51
|
Bergmann AM, Bauermann J, Bartolucci G, Donau C, Stasi M, Holtmannspötter AL, Jülicher F, Weber CA, Boekhoven J. Liquid spherical shells are a non-equilibrium steady state of active droplets. Nat Commun 2023; 14:6552. [PMID: 37848445 PMCID: PMC10582082 DOI: 10.1038/s41467-023-42344-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Liquid-liquid phase separation yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, non-equilibrium reaction cycle. It thus yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but are poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can undergo a morphological transition into a liquid, spherical shell. We demonstrate that the mechanism is related to gradients of short-lived droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests alternative avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.
Collapse
Affiliation(s)
- Alexander M Bergmann
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Jonathan Bauermann
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Giacomo Bartolucci
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Carsten Donau
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Anna-Lena Holtmannspötter
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01307, Dresden, Germany
| | - Christoph A Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstrasse 1, 86159, Augsburg, Germany.
| | - Job Boekhoven
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
52
|
Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. SCIENCE ADVANCES 2023; 9:eadh5152. [PMID: 37729412 PMCID: PMC10511188 DOI: 10.1126/sciadv.adh5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Compartmentalization of RNA in biopolymer-rich membraneless organelles is now understood to be pervasive and critical for the function of extant biology and has been proposed as a prebiotically plausible way to accumulate RNA. However, compartment-RNA interactions that drive encapsulation have the potential to influence RNA structure and function in compartment- and RNA sequence-dependent ways. Here, we detail next-generation sequencing (NGS) experiments performed in membraneless compartments called complex coacervates to characterize the fold of many different transfer RNAs (tRNAs) simultaneously under the potentially denaturing conditions of these compartments. Notably, we find that natural modifications favor the native fold of tRNAs in these compartments. This suggests that covalent RNA modifications could have played a critical role in metabolic processes at the origin of life.
Collapse
Affiliation(s)
- McCauley O. Meyer
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryota Yamagami
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Saehyun Choi
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christine D. Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C. Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
53
|
Siddika MA, Oi H, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Structural Expansion of Catalytic RNA Nanostructures through Oligomerization of a Cyclic Trimer of Engineered Ribozymes. Molecules 2023; 28:6465. [PMID: 37764241 PMCID: PMC10535472 DOI: 10.3390/molecules28186465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The multimolecular assembly of three-dimensionally structured proteins forms their quaternary structures, some of which have high geometric symmetry. The size and complexity of protein quaternary structures often increase in a hierarchical manner, with simpler, smaller structures serving as units for larger quaternary structures. In this study, we exploited oligomerization of a ribozyme cyclic trimer to achieve larger ribozyme-based RNA assembly. By installing kissing loop (KL) interacting units to one-, two-, or three-unit RNA molecules in the ribozyme trimer, we constructed dimers, open-chain oligomers, and branched oligomers of ribozyme trimer units. One type of open-chain oligomer preferentially formed a closed tetramer containing 12 component RNAs to provide 12 ribozyme units. We also observed large assembly of ribozyme trimers, which reached 1000 nm in size.
Collapse
Affiliation(s)
- Mst. Ayesha Siddika
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
| | - Hiroki Oi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8501, Kyoto, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Kyoto, Japan; (H.S.); (M.E.)
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Kyoto, Japan; (H.S.); (M.E.)
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita 564-8680, Osaka, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Yoshiya Ikawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| |
Collapse
|
54
|
Kubota R, Hiroi T, Ikuta Y, Liu Y, Hamachi I. Visualizing Formation and Dynamics of a Three-Dimensional Sponge-like Network of a Coacervate in Real Time. J Am Chem Soc 2023; 145:18316-18328. [PMID: 37562059 DOI: 10.1021/jacs.3c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Coacervates, which are formed by liquid-liquid phase separation, have been extensively explored as models for synthetic cells and membraneless organelles, so their in-depth structural analysis is crucial. However, both the inner structure dynamics and formation mechanism of coacervates remain elusive. Herein, we demonstrate real-time confocal observation of a three-dimensional sponge-like network in a dipeptide-based coacervate. In situ generation of the dipeptide allowed us to capture the emergence of the sponge-like network via unprecedented membrane folding of vesicle-shaped intermediates. We also visualized dynamic fluctuation of the network, including reversible engagement/disengagement of cross-links and a stochastic network kissing event. Photoinduced transient formation of a multiphase coacervate was achieved with a thermally responsive phase transition. Our findings expand the fundamental understanding of synthetic coacervates and provide opportunities to manipulate their physicochemical properties by engineering the inner network for potential applications in development of artificial cells and life-like material fabrication.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Taro Hiroi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuriki Ikuta
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuchong Liu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Nishikyo-ku, Katsura 615-8530, Japan
| |
Collapse
|
55
|
Ouazan-Reboul V, Agudo-Canalejo J, Golestanian R. Self-organization of primitive metabolic cycles due to non-reciprocal interactions. Nat Commun 2023; 14:4496. [PMID: 37495589 PMCID: PMC10372013 DOI: 10.1038/s41467-023-40241-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
One of the greatest mysteries concerning the origin of life is how it has emerged so quickly after the formation of the earth. In particular, it is not understood how metabolic cycles, which power the non-equilibrium activity of cells, have come into existence in the first instances. While it is generally expected that non-equilibrium conditions would have been necessary for the formation of primitive metabolic structures, the focus has so far been on externally imposed non-equilibrium conditions, such as temperature or proton gradients. Here, we propose an alternative paradigm in which naturally occurring non-reciprocal interactions between catalysts that can partner together in a cyclic reaction lead to their recruitment into self-organized functional structures. We uncover different classes of self-organized cycles that form through exponentially rapid coarsening processes, depending on the parity of the cycle and the nature of the interaction motifs, which are all generic but have readily tuneable features.
Collapse
Affiliation(s)
- Vincent Ouazan-Reboul
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU, Oxford, UK.
| |
Collapse
|
56
|
Le Vay KK, Salibi E, Ghosh B, Tang TYD, Mutschler H. Ribozyme activity modulates the physical properties of RNA-peptide coacervates. eLife 2023; 12:e83543. [PMID: 37326308 DOI: 10.7554/elife.83543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Condensed coacervate phases are now understood to be important features of modern cell biology, as well as valuable protocellular models in origin-of-life studies and synthetic biology. In each of these fields, the development of model systems with varied and tuneable material properties is of great importance for replicating properties of life. Here, we develop a ligase ribozyme system capable of concatenating short RNA fragments into long chains. Our results show that the formation of coacervate microdroplets with the ligase ribozyme and poly(L-lysine) enhances ribozyme rate and yield, which in turn increases the length of the anionic polymer component of the system and imparts specific physical properties to the droplets. Droplets containing active ribozyme sequences resist growth, do not wet or spread on unpassivated surfaces, and exhibit reduced transfer of RNA between droplets when compared to controls containing inactive sequences. These altered behaviours, which stem from RNA sequence and catalytic activity, constitute a specific phenotype and potential fitness advantage, opening the door to selection and evolution experiments based on a genotype-phenotype linkage.
