51
|
Measuring protein insertion areas in lipid monolayers by fluorescence correlation spectroscopy. Biophys J 2021; 120:1333-1342. [PMID: 33609496 DOI: 10.1016/j.bpj.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
Membrane insertion of protein domains is an important step in many membrane remodeling processes, for example, in vesicular transport. The membrane area taken up by the protein insertion influences the protein binding affinity as well as the mechanical stress induced in the membrane and thereby its curvature. To our knowledge, this is the first optical measurement of this quantity on a system in equilibrium with direct determination of the number of inserted protein and no further assumptions concerning the binding thermodynamics. Whereas macroscopic total area changes in lipid monolayers are typically measured on a Langmuir film balance, finding the number of inserted proteins without perturbing the system and quantitating any small area changes has posed a challenge. Here, we address both issues by performing two-color fluorescence correlation spectroscopy directly on the monolayer. With a fraction of the protein being fluorescently labeled, the number of inserted proteins is determined in situ without resorting to invasive techniques such as collecting the monolayer by aspiration. The second color channel is exploited to monitor a small fraction of labeled lipids to determine the total area increase. Here, we use this method to determine the insertion area per molecule of Sar1, a protein of the COPII complex, which is involved in transport vesicle formation. Sar1 has an N-terminal amphipathic helix, which is responsible for membrane binding and curvature generation. An insertion area of (3.4 ± 0.8) nm2 was obtained for Sar1 in monolayers from a lipid mixture typically used in COPII reconstitution experiments, in good agreement with the expected insertion area of the Sar1 amphipathic helix. By using the two-color approach, determining insertion areas relies only on local fluorescence measurements. No macroscopic area measurements are needed, giving the method the potential to also be applied to laterally heterogeneous monolayers and bilayers.
Collapse
|
52
|
Kaplan M, Nicolas WJ, Zhao W, Carter SD, Metskas LA, Chreifi G, Ghosal D, Jensen GJ. In Situ Imaging and Structure Determination of Biomolecular Complexes Using Electron Cryo-Tomography. Methods Mol Biol 2021; 2215:83-111. [PMID: 33368000 DOI: 10.1007/978-1-0716-0966-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electron cryo-tomography (cryo-ET) is a technique that allows the investigation of intact macromolecular complexes while they are in their cellular milieu. Over the years, cryo-ET has had a huge impact on our understanding of how large biomolecular complexes look like, how they assemble, disassemble, function, and evolve(d). Recent hardware and software developments and combining cryo-ET with other techniques, e.g., focused ion beam milling (FIB-milling) and cryo-light microscopy, has extended the realm of cryo-ET to include transient molecular complexes embedded deep in thick samples (like eukaryotic cells) and enhanced the resolution of structures obtained by cryo-ET. In this chapter, we will present an outline of how to perform cryo-ET studies on a wide variety of biological samples including prokaryotic and eukaryotic cells and biological plant tissues. This outline will include sample preparation, data collection, and data processing as well as hybrid approaches like FIB-milling, cryosectioning, and cryo-correlated light and electron microscopy (cryo-CLEM).
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Wei Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lauren Ann Metskas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Georges Chreifi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
53
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
54
|
Fäßler F, Dimchev G, Hodirnau VV, Wan W, Schur FKM. Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nat Commun 2020; 11:6437. [PMID: 33353942 PMCID: PMC7755917 DOI: 10.1038/s41467-020-20286-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.
