
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hendrik Faber
- Division of Physical Sciences and Engineering, KAUST Solar Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Achilleas Savva
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Georgios Nikiforidis
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Murali Gedda
- Division of Physical Sciences and Engineering, KAUST Solar Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Tania C Hidalgo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xingxing Chen
- Division of Physical Sciences and Engineering, KAUST Solar Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Iain McCulloch
- Division of Physical Sciences and Engineering, KAUST Solar Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Thomas D Anthopoulos
- Division of Physical Sciences and Engineering, KAUST Solar Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
56
|
An organic electrochemical transistor integrated with a molecularly selective isoporous membrane for amyloid-β detection. Biosens Bioelectron 2019; 143:111561. [PMID: 31446202 DOI: 10.1016/j.bios.2019.111561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/21/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with severe memory loss and impaired cognitive skills. A common pathological change found in AD-affected brains is the accumulation of a peptide named amyloid-β (Aβ) that can form plaques. Aβ aggregates are visible to structural scanning tools; however, these bulky and expensive instruments are accessible to trained personnel in clinical settings only, thus hampering timely diagnosis of the disease, particularly in low-resource settings. In this work, we design an organic electrochemical transistor (OECT) for in vitro detection of Aβ aggregates in human serum. The OECT channel is integrated with a nanostructured isoporous membrane which has a strong affinity for Aβ aggregates. The detection mechanism relies on the membrane capturing Aβ aggregates larger than the size of its pores and thus blocking the penetration of electrolyte ions into the channel underneath. Combining the high transconductance of the OECT with the precise porosity and selectivity of the membrane, the device detects the presence of Aβ aggregates in human serum samples with excellent sensitivity. This is the first-time demonstration of a biofunctionalized, nanostructured, and isoporous membrane integrated with a high-performance transistor for biosensing. This robust, low-power, non-invasive, and miniaturized sensor aids in the development of point-of-care tools for early diagnosis of AD.
Collapse
|
57
|
Lingstedt LV, Ghittorelli M, Brückner M, Reinholz J, Crăciun NI, Torricelli F, Mailänder V, Gkoupidenis P, Blom PWM. Monitoring of Cell Layer Integrity with a Current-Driven Organic Electrochemical Transistor. Adv Healthc Mater 2019; 8:e1900128. [PMID: 31318183 DOI: 10.1002/adhm.201900128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/01/2019] [Indexed: 02/01/2023]
Abstract
The integrity of CaCo-2 cell barriers is investigated by organic electrochemical transistors (OECTs) in a current-driven configuration. Ion transport through cellular barriers via the paracellular pathway is modulated by tight junctions between adjacent cells. Rupturing its integrity by H2 O2 is monitored by the change of the output voltage in the transfer characteristics. It is demonstrated that by operating the OECT in a current-driven configuration, the sensitive and temporal resolution for monitoring the cell barrier integrity is strongly enhanced as compared to the OECT transient response measurement. As a result, current-driven OECTs are useful tools to assess dynamic and critical changes in tight junctions, relevant for clinical applications as drug targeting and screening.
Collapse
Affiliation(s)
- Leona V. Lingstedt
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Matteo Ghittorelli
- Department of Information EngineeringUniversity of Brescia Via Branze 38 25123 Brescia Italy
| | - Maximilian Brückner
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University, Mainz Langenbeckstr. 1 55131 Mainz Germany
| | - Jonas Reinholz
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University, Mainz Langenbeckstr. 1 55131 Mainz Germany
| | - N. Irina Crăciun
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Fabrizio Torricelli
- Department of Information EngineeringUniversity of Brescia Via Branze 38 25123 Brescia Italy
| | - Volker Mailänder
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University, Mainz Langenbeckstr. 1 55131 Mainz Germany
| | | | - Paul W. M. Blom
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
58
|
Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors. Nat Commun 2019; 10:3044. [PMID: 31292452 PMCID: PMC6620344 DOI: 10.1038/s41467-019-11073-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 06/17/2019] [Indexed: 01/23/2023] Open
Abstract
Organic electrochemical transistors rely on ionic-electronic volumetric interaction to provide a seamless interface between biology and electronics with outstanding signal amplification. Despite their huge potential, further progress is limited owing to the lack of understanding of the device fundamentals. Here, we investigate organic electrochemical transistors in a wide range of experimental conditions by combining electrical analyses and device modeling. We show that the measurements can be quantitatively explained by nanoscale ionic-electronic charge interaction, giving rise to ion buffering and interface charge compensation. The investigation systematically explains and unifies a wide range of experiments, providing the rationale for the development of high-performance electronics. Unipolar inverters — universal building blocks for electronics — with gain larger than 100 are demonstrated. This is the highest gain ever reported, enabling the design of devices and circuits with enhanced performance and opening opportunities for the next-generation integrated bioelectronics and neuromorphic computing. The rationale design of optimized organic electrochemical transistors (OECTs) for next-generation bioelectronics requires further exploration of the underlying device physics. Here, the authors report the role of ionic-electronic charge interactions on OECTs and high-performance unipolar inverters.