Collapse
Affiliation(s)
- Kristian Kyle Le Vay
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Basusree Ghosh
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - T Y Dora Tang
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
57
|
Fraccia TP, Martin N. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling. Nat Commun 2023; 14:2606. [PMID: 37160869 PMCID: PMC10169843 DOI: 10.1038/s41467-023-38163-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Modern cells are complex chemical compartments tightly regulated by an underlying DNA-encoded program. Achieving a form of coupling between molecular content, chemical reactions, and chassis in synthetic compartments represents a key step to the assembly of evolvable protocells but remains challenging. Here, we design coacervate droplets that promote non-enzymatic oligonucleotide polymerization and that restructure as a result of the reaction dynamics. More specifically, we rationally exploit complexation between end-reactive oligonucleotides able to stack into long physical polymers and a cationic azobenzene photoswitch to produce three different phases-soft solids, liquid crystalline or isotropic coacervates droplets-each of them having a different impact on the reaction efficiency. Dynamical modulation of coacervate assembly and dissolution via trans-cis azobenzene photo-isomerization is used to demonstrate cycles of light-actuated oligonucleotide ligation. Remarkably, changes in the population of polynucleotides during polymerization induce phase transitions due to length-based DNA self-sorting to produce multiphase coacervates. Overall, by combining a tight reaction-structure coupling and environmental responsiveness, our reactive coacervates provide a general route to the non-enzymatic synthesis of polynucleotides and pave the way to the emergence of a primitive compartment-content coupling in membrane-free protocells.
Collapse
Affiliation(s)
- Tommaso P Fraccia
- Institut Pierre-Gilles de Gennes, Chimie Biologie et Innovation, UMR 8231, ESPCI Paris, PSL University, CNRS, 6 rue Jean Calvin, 75005, Paris, France.
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133, Milano, Italy.
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France.
| |
Collapse
|
58
|
Ameta S, Kumar M, Chakraborty N, Matsubara YJ, S P, Gandavadi D, Thutupalli S. Multispecies autocatalytic RNA reaction networks in coacervates. Commun Chem 2023; 6:91. [PMID: 37156998 PMCID: PMC10167250 DOI: 10.1038/s42004-023-00887-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Robust localization of self-reproducing autocatalytic chemistries is a key step in the realization of heritable and evolvable chemical systems. While autocatalytic chemical reaction networks already possess attributes such as heritable self-reproduction and evolvability, localizing functional multispecies networks within complex primitive phases, such as coacervates, has remained unexplored. Here, we show the self-reproduction of the Azoarcus ribozyme system within charge-rich coacervates where catalytic ribozymes are produced by the autocatalytic assembly of constituent smaller RNA fragments. We systematically demonstrate the catalytic assembly of active ribozymes within phase-separated coacervates-both in micron-sized droplets as well as in a coalesced macrophase, underscoring the facility of the complex, charge-rich phase to support these reactions in multiple configurations. By constructing multispecies reaction networks, we show that these newly assembled molecules are active, participating both in self- and cross-catalysis within the coacervates. Finally, due to differential molecular transport, these phase-separated compartments endow robustness to the composition of the collectively autocatalytic networks against external perturbations. Altogether, our results establish the formation of multispecies self-reproducing reaction networks in phase-separated compartments which in turn render transient robustness to the network composition.
Collapse
Affiliation(s)
- Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
- Trivedi School of Biosciences, Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O. Rai, Sonepat, Haryana, 131029, India.
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Nayan Chakraborty
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Yoshiya J Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Prashanth S
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Dhanush Gandavadi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
| |
Collapse
|
59
|
Yang S, Yu H, Xu X, Yang T, Wei Y, Zan R, Zhang X, Ma Q, Shum HC, Song Y. AIEgen-Conjugated Phase-Separating Peptides Illuminate Intracellular RNA through Coacervation-Induced Emission. ACS NANO 2023; 17:8195-8203. [PMID: 37093110 DOI: 10.1021/acsnano.2c12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Intrinsically disordered peptides drive dynamic liquid-liquid phase separation (LLPS) in membraneless organelles and encode cellular functions in response to environmental stimuli. Engineering design on phase-separating peptides (PSPs) holds great promise for bioimaging, vaccine delivery, and disease theranostics. However, recombinant PSPs are devoid of robust luminogen or suitable cell permeability required for intracellular applications. Here, we synthesize a peptide-based RNA sensor by covalently connecting tetraphenylethylene (TPE), an aggregation-induced emission luminogen (AIEgens), to tandem peptide repeats of (RRASL)n (n = 1, 2, 3). Interestingly, the conjugation of TPE luminogen promotes liquid-liquid phase separation of the peptide repeats, and the minimum coacervation concentration (MCC) of TPE-(RRASL)n is decreased by an order of magnitude, compared to that of the untagged, TPE-free counterparts. Moreover, the luminescence of TPE-(RRASL)n is enhanced by up to 700-fold with increasing RNA concentration, which is attributed to the constricted rotation of the TPE moiety as a result of peptide/RNA coacervates within the droplet phase. Besides, at concentrations above MCC, TPE-(RRASL)n can efficiently penetrate through human gallbladder carcinoma cells (SGC-996), translocate into the cell nucleus, and colocalize with intracellular RNA. These observations suggest that AIEgen-conjugated PSPs can be used as droplet-based biosensors for intracellular RNA imaging through a regime of coacervation-induced emission.
Collapse
Affiliation(s)
- Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuli Xu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wei
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Zan
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
60
|
Powers J, Jang Y. Temperature-responsive membrane permeability of recombinant fusion protein vesicles. SOFT MATTER 2023; 19:3273-3280. [PMID: 37089115 DOI: 10.1039/d3sm00096f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, we investigate the changes in the permeability of the recombinant fusion protein vesicles with different membrane structures as a function of solution temperature. The protein vesicles are self-assembled from recombinant fusion protein complexes composed of an mCherry fused with a glutamic acid-rich leucine zipper and a counter arginine-rich leucine zipper fused with an elastin-like polypeptide (ELP). We have found that the molecular weight cut-off (MWCO) of the protein vesicle membranes varies inversely with solution temperature by monitoring the transport of fluorescent-tagged dextran dyes with different molecular weights. The temperature-responsiveness of the protein vesicle membranes is obtained from the lower critical solution temperature behavior of ELP in the protein building blocks. Consequently, the unique vesicle membrane structures with different single-layered and double-layered ELP organizations impact the sensitivity of the permeability responses of the protein vesicles. Single-layered protein vesicles with the ELP domains facing the interior show more drastic permeability changes as a function of temperature than double-layered protein vesicles in which ELP blocks are buried inside the membranes. This work about the temperature-responsive membrane permeability of unique protein vesicles will provide design guidelines for new biomaterials and their applications, such as drug delivery and synthetic protocell development.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida 1006 Center Drive, FL 32669, USA.
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida 1006 Center Drive, FL 32669, USA.
| |
Collapse
|
61
|
Zhu G, Azharuddin M, Pramanik B, Roberg K, Biswas SK, D’arcy P, Lu M, Kaur A, Chen A, Dhara AK, Chivu A, Zhuang Y, Baker A, Liu X, Fairen-Jimenez D, Mazumder B, Chen R, Kaminski CF, Kaminski Schierle GS, Hinkula J, Slater NKH, Patra HK. Feasibility of Coacervate-Like Nanostructure for Instant Drug Nanoformulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17485-17494. [PMID: 36976817 PMCID: PMC10103128 DOI: 10.1021/acsami.2c21586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Despite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds. The coacervate-like nanosystem shows enhanced intracellular delivery of Dox to patient-derived multidrug-resistant (MDR) cells in 3D tumor spheroids. The results demonstrate the feasibility of an instant drug formulation using a coacervate-like nanosystem. We envisage that this technique can be widely utilized in the nanomedicine field to bypass the special requirement of large-scale production and elongated shelf life of nanomaterials.