Collapse
Affiliation(s)
- Florian Fäßler
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Georgi Dimchev
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | | | - William Wan
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, United States of America
| | - Florian K M Schur
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
55
|
Raote I, Chabanon M, Walani N, Arroyo M, Garcia-Parajo MF, Malhotra V, Campelo F. A physical mechanism of TANGO1-mediated bulky cargo export. eLife 2020; 9:e59426. [PMID: 33169667 PMCID: PMC7704110 DOI: 10.7554/elife.59426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident protein TANGO1 assembles into a ring around ER exit sites (ERES), and links procollagens in the ER lumen to COPII machinery, tethers, and ER-Golgi intermediate compartment (ERGIC) in the cytoplasm (Raote et al., 2018). Here, we present a theoretical approach to investigate the physical mechanisms of TANGO1 ring assembly and how COPII polymerization, membrane tension, and force facilitate the formation of a transport intermediate for procollagen export. Our results indicate that a TANGO1 ring, by acting as a linactant, stabilizes the open neck of a nascent COPII bud. Elongation of such a bud into a transport intermediate commensurate with bulky procollagens is then facilitated by two complementary mechanisms: (i) by relieving membrane tension, possibly by TANGO1-mediated fusion of retrograde ERGIC membranes and (ii) by force application. Altogether, our theoretical approach identifies key biophysical events in TANGO1-driven procollagen export.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Morgan Chabanon
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Politècnica de Catalunya-BarcelonaTechBarcelonaSpain
| | - Nikhil Walani
- Universitat Politècnica de Catalunya-BarcelonaTechBarcelonaSpain
| | - Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTechBarcelonaSpain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- ICREABarcelonaSpain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- ICREABarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
56
|
Abstract
In 1994, a convergence of ideas and collaborative research orchestrated by Randy Schekman led to the discovery of the coat protein complex II (COPII). In this Perspective, the chain of events enabling discovery of a new vesicle coat and progress on understanding COPII budding mechanisms are considered.
Collapse
Affiliation(s)
- Charles Barlowe
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
57
|
Stancheva VG, Li XH, Hutchings J, Gomez-Navarro N, Santhanam B, Babu MM, Zanetti G, Miller EA. Combinatorial multivalent interactions drive cooperative assembly of the COPII coat. J Cell Biol 2020; 219:e202007135. [PMID: 32997735 PMCID: PMC7594496 DOI: 10.1083/jcb.202007135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Protein secretion is initiated at the endoplasmic reticulum by the COPII coat, which self-assembles to form vesicles. Here, we examine the mechanisms by which a cargo-bound inner coat layer recruits and is organized by an outer scaffolding layer to drive local assembly of a stable structure rigid enough to enforce membrane curvature. An intrinsically disordered region in the outer coat protein, Sec31, drives binding with an inner coat layer via multiple distinct interfaces, including a newly defined charge-based interaction. These interfaces combinatorially reinforce each other, suggesting coat oligomerization is driven by the cumulative effects of multivalent interactions. The Sec31 disordered region could be replaced by evolutionarily distant sequences, suggesting plasticity in the binding interfaces. Such a multimodal assembly platform provides an explanation for how cells build a powerful yet transient scaffold to direct vesicle traffic.
Collapse
Affiliation(s)
| | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Joshua Hutchings
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | | | | | | | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | | |
Collapse
|
58
|
Lü Y, Zeng X, Tian X, Shi X, Wang H, Zheng X, Liu X, Zhao X, Gao X, Xu M. Spark-based parallel calculation of 3D fourier shell correlation for macromolecule structure local resolution estimation. BMC Bioinformatics 2020; 21:391. [PMID: 32938398 PMCID: PMC7495889 DOI: 10.1186/s12859-020-03680-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Resolution estimation is the main evaluation criteria for the reconstruction of macromolecular 3D structure in the field of cryoelectron microscopy (cryo-EM). At present, there are many methods to evaluate the 3D resolution for reconstructed macromolecular structures from Single Particle Analysis (SPA) in cryo-EM and subtomogram averaging (SA) in electron cryotomography (cryo-ET). As global methods, they measure the resolution of the structure as a whole, but they are inaccurate in detecting subtle local changes of reconstruction. In order to detect the subtle changes of reconstruction of SPA and SA, a few local resolution methods are proposed. The mainstream local resolution evaluation methods are based on local Fourier shell correlation (FSC), which is computationally intensive. However, the existing resolution evaluation methods are based on multi-threading implementation on a single computer with very poor scalability. Results This paper proposes a new fine-grained 3D array partition method by key-value format in Spark. Our method first converts 3D images to key-value data (K-V). Then the K-V data is used for 3D array partitioning and data exchange in parallel. So Spark-based distributed parallel computing framework can solve the above scalability problem. In this distributed computing framework, all 3D local FSC tasks are simultaneously calculated across multiple nodes in a computer cluster. Through the calculation of experimental data, 3D local resolution evaluation algorithm based on Spark fine-grained 3D array partition has a magnitude change in computing speed compared with the mainstream FSC algorithm under the condition that the accuracy remains unchanged, and has better fault tolerance and scalability. Conclusions In this paper, we proposed a K-V format based fine-grained 3D array partition method in Spark to parallel calculating 3D FSC for getting a 3D local resolution density map. 3D local resolution density map evaluates the three-dimensional density maps reconstructed from single particle analysis and subtomogram averaging. Our proposed method can significantly increase the speed of the 3D local resolution evaluation, which is important for the efficient detection of subtle variations among reconstructed macromolecular structures.