Collapse
|
59
|
Yan Y, Wu X, Chen Q, Liu Y, Chen H, Guo T. High-Performance Low-Voltage Flexible Photodetector Arrays Based on All-Solid-State Organic Electrochemical Transistors for Photosensing and Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20214-20224. [PMID: 31074275 DOI: 10.1021/acsami.9b04486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The identifying characteristic of an organic electrochemical transistor (OECT) is the coupling between ionic and electronic charges within the entire volume of the channel. In this work, by taking advantage of the volumetric nature of the OECTs' response, a novel flexible photodetector is reported for the first time based on all-solid-state OECT with an excellent responsivity of up to 6.7 × 106 A/W, detectivity as high as 3.6 × 1013 Jones, and a fast response of ∼0.13 s in the visible range, which are superior to those of the majority of the reported organic phototransistors (OPTs) based on field-effect transistors (FETs) and even better than those of FET-based phototransistors with two-dimensional (MoS2 and graphene) and perovskite materials. The high performance of the devices was ascribed to the combination of the higher carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) as a channel and the volumetric nature of the OECTs' response, and the charge density of the volumetric channel was efficiently modulated by incident light compared to FETs. Moreover, OECT-based OPTs with quantum dots (CdSe/ZnS) as a light sensitizer were characterized under ultraviolet light, and they exhibited excellent photosensitivity, which further verified the superiority of OECT for phototransistors. Furthermore, a flexible image sensor was fabricated for the first time by integrating flexible OECTs-OPTs into a 10 × 10 array, which can clearly identify the target image under a bending state, indicating the great potential of OECTs-OPTs in the application of low-power, ultrasensitive flexible photodetectors and imaging technology.
Collapse
Affiliation(s)
- Yujie Yan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Xiaomin Wu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Qizhen Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Yaqian Liu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| |
Collapse
|
60
|
Wu X, Surendran A, Ko J, Filonik O, Herzig EM, Müller-Buschbaum P, Leong WL. Ionic-Liquid Doping Enables High Transconductance, Fast Response Time, and High Ion Sensitivity in Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805544. [PMID: 30417445 DOI: 10.1002/adma.201805544] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Organic electrochemical transistors (OECTs) are highly attractive for applications ranging from circuit elements and neuromorphic devices to transducers for biological sensing, and the archetypal channel material is poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS. The operation of OECTs involves the doping and dedoping of a conjugated polymer due to ion intercalation under the application of a gate voltage. However, the challenge is the trade-off in morphology for mixed conduction since good electronic charge transport requires a high degree of ordering among PEDOT chains, while efficient ion uptake and volumetric doping necessitates open and loose packing of the polymer chains. Ionic-liquid-doped PEDOT:PSS that overcomes this limitation is demonstrated. Ionic-liquid-doped OECTs show high transconductance, fast transient response, and high device stability over 3600 switching cycles. The OECTs are further capable of having good ion sensitivity and robust toward physical deformation. These findings pave the way for higher performance bioelectronics and flexible/wearable electronics.
Collapse
Affiliation(s)
- Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abhijith Surendran
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jieun Ko
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Oliver Filonik
- Munich School of Engineering, Herzig Group, Technische Universität München, Lichtenbergstr. 4a, 85748, Garching, Germany
| | - Eva M Herzig
- Munich School of Engineering, Herzig Group, Technische Universität München, Lichtenbergstr. 4a, 85748, Garching, Germany
- Dynamics and Structure Formation - Herzig Group, Fachbereich Physik, Universität Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
61
|
Jang S, Jee E, Choi D, Kim W, Kim JS, Amoli V, Sung T, Choi D, Kim DH, Kwon JY. Ultrasensitive, Low-Power Oxide Transistor-Based Mechanotransducer with Microstructured, Deformable Ionic Dielectrics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31472-31479. [PMID: 30141319 DOI: 10.1021/acsami.8b09840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of a highly sensitive artificial mechanotransducer that mimics the tactile sensing features of human skin has been a big challenge in electronic skin research. Here, we demonstrate an ultrasensitive, low-power oxide transistor-based mechanotransducer modulated by microstructured, deformable ionic dielectrics, which is consistently sensitive to a wide range of pressures from 1 to 50 kPa. To this end, we designed a viscoporoelastic and ionic thermoplastic polyurethane (i-TPU) with micropyramidal feature as a pressure-sensitive gate dielectric for the indium-gallium-zinc-oxide (IGZO) transistor-based mechanotransducer, which leads to an unprecedented sensitivity of 43.6 kPa-1, which is 23 times higher than that of a capacitive mechanotransducer. This is because the pressure-induced ion accumulation at the interface of the i-TPU dielectric and IGZO semiconductor effectively modulates the conducting channel, which contributed to the enhanced current level under pressure. We believe that the ionic transistor-type mechanotransducer suggested by us will be an effective way to perceive external tactile stimuli over a wide pressure range even under low power (<4 V), which might be one of the candidates to directly emulate the tactile sensing capability of human skin.
Collapse
Affiliation(s)
| | - Eunsong Jee
- Department of Chemical Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | | | - Wook Kim
- Department of Mechanical Engineering, School of Engineering , Kyung Hee University , Yongin 17104 , Republic of Korea
| | - Joo Sung Kim
- Department of Chemical Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Vipin Amoli
- Department of Chemical Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | | | - Dukhyun Choi
- Department of Mechanical Engineering, School of Engineering , Kyung Hee University , Yongin 17104 , Republic of Korea
| | - Do Hwan Kim
- Department of Chemical Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | | |
Collapse
|