51
|
Valuable Serum Markers in Pulmonary Alveolar Proteinosis. DISEASE MARKERS 2019; 2019:9709531. [PMID: 31827650 PMCID: PMC6885220 DOI: 10.1155/2019/9709531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022]
Abstract
Objective Several serum markers were reported to reflect the severity of pulmonary alveolar proteinosis (PAP). The aim of this study is to investigate a reliable and facile marker to access and monitor the clinical course of PAP in a large cohort. Methods PAP patients from January 2010 to June 2018 were enrolled. Hospital records were used as data sources. The levels of various serum indicators were detected. We evaluated the correlation between pulmonary function test results and clinical variables. Results Diffusion capacity for carbon monoxide (DLCO) level was positively correlated with the level of high-density lipoprotein cholesterol (HDL-C) (P < 0.05) in 122 patients of PAP at baseline. The levels of HDL-C and DLCO significantly increased while carcinoembryonic antigen (CEA), CYFRA21-1, neuron-specific enolase (NSE), and lactic dehydrogenase (LDH) levels decreased six months after granulocyte-macrophage colony-stimulating factor (GM-CSF) inhalation therapy between 14 patients with PAP. Nevertheless, the increased DLCO was significantly correlated with decreased CEA (r = ‐0.579, P = 0.031) and CYFRA 21-1 (r = ‐0.632, P = 0.015). In 10 PAP patients without GM-CSF inhalation therapy, HDL-C and DLCO significantly decreased while NSE and LDH levels increased after six months of follow-up. The decreased DLCO was significantly correlated with increased LDH (r = ‐0.694, P = 0.026). Conclusions Serum CEA, CYFRA21-1, and LDH are valuable serum markers for the evaluation of disease activity of PAP and may predict the response to treatment of PAP.
Collapse
|
52
|
Trapnell BC, McCarthy C. The Alveolar Lipidome in Pulmonary Alveolar Proteinosis. A New Target for Therapeutic Development? Am J Respir Crit Care Med 2019; 200:800-802. [PMID: 31162934 PMCID: PMC6812441 DOI: 10.1164/rccm.201905-1009ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Bruce C Trapnell
- Translational Pulmonary Science Center.,Division of Pulmonary Biology.,Division of Pulmonary MedicineCincinnati Children's Hospital Medical CenterCincinnati, Ohio.,Division of Pulmonary, Critical Care and Sleep MedicineUniversity of Cincinnati College of MedicineCincinnati, Ohioand
| | - Cormac McCarthy
- St. Vincent's University HospitalUniversity College DublinDublin, Ireland
| |
Collapse
|
53
|
Schulert GS, Yasin S, Carey B, Chalk C, Do T, Schapiro AH, Husami A, Watts A, Brunner HI, Huggins J, Mellins ED, Morgan EM, Ting T, Trapnell BC, Wikenheiser-Brokamp KA, Towe C, Grom AA. Systemic Juvenile Idiopathic Arthritis-Associated Lung Disease: Characterization and Risk Factors. Arthritis Rheumatol 2019; 71:1943-1954. [PMID: 31379071 DOI: 10.1002/art.41073] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Systemic juvenile idiopathic arthritis (JIA) is associated with a recently recognized, albeit poorly defined and characterized, lung disease (LD). The objective of this study was to describe the clinical characteristics, risk factors, and histopathologic and immunologic features of this novel inflammatory LD associated with systemic JIA (designated SJIA-LD). METHODS Clinical data collected since 2010 were abstracted from the medical records of patients with systemic JIA from the Cincinnati Children's Hospital Medical Center. Epidemiologic, cellular, biochemical, genomic, and transcriptional profiling analyses were performed. RESULTS Eighteen patients with SJIA-LD were identified. Radiographic findings included diffuse ground-glass opacities, subpleural reticulation, interlobular septal thickening, and lymphadenopathy. Pathologic findings included patchy, but extensive, lymphoplasmacytic infiltrates and mixed features of pulmonary alveolar proteinosis (PAP) and endogenous lipoid pneumonia. Compared to systemic JIA patients without LD, those with SJIA-LD were younger at the diagnosis of systemic JIA (odds ratio [OR] 6.5, P = 0.007), more often had prior episodes of macrophage activation syndrome (MAS) (OR 14.5, P < 0.001), had a greater frequency of adverse reactions to biologic therapy (OR 13.6, P < 0.001), and had higher serum levels of interleukin-18 (IL-18) (median 27,612 pg/ml versus 5,413 pg/ml; P = 0.047). Patients with SJIA-LD lacked genetic, serologic, or functional evidence of granulocyte-macrophage colony-stimulating