Collapse
Affiliation(s)
- Yongchun Lü
- Institute of Computing Technology of the Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Xiangrui Zeng
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
| | - Xinhui Tian
- Institute of Computing Technology of the Chinese Academy of Sciences, Beijing, China
| | - Xiao Shi
- Institute of Computing Technology of the Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Institute of Computing Technology of the Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Zheng
- Institute of Computing Technology of the Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Liu
- Institute of Computing Technology of the Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Zhao
- Institute of Computing Technology of the Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia
| | - Min Xu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA.
| |
Collapse
|
59
|
Weis F, Hagen WJH. Combining high throughput and high quality for cryo-electron microscopy data collection. Acta Crystallogr D Struct Biol 2020; 76:724-728. [PMID: 32744254 PMCID: PMC7397495 DOI: 10.1107/s2059798320008347] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) can be used to elucidate the 3D structure of macromolecular complexes. Driven by technological breakthroughs in electron-microscope and electron-detector development, coupled with improved image-processing procedures, it is now possible to reach high resolution both in single-particle analysis and in cryo-electron tomography and subtomogram-averaging approaches. As a consequence, the way in which cryo-EM data are collected has changed and new challenges have arisen in terms of microscope alignment, aberration correction and imaging parameters. This review describes how high-end data collection is performed at the EMBL Heidelberg cryo-EM platform, presenting recent microscope implementations that allow an increase in throughput while maintaining aberration-free imaging and the optimization of acquisition parameters to collect high-resolution data.
Collapse
Affiliation(s)
- Felix Weis
- The Cryo-Electron Microscopy Service Platform, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wim J. H. Hagen
- The Cryo-Electron Microscopy Service Platform, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
60
|
Day KJ, Stachowiak JC. Biophysical forces in membrane bending and traffic. Curr Opin Cell Biol 2020; 65:72-77. [PMID: 32229366 PMCID: PMC7529674 DOI: 10.1016/j.ceb.2020.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
Intracellular trafficking requires extensive changes in membrane morphology. Cells use several distinct molecular factors and physical cues to remodel membranes. Here, we highlight recent advances in identifying the biophysical mechanisms of membrane curvature generation. In particular, we focus on the cooperation of molecular and physical drivers of membrane bending during three stages of vesiculation: budding, cargo selection, and scission. Taken together, the studies reviewed here emphasize that, rather than a single dominant mechanism, several mechanisms typically work in parallel during each step of membrane remodeling. Important challenges for the future of this field are to understand how multiple mechanisms work together synergistically and how a series of stochastic events can be combined to achieve a deterministic result-assembly of the trafficking vesicle.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Biomedical Engineering, 107 W. Dean Keeton St., C0800, Austin, TX, 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, 107 W. Dean Keeton St., C0800, Austin, TX, 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Norman Hackerman Building, 100 East 24th St., NHB 4500, Austin, TX, 78712, USA.
| |
Collapse
|
61
|
Sanchez RM, Zhang Y, Chen W, Dietrich L, Kudryashev M. Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging - single particle cryo-EM. Nat Commun 2020; 11:3709. [PMID: 32709843 PMCID: PMC7381653 DOI: 10.1038/s41467-020-17466-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
Cryo-electron tomography combined with subtomogram averaging (StA) has yielded high-resolution structures of macromolecules in their native context. However, high-resolution StA is not commonplace due to beam-induced sample drift, images with poor signal-to-noise ratios (SNR), challenges in CTF correction, and limited particle number. Here we address these issues by collecting tilt series with a higher electron dose at the zero-degree tilt. Particles of interest are then located within reconstructed tomograms, processed by conventional StA, and then re-extracted from the high-dose images in 2D. Single particle analysis tools are then applied to refine the 2D particle alignment and generate a reconstruction. Use of our hybrid StA (hStA) workflow improved the resolution for tobacco mosaic virus from 7.2 to 4.4 Å and for the ion channel RyR1 in crowded native membranes from 12.9 to 9.1 Å. These resolution gains make hStA a promising approach for other StA projects aimed at achieving subnanometer resolution.