Collapse
Affiliation(s)
- Geyunjian
H. Zhu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Mohammad Azharuddin
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Bapan Pramanik
- Department
of Chemistry, Ben Gurion University of the
Negev, Be’er
Sheva 84105, Israel
| | - Karin Roberg
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
- Department
of Otorhinolaryngology in Linköping, Anaesthetics, Operations
and Specialty Surgery Center, Linköping
University Hospital, Region Östergötland, Linköping 58185, Sweden
| | - Sujoy Kumar Biswas
- AIMP
Laboratories, C86 Baishnabghata,
Patuli Township, Kolkata 700094, India
| | - Padraig D’arcy
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Meng Lu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Apanpreet Kaur
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, United Kingdom
| | - Alexander Chen
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Ashis Kumar Dhara
- Department
of Electrical Engineering, National Institute
of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Alexandru Chivu
- Department
of Surgical Biotechnology, Division of Surgery and Interventional
Science, University College London, London NW3 2PF, United Kingdom
| | - Yunhui Zhuang
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Andrew Baker
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Xiewen Liu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - David Fairen-Jimenez
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Bismoy Mazumder
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Rongjun Chen
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, United Kingdom
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | | | - Jorma Hinkula
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Nigel K. H. Slater
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Hirak K. Patra
- Department
of Surgical Biotechnology, Division of Surgery and Interventional
Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
62
|
Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Biomolecular Liquid-Liquid Phase Separation for Biotechnology. BIOTECH 2023; 12:26. [PMID: 37092470 PMCID: PMC10123627 DOI: 10.3390/biotech12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The liquid-liquid phase separation (LLPS) of biomolecules induces condensed assemblies called liquid droplets or membrane-less organelles. In contrast to organelles with lipid membrane barriers, the liquid droplets induced by LLPS do not have distinct barriers (lipid bilayer). Biomolecular LLPS in cells has attracted considerable attention in broad research fields from cellular biology to soft matter physics. The physical and chemical properties of LLPS exert a variety of functions in living cells: activating and deactivating biomolecules involving enzymes; controlling the localization, condensation, and concentration of biomolecules; the filtration and purification of biomolecules; and sensing environmental factors for fast, adaptive, and reversible responses. The versatility of LLPS plays an essential role in various biological processes, such as controlling the central dogma and the onset mechanism of pathological diseases. Moreover, biomolecular LLPS could be critical for developing new biotechnologies such as the condensation, purification, and activation of a series of biomolecules. In this review article, we introduce some fundamental aspects and recent progress of biomolecular LLPS in living cells and test tubes. Then, we discuss applications of biomolecular LLPS toward biotechnologies.
Collapse
Affiliation(s)
| | | | | | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
63
|
Bressler SG, Mitrany A, Wenger A, Näthke I, Friedler A. The Oligomerization Domains of the APC Protein Mediate Liquid-Liquid Phase Separation That Is Phosphorylation Controlled. Int J Mol Sci 2023; 24:ijms24076478. [PMID: 37047451 PMCID: PMC10095272 DOI: 10.3390/ijms24076478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
One of the most important properties of intrinsically disordered proteins is their ability to undergo liquid-liquid phase separation and form droplets. The Adenomatous Polyposis Coli (APC) protein is an IDP that plays a key role in Wnt signaling and mutations in Apc initiate cancer. APC forms droplets via its 20R domains and self-association domain (ASAD) and in the context of Axin. However, the mechanism involved is unknown. Here, we used peptides to study the molecular mechanism and regulation of APC droplet formation. We found that a peptide derived from the ASAD of APC-formed droplets. Peptide array screening showed that the ASAD bound other APC peptides corresponding to the 20R3 and 20R5 domains. We discovered that the 20R3/5 peptides also formed droplets by themselves and mapped specific residues within 20R3/5 that are necessary for droplet formation. When incubated together, the ASAD and 20R3/5 did not form droplets. Thus, the interaction of the ASAD with 20R3 and 20R5 may regulate the droplet formation as a means of regulating different cellular functions. Phosphorylation of 20R3 or 20R5 at specific residues prevented droplet formation of 20R3/5. Our results reveal that phosphorylation and the ability to undergo liquid-liquid phase separation, which are both important properties of intrinsically disordered proteins, are related to each other in APC. Phosphorylation inhibited the liquid-liquid phase separation of APC, acting as an ‘on-off’ switch for droplet formation. Phosphorylation may thus be a common mechanism regulating LLPS in intrinsically disordered proteins.
Collapse
Affiliation(s)
- Shachar G. Bressler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Amit Mitrany
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Alon Wenger
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Inke Näthke
- Division of Molecular Cell and Developmental Biology, University of Dundee, Dundee DD1 5AA, Scotland, UK
- Correspondence: (I.N.); (A.F.)
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Correspondence: (I.N.); (A.F.)
| |
Collapse
|
64
|
Salditt A, Karr L, Salibi E, Le Vay K, Braun D, Mutschler H. Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment. Nat Commun 2023; 14:1495. [PMID: 36932102 PMCID: PMC10023712 DOI: 10.1038/s41467-023-37206-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Enzyme-catalyzed replication of nucleic acid sequences is a prerequisite for the survival and evolution of biological entities. Before the advent of protein synthesis, genetic information was most likely stored in and replicated by RNA. However, experimental systems for sustained RNA-dependent RNA-replication are difficult to realise, in part due to the high thermodynamic stability of duplex products and the low chemical stability of catalytic RNAs. Using a derivative of a group I intron as a model for an RNA replicase, we show that heated air-water interfaces that are exposed to a plausible CO2-rich atmosphere enable sense and antisense RNA replication as well as template-dependent synthesis and catalysis of a functional ribozyme in a one-pot reaction. Both reactions are driven by autonomous oscillations in salt concentrations and pH, resulting from precipitation of acidified dew droplets, which transiently destabilise RNA duplexes. Our results suggest that an abundant Hadean microenvironment may have promoted both replication and synthesis of functional RNAs.
Collapse
Affiliation(s)
- Annalena Salditt
- Systems Biophysics and Center for NanoScience (CeNS), Ludwig Maximilian University Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Leonie Karr
- Systems Biophysics and Center for NanoScience (CeNS), Ludwig Maximilian University Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Kristian Le Vay
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Dieter Braun
- Systems Biophysics and Center for NanoScience (CeNS), Ludwig Maximilian University Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
65
|
Figueiredo AS, Loureiro JR, Macedo-Ribeiro S, Silveira I. Advances in Nucleotide Repeat Expansion Diseases: Transcription Gets in Phase. Cells 2023; 12:826. [PMID: 36980167 PMCID: PMC10047669 DOI: 10.3390/cells12060826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription.