factor pathway dysfunction, a feature that is typical of familial or autoimmune PAP. Moreover, bronchoalveolar lavage (BAL) fluid from patients with SJIA-LD rarely demonstrated proteinaceous material and had less lipid-laden macrophages than that seen in patients with primary PAP (mean 10.5% in patients with SJIA-LD versus 66.1% in patients with primary PAP; P < 0.001). BAL fluid from patients with SJIA-LD contained elevated levels of IL-18 and the interferon-γ-induced chemokines CXCL9 and CXCL10. Transcriptional profiling of the lung tissue from patients with SJIA-LD identified up-regulated type II interferon and T cell activation networks. This signature was also present in SJIA-LD human lung tissue sections that lacked substantial histopathologic findings, suggesting that this activation signature may precede and drive the lung pathology in SJIA-LD. CONCLUSION Pulmonary disease is increasingly detected in children with systemic JIA, particularly in association with MAS. This entity has distinct clinical and immunologic features and represents an uncharacterized inflammatory LD.
Collapse
Affiliation(s)
- Grant S Schulert
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shima Yasin
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brenna Carey
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Claudia Chalk
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thuy Do
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew H Schapiro
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ammar Husami
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Allen Watts
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hermine I Brunner
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jennifer Huggins
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Esi M Morgan
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tracy Ting
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce C Trapnell
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | - Alexei A Grom
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
54
|
Griese M, Bonella F, Costabel U, de Blic J, Tran NB, Liebisch G. Quantitative Lipidomics in Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2019; 200:881-887. [DOI: 10.1164/rccm.201901-0086oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Matthias Griese
- German Center for Lung Research, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Ruhrlandklinik University Hospital, Essen, Germany
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Ruhrlandklinik University Hospital, Essen, Germany
| | | | - Nguyen-Binh Tran
- German Center for Lung Research, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
55
|
McCarthy C, Kokosi M, Bonella F. Shaping the future of an ultra-rare disease: unmet needs in the diagnosis and treatment of pulmonary alveolar proteinosis. Curr Opin Pulm Med 2019; 25:450-458. [PMID: 31365379 DOI: 10.1097/mcp.0000000000000601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Pulmonary alveolar proteinosis (PAP) can be considered the archetype of ultra-rare diseases with a prevalence of under 10 cases per million. We discuss the classification of PAP, the current diagnostic practice and the supplementary role of genetic testing and granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in the diagnosis of congenital and hereditary PAP. We report on novel therapeutic approaches such as GM-CSF substitution, stem cell transplantation, pioglitazone, statins and immunomodulation. RECENT FINDINGS The discovery of new genetic mutations underlying this syndrome raises the question whether the classification should be radically revised in the future. Serum GM-CSF autoantibody is the best diagnostic marker for autoimmune PAP, the most common form, but does not correlate with disease severity. Several circulating biomarkers have been investigated to assess disease activity and predict outcome. Imaging techniques have also enormously evolved and offer new tools to quantify disease burden and possibly drive therapeutic decisions. Promising clinical trials are ongoing and will generate new treatment strategies besides or in addition to whole lung lavage in the next future. SUMMARY Despite impressive advances in understanding pathogenesis, PAP remains a rare syndrome with several unanswered questions impacting diagnosis, management and treatment, and, as a result, patients' quality of life.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, Rare Lung Disease Centre, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Francesco Bonella