Collapse
Affiliation(s)
- Ricardo M Sanchez
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Yingyi Zhang
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Wenbo Chen
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Lea Dietrich
- Department of Structural Biology, Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
| | - Mikhail Kudryashev
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany.
| |
Collapse
|
62
|
Böhning J, Bharat TAM. Towards high-throughput in situ structural biology using electron cryotomography. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:97-103. [PMID: 32579969 DOI: 10.1016/j.pbiomolbio.2020.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 01/11/2023]
Abstract
Electron cryotomography is a rapidly evolving method for imaging macromolecules directly within the native environment of cells and tissues. Combined with sub-tomogram averaging, it allows structural and cell biologists to obtain sub-nanometre resolution structures in situ. However, low throughput in cryo-ET sample preparation and data acquisition, as well as difficulties in target localisation and sub-tomogram averaging image processing, limit its widespread usability. In this review, we discuss new advances in the field that address these throughput and technical problems. We focus on recent efforts made to resolve issues in sample thinning, improvement in data collection speed at the microscope, strategies for localisation of macromolecules using correlated light and electron microscopy and advancements made to improve resolution in sub-tomogram averaging. These advances will considerably decrease the amount of time and effort required for cryo-ET and sub-tomogram averaging, ushering in a new era of structural biology where in situ macromolecular structure determination will be routine.
Collapse
Affiliation(s)
- Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
63
|
Raote I, Ernst AM, Campelo F, Rothman JE, Pincet F, Malhotra V. TANGO1 membrane helices create a lipid diffusion barrier at curved membranes. eLife 2020; 9:57822. [PMID: 32452385 PMCID: PMC7266638 DOI: 10.7554/elife.57822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
We have previously shown TANGO1 organises membranes at the interface of the endoplasmic reticulum (ER) and ERGIC/Golgi (Raote et al., 2018). TANGO1 corrals retrograde membranes at ER exit sites to create an export conduit. Here the retrograde membrane is, in itself, an anterograde carrier. This mode of forward transport necessitates a mechanism to prevent membrane mixing between ER and the retrograde membrane. TANGO1 has an unusual membrane helix organisation, composed of one membrane-spanning helix (TM) and another that penetrates the inner leaflet (IM). We have reconstituted these membrane helices in model membranes and shown that TM and IM together reduce the flow of lipids at a region of defined shape. We have also shown that the helices align TANGO1 around an ER exit site. We suggest this is a mechanism to prevent membrane mixing during TANGO1-mediated transfer of bulky secretory cargos from the ER to the ERGIC/Golgi via a tunnel.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
64
|
Melville DB, Studer S, Schekman R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J Biol Chem 2020; 295:8401-8412. [PMID: 32358066 PMCID: PMC7307210 DOI: 10.1074/jbc.ra120.012964] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Vesicles that are coated by coat protein complex II (COPII) are the primary mediators of vesicular traffic from the endoplasmic reticulum to the Golgi apparatus. Secretion-associated Ras-related GTPase 1 (SAR1) is a small GTPase that is part of COPII and, upon GTP binding, recruits the other COPII proteins to the endoplasmic reticulum membrane. Mammals have two SAR1 paralogs that genetic data suggest may have distinct physiological roles, e.g. in lipoprotein secretion in the case of SAR1B. Here we identified two amino acid clusters that have conserved SAR1 paralog–specific sequences. We observed that one cluster is adjacent to the SAR1 GTP-binding pocket and alters the kinetics of GTP exchange. The other cluster is adjacent to the binding site for two COPII components, SEC31 homolog A COPII coat complex component (SEC31) and SEC23. We found that the latter cluster confers to SAR1B a binding preference for SEC23A that is stronger than that of SAR1A for SEC23A. Unlike SAR1B, SAR1A was prone to oligomerize on a membrane surface. SAR1B knockdown caused loss of lipoprotein secretion, overexpression of SAR1B but not of SAR1A could restore secretion, and a divergent cluster adjacent to the SEC31/SEC23-binding site was critical for this SAR1B function. These results highlight that small primary sequence differences between the two mammalian SAR1 paralogs lead to pronounced biochemical differences that significantly affect COPII assembly and identify a specific function for SAR1B in lipoprotein secretion, providing insights into the mechanisms of large cargo secretion that may be relevant for COPII-related diseases.