Collapse
Affiliation(s)
- Ana S. Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
66
|
Salibi E, Peter B, Schwille P, Mutschler H. Periodic temperature changes drive the proliferation of self-replicating RNAs in vesicle populations. Nat Commun 2023; 14:1222. [PMID: 36869058 PMCID: PMC9984477 DOI: 10.1038/s41467-023-36940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Growth and division of biological cells are based on the complex orchestration of spatiotemporally controlled reactions driven by highly evolved proteins. In contrast, it remains unknown how their primordial predecessors could achieve a stable inheritance of cytosolic components before the advent of translation. An attractive scenario assumes that periodic changes of environmental conditions acted as pacemakers for the proliferation of early protocells. Using catalytic RNA (ribozymes) as models for primitive biocatalytic molecules, we demonstrate that the repeated freezing and thawing of aqueous solutions enables the assembly of active ribozymes from inactive precursors encapsulated in separate lipid vesicle populations. Furthermore, we show that encapsulated ribozyme replicators can overcome freezing-induced content loss and successive dilution by freeze-thaw driven propagation in feedstock vesicles. Thus, cyclic freezing and melting of aqueous solvents - a plausible physicochemical driver likely present on early Earth - provides a simple scenario that uncouples compartment growth and division from RNA self-replication, while maintaining the propagation of these replicators inside new vesicle populations.
Collapse
Affiliation(s)
- Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Benedikt Peter
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
67
|
Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530264. [PMID: 36909509 PMCID: PMC10002651 DOI: 10.1101/2023.02.27.530264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Compartmentalization of RNA in biopolymer-rich membraneless organelles is now understood to be pervasive and critical for the function of extant biology and has been proposed as a prebiotically-plausible way to accumulate RNA. However, compartment-RNA interactions that drive encapsulation have the potential to influence RNA structure and function in compartment- and RNA sequence-dependent ways. Herein, we detail Next-Generation Sequencing (NGS) experiments performed for the first time in membraneless compartments called complex coacervates to characterize the fold of many different transfer RNAs (tRNAs) simultaneously under the potentially denaturing conditions of these compartments. Strikingly, we find that natural modifications favor the native fold of tRNAs in these compartments. This suggests that covalent RNA modifications could have played a critical role in metabolic processes at the origin of life. One Sentence Summary We demonstrate that RNA folds into native secondary and tertiary structures in protocell models and that this is favored by covalent modifications, which is critical for the origins of life.
Collapse
|
68
|
Chowdhuri S, Das S, Kushwaha R, Das T, Das BK, Das D. Cumulative Effect of pH and Redox Triggers on Highly Adaptive Transient Coacervates. Chemistry 2023; 29:e202203820. [PMID: 36786201 DOI: 10.1002/chem.202203820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
An intricate synergism between multiple biochemical processes and physical conditions determines the formation and function of various biological self-assemblies. Thus, a complex set of variables dictate the far-from-equilibrium nature of these biological assemblies. Mimicking such systems synthetically is a challenging task. We report multi-stimuli responsive transient coacervation of an aldehyde-appended polymer and a short peptide. The coacervates are formed by the disulphide linkages between the peptide molecules and the imine bond between the polymer and the peptide. Imines are susceptible to pH changes and the disulphide bonds can be tuned by oxidation/reduction processes. Thus, the coacervation is operational only under the combined effect of appropriate pH and oxidative conditions. Taking advantage of these facts, the coacervates are transiently formed under a pH cycle (urea-urease/gluconolactone) and a non-equilibrium redox cycle (TCEP/H2 O2 ). Importantly, the system showed high adaptability toward environmental changes. The transient existence of the coacervates can be generated without any apparent change in size and shape within the same system through the sequential application of the above-mentioned nonequilibrium reaction cycles. Additionally, the coacervation allows for efficient encapsulation/stabilisation of proteins. Thus, the system has the potential to be used for protein/drug delivery purposes in the future.
Collapse
Affiliation(s)
- Sumit Chowdhuri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Ritvika Kushwaha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Basab Kanti Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
69
|
Jobdeedamrong A, Cao S, Harley I, Crespy D, Landfester K, Caire da Silva L. Assembly of biomimetic microreactors using caged-coacervate droplets. NANOSCALE 2023; 15:2561-2566. [PMID: 36601867 DOI: 10.1039/d2nr05101j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Complex coacervates are liquid-like droplets that can be used to create adaptive cell-like compartments. These compartments offer a versatile platform for the construction of bioreactors inspired by living cells. However, the lack of a membrane significantly reduces the colloidal stability of coacervates in terms of fusion and surface wetting, which limits their suitability as compartments. Here, we describe the formation of caged-coacervates surrounded by a semipermeable shell of silica nanocapsules. We demonstrate that the silica nanocapsules create a protective shell that also regulates the molecular transport of water-soluble compounds as a function of nanocapasule size. The adjustable semipermeability and intrinsic affinity of enzymes for the interior of the caged-coacervates allowed us to assemble biomimetic microreactors with enhanced colloidal stability.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Iain Harley
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Lucas Caire da Silva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| |
Collapse
|
70
|
Guo W, Ji D, Kinghorn AB, Chen F, Pan Y, Li X, Li Q, Huck WTS, Kwok CK, Shum HC. Tuning Material States and Functionalities of G-Quadruplex-Modulated RNA-Peptide Condensates. J Am Chem Soc 2023; 145:2375-2385. [PMID: 36689740 DOI: 10.1021/jacs.2c11362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RNA encodes sequence- and structure-dependent interactions to modulate the assembly and properties of biomolecular condensates. RNA G-quadruplexes (rG4s) formed by guanine-rich sequences can trigger the formation of liquid- or solid-like condensates that are involved in many aberrant phase transitions. However, exactly how rG4 motifs modulate different phase transitions and impart distinct material properties to condensates is unclear. Here, using RNA oligonucleotides and cationic peptides as model systems, we show that RNA-peptide condensates exhibit tunability in material properties over a wide spectrum via interactions arising from rG4 folding/unfolding kinetics. rG4-containing oligonucleotides formed strong pairwise attraction with peptides and tended to form solid-like condensates, while their less-structured non-G4 mutants formed liquid-like droplets. We find that the coupling between rG4 dissociation and RNA-peptide complex coacervation triggers solid-to-liquid transition of condensates prior to the complete unfolding of rG4s. This coupling points to a mechanism that material states of rG4-modulated condensates can be finely tuned from solid-like to liquid-like by the addition of less-structured RNA oligonucleotides, which have weak but dominant binding with peptides. We further show that the tunable material states of condensates can enhance RNA aptamer compartmentalization and RNA cleavage reactions. Our results suggest that condensates with complex properties can emerge from subtle changes in RNA oligonucleotides, contributing ways to treat dysfunctional condensates in diseases and insights into prebiotic compartmentalization.
Collapse
Affiliation(s)
- Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Feipeng Chen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Pan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Qingchuan Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| |
Collapse
|
71
|
Liu Y, Wang X, Wan Z, Ngai T, Tse YLS. Capturing coacervate formation and protein partition by molecular dynamics simulation. Chem Sci 2023; 14:1168-1175. [PMID: 36756326 PMCID: PMC9891350 DOI: 10.1039/d2sc01164f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Biomolecules localize and function in microenvironments where their local concentration, spatial organization, and biochemical reactivity are regulated. To compartmentalize and control the local properties of the native microenvironment, cellular mimics and artificial bioreactors have been developed to study the properties of membraneless organelles or mimic the bio-environment for life origin. Here, we carried out molecular dynamics simulation with the Martini 3.0 model to reproduce the experimental salt concentration and pH dependency of different complex coacervates. We showed that coacervates inside vesicles are able to change their shape. In addition, we used these coacervate systems to explore the partitioning of the ubiquitous cytoskeletal protein actin and found that actin spontaneously partitions to all the coacervate peripheries. Therefore, we believe that our study can provide a better understanding of the versatile coacervate platform, where biomolecules partition and gather to fulfill their biological duties.