- Department of Pneumology, Centre for Interstitial and Rare Lung Disease, Ruhrlandklinik, University Hospital Essen, Essen, Germany
| |
Collapse
|
56
|
Hetzel M, Lopez-Rodriguez E, Mucci A, Nguyen AHH, Suzuki T, Shima K, Buchegger T, Dettmer S, Rodt T, Bankstahl JP, Malik P, Knudsen L, Schambach A, Hansen G, Trapnell BC, Lachmann N, Moritz T. Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis. Haematologica 2019; 105:1147-1157. [PMID: 31289207 PMCID: PMC7109724 DOI: 10.3324/haematol.2018.214866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/05/2019] [Indexed: 12/29/2022] Open
Abstract
Hereditary pulmonary alveolar proteinosis due to GM-CSF receptor deficiency (herPAP) constitutes a life-threatening lung disease characterized by alveolar deposition of surfactant protein secondary to defective alveolar macrophage function. As current therapeutic options are primarily symptomatic, we have explored the potential of hematopoietic stem cell-based gene therapy. Using Csf2rb-/- mice, a model closely reflecting the human herPAP disease phenotype, we here demonstrate robust pulmonary engraftment of an alveolar macrophage population following intravenous transplantation of lentivirally corrected hematopoietic stem and progenitor cells. Engraftment was associated with marked improvement of critical herPAP disease parameters, including bronchoalveolar fluid protein, cholesterol and cytokine levels, pulmonary density on computed tomography scans, pulmonary deposition of Periodic Acid-Schiff+ material as well as respiratory mechanics. These effects were stable for at least nine months. With respect to engraftment and alveolar macrophage differentiation kinetics, we demonstrate the rapid development of CD11c+/SiglecF+ cells in the lungs from a CD11c-/SiglecF+ progenitor population within four weeks after transplantation. Based on these data, we suggest hematopoietic stem cell-based gene therapy as an effective and cause-directed treatment approach for herPAP.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Adele Mucci
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ariane Hai Ha Nguyen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Pulmonary Medicine, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | - Kenjiro Shima
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Theresa Buchegger
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Sabine Dettmer
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Thomas Rodt
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gesine Hansen
- Department of Pediatrics, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Pulmonary Medicine, Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
57
|
Long-Term Safety and Efficacy of Gene-Pulmonary Macrophage Transplantation Therapy of PAP in Csf2ra -/- Mice. Mol Ther 2019; 27:1597-1611. [PMID: 31326401 DOI: 10.1016/j.ymthe.2019.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023] Open
Abstract
Hereditary pulmonary alveolar proteinosis (PAP) is a genetic lung disease characterized by surfactant accumulation and respiratory failure arising from disruption of GM-CSF signaling. While mutations in either CSF2RA or CSF2RB (encoding GM-CSF receptor α or β chains, respectively) can cause PAP, α chain mutations are responsible in most patients. Pulmonary macrophage transplantation (PMT) is a promising new cell therapy in development; however, no studies have evaluated this approach for hereditary PAP (hPAP) caused by Csf2ra mutations. Here, we report on the preclinical safety, tolerability, and efficacy of lentiviral-vector (LV)-mediated Csf2ra expression in macrophages and PMT of gene-corrected macrophages (gene-PMT therapy) in Csf2ra gene-ablated (Csf2ra-/-) mice. Gene-PMT therapy resulted in a stable transgene integration and correction of GM-CSF signaling and functions in Csf2ra-/- macrophages in vitro and in vivo and resulted in engraftment and long-term persistence of gene-corrected macrophages in alveoli; restoration of pulmonary surfactant homeostasis; correction of PAP-specific cytologic, histologic, and biomarker abnormalities; and reduced inflammation associated with disease progression in untreated mice. No adverse consequences of gene-PMT therapy in Csf2ra-/- mice were observed. Results demonstrate that gene-PMT therapy of hPAP in Csf2ra-/- mice was highly efficacious, durable, safe, and well tolerated.