Collapse
Affiliation(s)
- David B Melville
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sean Studer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
65
|
Tegunov D, Cramer P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 2019; 16:1146-1152. [PMID: 31591575 PMCID: PMC6858868 DOI: 10.1038/s41592-019-0580-y] [Citation(s) in RCA: 798] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/21/2019] [Indexed: 12/22/2022]
Abstract
The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9 Å to 3.2 Å, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface.
Collapse
Affiliation(s)
- Dimitry Tegunov
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
66
|
Malhotra S, Träger S, Dal Peraro M, Topf M. Modelling structures in cryo-EM maps. Curr Opin Struct Biol 2019; 58:105-114. [PMID: 31394387 DOI: 10.1016/j.sbi.2019.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022]
Abstract
Recent advances in structure determination of sub-cellular structures using cryo-electron microscopy and tomography have enabled us to understand their architecture in a more detailed manner and gain insight into their function. The choice of approach to use for atomic model building, fitting, refinement and validation in the 3D map resulting from these experiments depends primarily on the resolution of the map and the prior information on the corresponding model. Here, we survey some of such methods and approaches and highlight their uses in specific recent examples.
Collapse
Affiliation(s)
- Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Sylvain Träger
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
67
|
Jing J, Wang B, Liu P. The Functional Role of SEC23 in Vesicle Transportation, Autophagy and Cancer. Int J Biol Sci 2019; 15:2419-2426. [PMID: 31595159 PMCID: PMC6775307 DOI: 10.7150/ijbs.37008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
SEC23, the core component of the coat protein complex II (COPII), functions to transport newly synthesized proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus in cells for secretion. SEC23 protein has two isoforms (SEC23A and SEC23B) and their aberrant expression and mutations were reported to cause human diseases and oncogenesis, whereas SEC23A and SEC23B may have the opposite activity in human cancer, for a reason that remains unclear. This review summarizes recent research in SEC23, COPII-vesicle transportation, autophagy, and cancer.
Collapse
Affiliation(s)
- Jingchen Jing
- Center for Translational Medicine, The First Affiliated Hospital, Xi'an Jiaotong University.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital, Xi'an Jiaotong University.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xi'an Jiaotong University.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
68
|
Obr M, Schur FKM. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv Virus Res 2019; 105:117-159. [PMID: 31522703 DOI: 10.1016/bs.aivir.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Florian K M Schur
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| |
Collapse
|
69
|
Rivera-Calzada A, Carroni M. Editorial: Technical Advances in Cryo-Electron Microscopy. Front Mol Biosci 2019; 6:72. [PMID: 31508425 PMCID: PMC6713907 DOI: 10.3389/fmolb.2019.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 11/13/2022] Open
|
70
|
Improved applicability and robustness of fast cryo-electron tomography data acquisition. J Struct Biol 2019; 208:107-114. [PMID: 31425790 PMCID: PMC6839400 DOI: 10.1016/j.jsb.2019.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Tilt series acquisition in less than 5 min per target. Robust compensation of specimen shifts in x, y and z. Applicability to new (single-tilt axis) and old (dual-tilt axis) microscope stages. Sub-nanometer subtomogram average with data collected in <50 min.
The power of cryo-electron tomography (cryoET) lies in its capability to characterize macromolecules in their cellular context. Structure determination by cryoET, however, is time-consuming compared to single particle approaches. A recent study reported significant acceleration of data acquisition by a fast-incremental single-exposure (FISE) tilt series scheme. Here we improved the method and evaluated its efficiency and performance. We show that (1) FISE combined with the latest generation of direct electron detectors speeds up collection considerably, (2) previous generation (pre-2017) double-tilt axis Titan Krios holders are also suitable for FISE data acquisition, (3) x, y and z-specimen shifts can be compensated for, and (4) FISE tilt series data can generate averages of sub-nanometer resolution. These advances will allow for a widespread adoption of cryoET for high-throughput in situ studies and high-resolution structure determination across different biological research disciplines.