Collapse
Affiliation(s)
- Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China.,Department of Chemistry, The Chinese University of Hong Kong Sha Tin Hong Kong China
| | - Xinyan Wang
- Department of Chemistry, The Chinese University of Hong Kong Sha Tin Hong Kong China
| | - Zhili Wan
- School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong Sha Tin Hong Kong China
| | - Ying-Lung Steve Tse
- Department of Chemistry, The Chinese University of Hong Kong Sha Tin Hong Kong China
| |
Collapse
|
72
|
Zhai H, Fan Y, Zhang W, Varsano N, Gal A. Polymer-Rich Dense Phase Can Concentrate Metastable Silica Precursors and Regulate Their Mineralization. ACS Biomater Sci Eng 2023; 9:601-607. [PMID: 36722128 PMCID: PMC9930081 DOI: 10.1021/acsbiomaterials.2c01249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multistep mineralization processes are pivotal in the fabrication of functional materials and are often characterized by far from equilibrium conditions and high supersaturation. Interestingly, such 'nonclassical' mineralization pathways are widespread in biological systems, even though concentrating molecules well beyond their saturation level is incompatible with cellular homeostasis. Here, we show how polymer phase separation can facilitate bioinspired silica formation by passively concentrating the inorganic building blocks within the polymer dense phase. The high affinity of the dense phase to mobile silica precursors generates a diffusive flux against the concentration gradient, similar to dynamic equilibrium, and the resulting high supersaturation leads to precipitation of insoluble silica. Manipulating the chemistry of the dense phase allows to control the delicate interplay between polymer chemistry and silica precipitation. These results connect two phase transition phenomena, mineralization and coacervation, and offer a framework to achieve better control of mineral formation.
Collapse
Affiliation(s)
- Hang Zhai
- Department
of Plant and Environmental Sciences, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Yuke Fan
- College
of Resources and Environment, Huazhong Agricultural
University, Wuhan 430070, China
| | - Wenjun Zhang
- College
of Resources and Environment, Huazhong Agricultural
University, Wuhan 430070, China
| | - Neta Varsano
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Assaf Gal
- Department
of Plant and Environmental Sciences, Weizmann
Institute of Science, Rehovot 7610001, Israel,
| |
Collapse
|
73
|
A mini-review on bio-inspired polymer self-assembly: single-component and interactive polymer systems. Emerg Top Life Sci 2022; 6:593-607. [PMID: 36254846 DOI: 10.1042/etls20220057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 12/30/2022]
Abstract
Biology demonstrates meticulous ways to control biomaterials self-assemble into ordered and disordered structures to carry out necessary bioprocesses. Empowering the synthetic polymers to self-assemble like biomaterials is a hallmark of polymer physics studies. Unlike protein engineering, polymer science demystifies self-assembly by purposely embedding particular functional groups into the backbone of the polymer while isolating others. The polymer field has now entered an era of advancing materials design by mimicking nature to a very large extend. For example, we can make sequence-specific polymers to study highly ordered mesostructures similar to studying proteins, and use charged polymers to study liquid-liquid phase separation as in membraneless organelles. This mini-review summarizes recent advances in studying self-assembly using bio-inspired strategies on single-component and multi-component systems. Sequence-defined techniques are used to make on-demand hybrid materials to isolate the effects of chirality and chemistry in synthetic block copolymer self-assembly. In the meantime, sequence patterning leads to more hierarchical assemblies comprised of only hydrophobic and hydrophilic comonomers. The second half of the review discusses complex coacervates formed as a result of the associative charge interactions of oppositely charged polyelectrolytes. The tunable phase behavior and viscoelasticity are unique in studying liquid macrophase separation because the slow polymer relaxation comes primarily from charge interactions. Studies of bio-inspired polymer self-assembly significantly impact how we optimize user-defined materials on a molecular level.
Collapse
|
74
|
Saini B, Mukherjee TK. Synthetic Protocell as Efficient Bioreactor: Enzymatic Superactivity and Ultrasensitive Glucose Sensing in Urine. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53462-53474. [PMID: 36404589 DOI: 10.1021/acsami.2c13112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is believed that membraneless cellular condensates play a critical role in accelerating various slow and thermodynamically unfavorable biochemical processes. However, the exact mechanisms behind the enhanced activity within biocondensates remain poorly understood. Here, we report the fabrication of a high-performance integrated cascade bioplatform based on synthetic droplets for ultrasensitive glucose sensing. Using a horseradish peroxidase (HRP) and glucose oxidase (GOx) cascade pair, we report an unprecedented enhancement in the catalytic activity of HRP inside the synthetic membraneless droplet. Liquidlike membraneless droplets have been prepared via multivalent electrostatic interactions between adenosine triphosphate (ATP) and poly(diallyldimethylammonium chloride) (PDADMAC) in an aqueous medium. Compartmentalized enzymes (GOx/HRP@Droplet) exhibit high encapsulation efficiency, low leakage, prolong retention of activity, and exceptional stability toward protease digestion. Using an HRP@Droplet composite, we have shown that the enzymatic reaction within the droplet follows the classical Michaelis-Menten model. Our findings reveal remarkable enhancement in the catalytic activity of up to 100- and 51-fold for HRP@Droplet and GOx/HRP@Droplet, respectively. These enhanced activities have been explained on the basis of increased local concentrations of enzymes and substrates, along with altered conformations of sequestered enzymes. Furthermore, we have utilized highly efficient and recyclable GOx/HRP@Droplet composite to demonstrate ultrasensitive glucose sensing with a limit of detection of 228 nM. Finally, the composite platform has been exploited to detect glucose in spiked urine samples in solution and filter paper. Our present study illustrates the unprecedented activity of the compartmentalized enzymes and paves the way for next-generation composite bioreactors for a wide range of applications.
Collapse
Affiliation(s)
- Bhawna Saini
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore453552, Madhya Pradesh, India
| |
Collapse
|
75
|
Donau C, Boekhoven J. The chemistry of chemically fueled droplets. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
77
|
Donau C, Späth F, Stasi M, Bergmann AM, Boekhoven J. Phase Transitions in Chemically Fueled, Multiphase Complex Coacervate Droplets. Angew Chem Int Ed Engl 2022; 61:e202211905. [PMID: 36067054 PMCID: PMC9828839 DOI: 10.1002/anie.202211905] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/12/2023]
Abstract
Membraneless organelles are droplets in the cytosol that are regulated by chemical reactions. Increasing studies suggest that they are internally organized. However, how these subcompartments are regulated remains elusive. Herein, we describe a complex coacervate-based model composed of two polyanions and a short peptide. With a chemical reaction cycle, we control the affinity of the peptide for the polyelectrolytes leading to distinct regimes inside the phase diagram. We study the transitions from one regime to another and identify new transitions that can only occur under kinetic control. Finally, we show that the chemical reaction cycle controls the liquidity of the droplets offering insights into how active processes inside cells play an important role in tuning the liquid state of membraneless organelles. Our work demonstrates that not only thermodynamic properties but also kinetics should be considered in the organization of multiple phases in droplets.