Collapse
|
58
|
McCarthy C, Carey B, Trapnell BC. Blood testing in the diagnosis of pulmonary alveolar proteinosis. THE LANCET RESPIRATORY MEDICINE 2019; 6:e54. [PMID: 30484430 DOI: 10.1016/s2213-2600(18)30372-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Cormac McCarthy
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Translational Pulmonary Science Center, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Division of Pulmonary Medicine, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brenna Carey
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Translational Pulmonary Science Center, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Bruce C Trapnell
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Translational Pulmonary Science Center, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Division of Pulmonary Medicine, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
59
|
Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, Wang T, Morgan C, Cottin V, McCarthy C. Pulmonary alveolar proteinosis. Nat Rev Dis Primers 2019; 5:16. [PMID: 30846703 DOI: 10.1038/s41572-019-0066-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by the accumulation of alveolar surfactant and dysfunction of alveolar macrophages. PAP results in progressive dyspnoea of insidious onset, hypoxaemic respiratory failure, secondary infections and pulmonary fibrosis. PAP can be classified into different types on the basis of the pathogenetic mechanism: primary PAP is characterized by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling and can be autoimmune (caused by elevated levels of GM-CSF autoantibodies) or hereditary (due to mutations in CSF2RA or CSF2RB, encoding GM-CSF receptor subunits); secondary PAP results from various underlying conditions; and congenital PAP is caused by mutations in genes involved in surfactant production. In most patients, pathogenesis is driven by reduced GM-CSF-dependent cholesterol clearance in alveolar macrophages, which impairs alveolar surfactant clearance. PAP has a prevalence of at least 7 cases per million individuals in large population studies and affects men, women and children of all ages, ethnicities and geographical locations irrespective of socioeconomic status, although it is more-prevalent in smokers. Autoimmune PAP accounts for >90% of all cases. Management aims at improving symptoms and quality of life; whole-lung lavage effectively removes excessive surfactant. Novel pathogenesis-based therapies are in development, targeting GM-CSF signalling, immune modulation and cholesterol homeostasis.
Collapse
Affiliation(s)
- Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University, Niigata, Japan
| | - Francesco Bonella
- Interstitial and Rare Lung Disease Unit, Pneumology Department, Ruhrlandklinik University Hospital, University of Essen, Essen, Germany
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Matthias Griese
- Pediatric Pneumology, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - John Hamilton
- University of Melbourne, Parkville, Victoria, Australia
| | - Tisha Wang
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Cliff Morgan
- Department of Critical Care and Anaesthesia, Royal Brompton Hospital, London, UK
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, University of Lyon, Lyon, France
| | - Cormac McCarthy
- Department of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| |
Collapse
|
60
|
Jiang SY, Li H, Tang JJ, Wang J, Luo J, Liu B, Wang JK, Shi XJ, Cui HW, Tang J, Yang F, Qi W, Qiu WW, Song BL. Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat Commun 2018; 9:5138. [PMID: 30510211 PMCID: PMC6277434 DOI: 10.1038/s41467-018-07590-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Statins are inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis, and have been clinically used to treat cardiovascular disease. However, a paradoxical increase of reductase protein following statin treatment may attenuate the effect and increase the side effects. Here we present a previously unexplored strategy to alleviate statin-induced reductase accumulation by inducing its degradation. Inspired by the observations that cholesterol intermediates trigger reductase degradation, we identify a potent degrader, namely Cmpd 81, through structure-activity relationship analysis of sterol analogs. Cmpd 81 stimulates ubiquitination and degradation of reductase in an Insig-dependent manner, thus dramatically reducing protein accumulation induced by various statins. Cmpd 81 can act alone or synergistically with statin to lower cholesterol and reduce atherosclerotic plaques in mice. Collectively, our work suggests that inducing reductase degradation by Cmpd 81 or similar chemicals alone or in combination with statin therapy can be a promising strategy for treating cardiovascular disease.
Collapse
Affiliation(s)
- Shi-You Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Hui Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jing-Jie Tang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jie Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Bing Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jin-Kai Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Hai-Wei Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|