Collapse
|
71
|
Abstract
Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
72
|
Peotter J, Kasberg W, Pustova I, Audhya A. COPII-mediated trafficking at the ER/ERGIC interface. Traffic 2019; 20:491-503. [PMID: 31059169 PMCID: PMC6640837 DOI: 10.1111/tra.12654] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
Coat proteins play multiple roles in the life cycle of a membrane-bound transport intermediate, functioning in lipid bilayer remodeling, cargo selection and targeting to an acceptor compartment. The Coat Protein complex II (COPII) coat is known to act in each of these capacities, but recent work highlights the necessity for numerous accessory factors at all stages of transport carrier existence. Here, we review recent findings that highlight the roles of COPII and its regulators in the biogenesis of tubular COPII-coated carriers in mammalian cells that enable cargo transport between the endoplasmic reticulum and ER-Golgi intermediate compartments, the first step in a series of trafficking events that ultimately allows for the distribution of biosynthetic secretory cargoes throughout the entire endomembrane system.
Collapse
Affiliation(s)
- Jennifer Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
73
|
Castaño-Díez D, Zanetti G. In situ structure determination by subtomogram averaging. Curr Opin Struct Biol 2019; 58:68-75. [PMID: 31233977 DOI: 10.1016/j.sbi.2019.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 02/02/2023]
Abstract
Cryo-tomography and subtomogram averaging are increasingly popular techniques for structural determination of macromolecular complexes in situ. They have the potential to achieve high-resolution views of native complexes, together with the details of their location relative to interacting molecules. The subtomogram averaging (StA) pipelines are well-established, with current developments aiming to optimise each step by reducing manual intervention and user decisions, following similar trends in single-particle approaches that have dramatically increased their popularity. Here, we review the main steps of typical StA workflows. We focus on considerations arising from the fact that the objects of study are embedded within unique crowded environments, and we emphasise those steps where careful decisions need to be made by the user.
Collapse
Affiliation(s)
- Daniel Castaño-Díez
- BioEM Lab, Center for Cellular Imaging and Nanoanalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, Malet St., London, WC1E 7HX, UK.
| |
Collapse
|
74
|
Coat flexibility in the secretory pathway: a role in transport of bulky cargoes. Curr Opin Cell Biol 2019; 59:104-111. [PMID: 31125831 PMCID: PMC7116127 DOI: 10.1016/j.ceb.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023]
Abstract
Membrane trafficking in eukaryotic cells is a highly dynamic process, which needs to adapt to a variety of cargo proteins. The COPII coat mediates ER export of thousands of proteins with a wide range of sizes by generating coated membrane vesicles that incapsulate cargo. The process of assembly and disassembly of COPII, regulated by GTP hydrolysis, is a major determinant of the size and shape of transport carriers. Here, we analyse our knowledge of the COPII coat architecture and it assembly/disassembly dynamics, and link coat flexibility to the role of COPII in transport of large cargoes. We propose a common mechanism of action of regulatory factors that modulate COPII GTP hydrolysis cycle to promote budding.
Collapse
|
75
|
Abstract
Cryo-electron tomography (cryo-ET) allows three-dimensional (3D) visualization of frozen-hydrated biological samples, such as protein complexes and cell organelles, in near-native environments at nanometer scale. Protein complexes that are present in multiple copies in a set of tomograms can be extracted, mutually aligned, and averaged to yield a signal-enhanced 3D structure up to sub-nanometer or even near-atomic resolution. This technique, called subtomogram averaging (StA), is powered by improvements in EM hardware and image processing software. Importantly, StA provides unique biological insights into the structure and function of cellular machinery in close-to-native contexts. In this chapter, we describe the principles and key steps of StA. We briefly cover sample preparation and data collection with an emphasis on image processing procedures related to tomographic reconstruction, subtomogram alignment, averaging, and classification. We conclude by summarizing current limitations and future directions of this technique with a focus on high-resolution StA.