Collapse
Affiliation(s)
- Carsten Donau
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Fabian Späth
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Michele Stasi
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Alexander M. Bergmann
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Job Boekhoven
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| |
Collapse
|
78
|
Bauermann J, Laha S, McCall PM, Jülicher F, Weber CA. Chemical Kinetics and Mass Action in Coexisting Phases. J Am Chem Soc 2022; 144:19294-19304. [PMID: 36241174 PMCID: PMC9620980 DOI: 10.1021/jacs.2c06265] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/29/2022]
Abstract
The kinetics of chemical reactions are determined by the law of mass action, which has been successfully applied to homogeneous, dilute mixtures. At nondilute conditions, interactions among the components can give rise to coexisting phases, which can significantly alter the kinetics of chemical reactions. Here, we derive a theory for chemical reactions in coexisting phases at phase equilibrium. We show that phase equilibrium couples the rates of chemical reactions of components with their diffusive exchanges between the phases. Strikingly, the chemical relaxation kinetics can be represented as a flow along the phase equilibrium line in the phase diagram. A key finding of our theory is that differences in reaction rates between coexisting phases stem solely from phase-dependent reaction rate coefficients. Our theory is key to interpreting how concentration levels of reactive components in condensed phases control chemical reaction rates in synthetic and biological systems.
Collapse
Affiliation(s)
- Jonathan Bauermann
- Max
Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center
for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sudarshana Laha
- Max
Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center
for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Patrick M. McCall
- Max
Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center
for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Frank Jülicher
- Max
Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center
for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Cluster
of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Christoph A. Weber
- Faculty
of Mathematics, Natural Sciences, and Materials Engineering: Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| |
Collapse
|
79
|
Yu B, Liang H, Rumyantsev AM, de Pablo JJ. Isotropic-to-Nematic Transition in Salt-Free Polyelectrolyte Coacervates from Coarse-Grained Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Boyuan Yu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois60439, United States
| |
Collapse
|
80
|
Slootbeek AD, van Haren MHI, Smokers IBA, Spruijt E. Growth, replication and division enable evolution of coacervate protocells. Chem Commun (Camb) 2022; 58:11183-11200. [PMID: 36128910 PMCID: PMC9536485 DOI: 10.1039/d2cc03541c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Living and proliferating cells undergo repeated cycles of growth, replication and division, all orchestrated by complex molecular networks. How a minimal cell cycle emerged and helped primitive cells to evolve remains one of the biggest mysteries in modern science, and is an active area of research in chemistry. Protocells are cell-like compartments that recapitulate features of living cells and may be seen as the chemical ancestors of modern life. While compartmentalization is not strictly required for primitive, open-ended evolution of self-replicating systems, it gives such systems a clear identity by setting the boundaries and it can help them overcome three major obstacles of dilution, parasitism and compatibility. Compartmentalization is therefore widely considered to be a central hallmark of primitive life, and various types of protocells are actively investigated, with the ultimate goal of developing a protocell capable of autonomous proliferation by mimicking the well-known cell cycle of growth, replication and division. We and others have found that coacervates are promising protocell candidates in which chemical building blocks required for life are naturally concentrated, and chemical reactions can be selectively enhanced or suppressed. This feature article provides an overview of how growth, replication and division can be realized with coacervates as protocells and what the bottlenecks are. Considerations are given for designing chemical networks in coacervates that can lead to sustained growth, selective replication and controlled division, in a way that they are linked together like in the cell cycle. Ultimately, such a system may undergo evolution by natural selection of certain phenotypes, leading to adaptation and the gain of new functions, and we end with a brief discussion of the opportunities for coacervates to facilitate this.
Collapse
Affiliation(s)
- Annemiek D Slootbeek
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Iris B A Smokers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
81
|
An Overview of Coacervates: The Special Disperse State of Amphiphilic and Polymeric Materials in Solution. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Individual amphiphiles, polymers, and colloidal dispersions influenced by temperature, pH, and environmental conditions or interactions between their oppositely charged pairs in solvent medium often produce solvent-rich and solvent-poor phases in the system. The solvent-poor denser phase found either on the top or the bottom of the system is called coacervate. Coacervates have immense applications in various technological fields. This review comprises a concise introduction, focusing on the types of coacervates, and the influence of different factors in their formation, structures, and stability. In addition, their physicochemical properties, thermodynamics of formation, and uses and multifarious applications are also concisely presented and discussed.
Collapse
|
82
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
83
|
Xu C, Martin N, Li M, Mann S. Living material assembly of bacteriogenic protocells. Nature 2022; 609:1029-1037. [PMID: 36104562 DOI: 10.1038/s41586-022-05223-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
Abstract
Advancing the spontaneous bottom-up construction of artificial cells with high organizational complexity and diverse functionality remains an unresolved issue at the interface between living and non-living matter1-4. Here, to address this challenge, we developed a living material assembly process based on the capture and on-site processing of spatially segregated bacterial colonies within individual coacervate microdroplets for the endogenous construction of membrane-bounded, molecularly crowded, and compositionally, structurally and morphologically complex synthetic cells. The bacteriogenic protocells inherit diverse biological components, exhibit multifunctional cytomimetic properties and can be endogenously remodelled to include a spatially partitioned DNA-histone nucleus-like condensate, membranized water vacuoles and a three-dimensional network of F-actin proto-cytoskeletal filaments. The ensemble is biochemically energized by ATP production derived from implanted live Escherichia coli cells to produce a cellular bionic system with amoeba-like external morphology and integrated life-like properties. Our results demonstrate a bacteriogenic strategy for the bottom-up construction of functional protoliving microdevices and provide opportunities for the fabrication of new synthetic cell modules and augmented living/synthetic cell constructs with potential applications in engineered synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Can Xu
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, Pessac, France
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, United Kingdom.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
84
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
85
|
Abstract
Enhancers confer precise spatiotemporal patterns of gene expression in response to developmental and environmental stimuli. Over the last decade, the transcription of enhancer RNAs (eRNAs) – nascent RNAs transcribed from active enhancers – has emerged as a key factor regulating enhancer activity. eRNAs are relatively short-lived RNA species that are transcribed at very high rates but also quickly degraded. Nevertheless, eRNAs are deeply intertwined within enhancer regulatory networks and are implicated in a number of transcriptional control mechanisms. Enhancers show changes in function and sequence over evolutionary time, raising questions about the relationship between enhancer sequences and eRNA function. Moreover, the vast majority of single nucleotide polymorphisms associated with human complex diseases map to the non-coding genome, with causal disease variants enriched within enhancers. In this Primer, we survey the diverse roles played by eRNAs in enhancer-dependent gene expression, evaluating different models for eRNA function. We also explore questions surrounding the genetic conservation of enhancers and how this relates to eRNA function and dysfunction. Summary: This Primer evaluates the ideas that underpin developing models for eRNA function, exploring cases in which perturbed eRNA function contributes to disease.