Collapse
|
76
|
Danev R, Yanagisawa H, Kikkawa M. Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. Trends Biochem Sci 2019; 44:837-848. [PMID: 31078399 DOI: 10.1016/j.tibs.2019.04.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023]
Abstract
Cryo-electron microscopy (cryo-EM) has emerged as a powerful structure determination technique. Its most prolific branch is single particle analysis (SPA), a method being used in a growing number of laboratories worldwide to determine high-resolution protein structures. Cryo-electron tomography (cryo-ET) is another powerful approach that enables visualization of protein complexes in their native cellular environment. Despite the wide-ranging success of cryo-EM, there are many methodological aspects that could be improved. Those include sample preparation, sample screening, data acquisition, image processing, and structure validation. Future developments will increase the reliability and throughput of the technique and reduce the cost and skill level barrier for its adoption.
Collapse
Affiliation(s)
- Radostin Danev
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Haruaki Yanagisawa
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
77
|
Markova EA, Zanetti G. Visualizing membrane trafficking through the electron microscope: cryo-tomography of coat complexes. Acta Crystallogr D Struct Biol 2019; 75:467-474. [PMID: 31063149 PMCID: PMC6503763 DOI: 10.1107/s2059798319005011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022] Open
Abstract
Coat proteins mediate vesicular transport between intracellular compartments, which is essential for the distribution of molecules within the eukaryotic cell. The global arrangement of coat proteins on the membrane is key to their function, and cryo-electron tomography and subtomogram averaging have been used to study membrane-bound coat proteins, providing crucial structural insight. This review outlines a workflow for the structural elucidation of coat proteins, incorporating recent developments in the collection and processing of cryo-electron tomography data. Recent work on coat protein I, coat protein II and retromer performed on in vitro reconstitutions or in situ is summarized. These studies have answered long-standing questions regarding the mechanisms of membrane binding, polymerization and assembly regulation of coat proteins.
Collapse
Affiliation(s)
- Evgenia A. Markova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
78
|
Schur FK. Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging. Curr Opin Struct Biol 2019; 58:1-9. [PMID: 31005754 DOI: 10.1016/j.sbi.2019.03.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023]
Abstract
Cryo-electron tomography (cryo-ET) provides unprecedented insights into the molecular constituents of biological environments. In combination with an image processing method called subtomogram averaging (STA), detailed 3D structures of biological molecules can be obtained in large, irregular macromolecular assemblies or in situ, without the need for purification. The contextual meta-information these methods also provide, such as a protein's location within its native environment, can then be combined with functional data. This allows the derivation of a detailed view on the physiological or pathological roles of proteins from the molecular to cellular level. Despite their tremendous potential in in situ structural biology, cryo-ET and STA have been restricted by methodological limitations, such as the low obtainable resolution. Exciting progress now allows one to reach unprecedented resolutions in situ, ranging in optimal cases beyond the nanometer barrier. Here, I review current frontiers and future challenges in routinely determining high-resolution structures in in situ environments using cryo-ET and STA.
Collapse
Affiliation(s)
- Florian Km Schur
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
79
|
Weber MS, Wojtynek M, Medalia O. Cellular and Structural Studies of Eukaryotic Cells by Cryo-Electron Tomography. Cells 2019; 8:E57. [PMID: 30654455 PMCID: PMC6356268 DOI: 10.3390/cells8010057] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/23/2022] Open
Abstract
The architecture of protein assemblies and their remodeling during physiological processes is fundamental to cells. Therefore, providing high-resolution snapshots of macromolecular complexes in their native environment is of major importance for understanding the molecular biology of the cell. Cellular structural biology by means of cryo-electron tomography (cryo-ET) offers unique insights into cellular processes at an unprecedented resolution. Recent technological advances have enabled the detection of single impinging electrons and improved the contrast of electron microscopic imaging, thereby significantly increasing the sensitivity and resolution. Moreover, various sample preparation approaches have paved the way to observe every part of a eukaryotic cell, and even multicellular specimens, under the electron beam. Imaging of macromolecular machineries at high resolution directly within their native environment is thereby becoming reality. In this review, we discuss several sample preparation and labeling techniques that allow the visualization and identification of macromolecular assemblies in situ, and demonstrate how these methods have been used to study eukaryotic cellular landscapes.
Collapse
Affiliation(s)
- Miriam Sarah Weber
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
| | - Matthias Wojtynek
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ohad Medalia
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84120, Israel.
| |
Collapse
|