Collapse
Affiliation(s)
- Laura J. Harrison
- Molecular and Cellular Biology, School of Biosciences, Sheffield Institute For Nucleic Acids, The University of Sheffield, Firth Court, Western Bank , Sheffield S10 2TN , UK
| | - Daniel Bose
- Molecular and Cellular Biology, School of Biosciences, Sheffield Institute For Nucleic Acids, The University of Sheffield, Firth Court, Western Bank , Sheffield S10 2TN , UK
| |
Collapse
|
86
|
Kubota R, Torigoe S, Hamachi I. Temporal Stimulus Patterns Drive Differentiation of a Synthetic Dipeptide-Based Coacervate. J Am Chem Soc 2022; 144:15155-15164. [PMID: 35943765 DOI: 10.1021/jacs.2c05101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The fate of living cells often depends on their processing of temporally modulated information, such as the frequency and duration of various signals. Synthetic stimulus-responsive systems have been intensely studied for >50 years, but it is still challenging for chemists to create artificial systems that can decode dynamically oscillating stimuli and alter the systems' properties/functions because of the lack of sophisticated reaction networks that are comparable with biological signal transduction. Here, we report morphological differentiation of synthetic dipeptide-based coacervates in response to temporally distinct patterns of the light pulse. We designed a simple cationic diphenylalanine peptide derivative to enable the formation of coacervates. The coacervates concentrated an anionic methacrylate monomer and a photoinitiator, which provided a unique reaction environment and facilitated light-triggered radical polymerization─even in air. Pulsed light irradiation at 9.0 Hz (but not at 0.5 Hz) afforded anionic polymers. This dependence on the light pulse patterns is attributable to the competition of reactive radical intermediates between the methacrylate monomer and molecular oxygen. The temporal pulse pattern-dependent polymer formation enabled the coacervates to differentiate in terms of morphology and internal viscosity, with an ultrasensitive switch-like mode. Our achievements will facilitate the rational design of smart supramolecular soft materials and are insightful regarding the synthesis of sophisticated chemical cells.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan
| | - Shogo Torigoe
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan.,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Katsura, Nishikyo̅-ku, Kyoto 615-8530, Japan
| |
Collapse
|
87
|
Agrawal A, Douglas JF, Tirrell M, Karim A. Manipulation of coacervate droplets with an electric field. Proc Natl Acad Sci U S A 2022; 119:e2203483119. [PMID: 35925890 PMCID: PMC9372540 DOI: 10.1073/pnas.2203483119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Many biopolymers are highly charged, and as in the case of many polymer mixtures, they tend to phase separate as a natural consequence of chain connectivity and an associated relatively low entropy of polymer mixing. Recently, it has become appreciated that the phase-separated structures formed by such polyelectrolyte blends, called "complex coacervates," underlie numerous biological structures and processes essential to living systems, and there has been intense interest in understanding the unique physical features of this type of phase-separation process. In the present work, we are particularly concerned with the field responsiveness of stabilized coacervate droplets formed after the phase separation of polyelectrolyte blend solution and then exposed to deionized water, making the droplet interfacial layer acquire a viscoelastic character that strongly stabilizes it against coalescence. We show that we can precisely control the positions of individual droplets and arrays of them with relatively low-voltage electric fields (on the order of 10 V/cm) and that the imposition of an oscillatory field gives rise to chain formation with coarsening of these chains into long fibers. Such a phase-separation-like process is generally observed in electrorheological fluids of solid colloidal particles subjected to much larger field strengths. The key to these coacervates' electrorheological properties is the altered interfacial viscoelastic properties when the droplets are introduced into deionized water and the associated high polarizability of the droplets, similar to the properties of many living cells. Since many different molecular payloads can be incorporated into these stable droplets, we anticipate many applications.
Collapse
Affiliation(s)
- Aman Agrawal
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Matthew Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Alamgir Karim
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| |
Collapse
|
88
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
89
|
Gao S, Srivastava S. Comb Polyelectrolytes Stabilize Complex Coacervate Microdroplet Dispersions. ACS Macro Lett 2022; 11:902-909. [PMID: 35786870 DOI: 10.1021/acsmacrolett.2c00327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complex coacervate microdroplets are membraneless compartments that selectively sequester biological molecules from their surroundings and enhance bioreactions. Yet, their use as protocell models and bioreactors has been limited owing to a lack of feasible strategies to prevent their uncontrolled coalescence. Herein, we introduce an approach to mitigate coalescence of complex coacervate microdroplets using comb polyelectrolytes as stabilizers, creating complex coacervate dispersions with months-long stabilities. Tunability of microdroplet size and stability is achieved by the regulation of comb polyelectrolyte concentration and molecular weight. Importantly, the comb polyelectrolyte-stabilized coacervate microdroplets spontaneously sequester and retain proteins over extended periods. Moreover, enhanced catalytic activity of proteins and significant (up to 10-fold) acceleration of bioreactions are achieved in stabilized complex coacervate dispersions, even when stored for up to 48 h. Our findings are expected to expand the utility of complex coacervate microdroplets as artificial protocells, encapsulants, and bioreactors and also facilitate their use in pharmaceutical, agricultural, food, and cosmetics formulations.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Center for Biological Physics, University of California, Los Angeles, Los Angeles, California 90095, United States.,Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
90
|
Choi S, Meyer MO, Bevilacqua PC, Keating CD. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles. Nat Chem 2022; 14:1110-1117. [PMID: 35773489 DOI: 10.1038/s41557-022-00980-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
Liquid-liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles. The mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Single- and double-stranded RNAs preferentially accumulate in different phases within the same droplet, and one phase is more destabilizing for RNA duplexes than the other. Single-phase peptide droplets did not capture this behaviour. Phase coexistence introduces new thermodynamic equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA-binding sites nor full-length proteins. As such, they are more general and point to primitive versions of mechanisms operating in extant biology that could aid understanding and enable the design of functional artificial membraneless organelles.
Collapse
Affiliation(s)
- Saehyun Choi
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - McCauley O Meyer
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA. .,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA. .,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
91
|
Hydrophobic-cationic peptides modulate RNA polymerase ribozyme activity by accretion. Nat Commun 2022; 13:3050. [PMID: 35665749 PMCID: PMC9166800 DOI: 10.1038/s41467-022-30590-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Accretion and the resulting increase in local concentration is a widespread mechanism in biology to enhance biomolecular functions (for example, in liquid-liquid demixing phases). Such macromolecular aggregation phases (e.g., coacervates, amyloids) may also have played a role in the origin of life. Here, we report that a hydrophobic-cationic RNA binding peptide selected by phage display (P43: AKKVWIIMGGS) forms insoluble amyloid-containing aggregates, which reversibly accrete RNA on their surfaces in an RNA-length and Mg2+-concentration dependent manner. The aggregates formed by P43 or its sequence-simplified version (K2V6: KKVVVVVV) inhibited RNA polymerase ribozyme (RPR) activity at 25 mM MgCl2, while enhancing it significantly at 400 mM MgCl2. Our work shows that such hydrophobic-cationic peptide aggregates can reversibly concentrate RNA and enhance the RPR activity, and suggests that they could have aided the emergence and evolution of longer and functional RNAs in the fluctuating environments of the prebiotic earth.
Collapse
|
92
|
Liu Z, Chen J, Bai Q, Lin YN, Liang D. Coacervate Formed by an ATP-Binding Aptamer and Its Dynamic Behavior under Nonequilibrium Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6425-6434. [PMID: 35543367 DOI: 10.1021/acs.langmuir.2c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although numerous protocell models have been developed to explore the possible pathway of the origin of life on the early earth, few truly fulfill the roles of the DNA/RNA sequence and ATP molecules, which are keys to cell replication and evolution. The ATP-binding aptamer offers an opportunity to combine sequence and energy molecules. In this work, we choose the coacervate droplet as the protocell model and investigate the interaction of the DNA aptamer, poly(l-lysine)(PLL), and ATP under varying conditions. PLL and aptamers form solid precipitates, which spontaneously transform to coacervate droplets as ATP is introduced. The selective uptake and sequestration of exogenous molecules is achieved by the ATP-containing coacervates. As an electric field is applied to expel ATP, the portion of the droplet deficient in ATP becomes solid. The solid/liquid phase ratio is tunable by varying the electric field strength and excitation time. Together with the vacuolization process, a solid head with a soft mouth periodically opening and closing is created. Moreover, the composite coacervate droplet gradually grows as it is treated with an electric field and cannot recover to the original liquid phase after the power is turned off and replenished with ATP. Our work highlights that the proper integration of the DNA sequence, ATP, and energy input could be a powerful strategy for creating a protocell with certain living features.
Collapse
Affiliation(s)
- Zhijun Liu
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaxin Chen
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qingwen Bai
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya-Nan Lin
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
93
|
Johnston AR, Minckler ED, Shockley MCJ, Matsushima LN, Perry SL, Ayzner AL. Conjugated Polyelectrolyte‐Based Complex Fluids as Aqueous Exciton Transport Networks. Angew Chem Int Ed Engl 2022; 61:e202117759. [DOI: 10.1002/anie.202117759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Anna R. Johnston
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Eris D. Minckler
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Mia C. J. Shockley
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Sarah L. Perry
- Department of Chemical Engineering University of Massachusetts Amherst Amherst, MA USA
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| |
Collapse
|
94
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
95
|
Yu X, Zhou L, Wang G, Wang L, Dou H. Hierarchical Structures in Macromolecule-assembled Synthetic Cells. Macromol Rapid Commun 2022; 43:e2100926. [PMID: 35445490 DOI: 10.1002/marc.202100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Various models of synthetic cells have been developed as researchers have sought to explore the origin of life. Based on the fact that structural complexity is the foundation of higher-order functions, this review will focus on hierarchical structures in synthetic cell models that are inspired by living systems, in which macromolecules are the dominant participants. We discuss the underlying advantages and functions provided by biomimetic higher-order structures from four perspectives, including hierarchical structures in membranes, in the composite construction of membrane-coated artificial cytoplasm, in organelle-like subcellular compartments, as well as in synthetic cell-cell assembled synthetic tissues. In parallel, various feasible driving forces and approaches for the fabrication of such higher-order structures are showcased. Furthermore, we highlight both the implemented and potential applications of biomimetic systems, bottom-up biosynthesis, biomedical tissue engineering, and disease therapy. This thriving field is gradually narrowing the gap between fundamental research and applied science. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Long Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Gangyang Wang
- Gangyang Wang, Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Lei Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
96
|
Yin Z, Tian L, Patil AJ, Li M, Mann S. Spontaneous Membranization in a Silk‐Based Coacervate Protocell Model. Angew Chem Int Ed Engl 2022; 61:e202202302. [PMID: 35176203 PMCID: PMC9306657 DOI: 10.1002/anie.202202302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Zhuping Yin
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Liangfei Tian
- Department of Biomedical Engineering MOE Key Laboratory of Biomedical Engineering Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal Zhejiang University 310027 Hangzhou P. R. China
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology School of Chemistry University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
97
|
Johnston AR, Minckler ED, Shockley MCJ, Matsushima LN, Perry SL, Ayzner AL. Conjugated Polyelectrolyte‐Based Complex Fluids as Aqueous Exciton Transport Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna R. Johnston
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Eris D. Minckler
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Mia C. J. Shockley
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| | - Sarah L. Perry
- Department of Chemical Engineering University of Massachusetts Amherst Amherst, MA USA
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz, CA USA
| |
Collapse
|
98
|
Bos I, Brink E, Michels L, Sprakel J. DNA dynamics in complex coacervate droplets and micelles. SOFT MATTER 2022; 18:2012-2027. [PMID: 35191449 PMCID: PMC8905490 DOI: 10.1039/d1sm01787j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Single stranded DNA (ssDNA), or another polyanion, can be mixed with polycations to form liquid-like complex coacervates. When the polycations are replaced by cationic-neutral diblock copolymers, complex coacervate core micelles (C3Ms) can be formed instead. In both complex coacervates and C3Ms, dynamics plays an important role. Yet, to date, the effect of chain length on the dynamics effect is still not fully understood. The DNA complexes provide a versatile platform to further elucidate these chain length effects because the DNA is monodisperse and its length can be easily adapted. Therefore, we study in this paper the dynamics of fluorescently labelled ssDNA in both complex coacervate droplets and micelles. The DNA dynamics in the complex coacervate droplets is probed by fluorescence recovery after photobleaching (FRAP). We observe that the DNA diffusion coefficient depends more strongly on the DNA length than predicted by the sticky Rouse model and we show that this can be partly explained by changes in complex coacervate density, but that also other factors might play a role. We measure the molecular exchange of C3Ms by making use of Förster resonance energy transfer (FRET) and complement these measurements with Langevin dynamics simulations. We conclude that chain length polydispersity is the main cause of a broad distribution of exchange rates. We hypothesise that the different exchange rates that we observe for the monodisperse DNA are mainly caused by differences in dye interactions and show that the dye can indeed have a large effect on the C3M exchange. In addition, we show that a new description of the C3M molecular exchange is required that accounts among others for the effect of the length of the oppositely charged core species. Together our findings can help to better understand the dynamics in both specific DNA systems and in complex coacervate droplets and micelles in general.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Eline Brink
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Lucile Michels
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
99
|
Yin Z, Tian L, Patil AJ, Li M, Mann S. Spontaneous Membranization in a Silk‐Based Coacervate Protocell Model. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhuping Yin
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Liangfei Tian
- Department of Biomedical Engineering MOE Key Laboratory of Biomedical Engineering Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal Zhejiang University 310027 Hangzhou P. R. China
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology School of Chemistry University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
100
|
Hansma HG. Potassium at the Origins of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life (Basel) 2022; 12:301. [PMID: 35207588 PMCID: PMC8880093 DOI: 10.3390/life12020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular potassium concentrations, [K+], are high in all types of living cells, but the origins of this K+ are unknown. The simplest hypothesis is that life emerged in an environment that was high in K+. One such environment is the spaces between the sheets of the clay mineral mica. The best mica for life's origins is the black mica, biotite, because it has a high content of Mg++ and because it has iron in various oxidation states. Life also has many of the characteristics of the environment between mica sheets, giving further support for the possibility that mica was the substrate on and within which life emerged. Here, a scenario for life's origins is presented, in which the necessary processes and components for life arise in niches between mica sheets; vesicle membranes encapsulate these processes and components; the resulting vesicles fuse, forming protocells; and eventually, all of the necessary components and processes are encapsulated within individual cells, some of which survive to seed the early Earth with life. This paper presents three new foci for the hypothesis of life's origins between mica sheets: (1) that potassium is essential for life's origins on Earth; (2) that biotite mica has advantages over muscovite mica; and (3) that micaceous clay is a better environment than isolated mica for life's origins.
Collapse
|