51
|
Gong Y, Liu Y. R-Loops at Chromosome Ends: From Formation, Regulation, and Cellular Consequence. Cancers (Basel) 2023; 15:cancers15072178. [PMID: 37046839 PMCID: PMC10093737 DOI: 10.3390/cancers15072178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Telomeric repeat containing RNA (TERRA) is transcribed from subtelomeric regions to telomeres. TERRA RNA can invade telomeric dsDNA and form telomeric R-loop structures. A growing body of evidence suggests that TERRA-mediated R-loops are critical players in telomere length homeostasis. Here, we will review current knowledge on the regulation of R-loop levels at telomeres. In particular, we will discuss how the central player TERRA and its binding proteins modulate R-loop levels through various mechanisms. We will further provide an overview of the consequences of TERRA-mediated persistent or unscheduled R-loops at telomeres in human ALT cancers and other organisms, with a focus on telomere length regulation after replication interference-induced damage and DNA homologous recombination-mediated repair.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
52
|
Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 2023; 5:zcad013. [PMID: 37600974 PMCID: PMC9984992 DOI: 10.1093/narcan/zcad013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
53
|
Wu K, Zhang Y, Liu Y, Li Q, Chen Y, Chen J, Duan C. Phosphorylation of UHRF2 affects malignant phenotypes of HCC and HBV replication by blocking DHX9 ubiquitylation. Cell Death Dis 2023; 9:27. [PMID: 36690646 PMCID: PMC9871042 DOI: 10.1038/s41420-023-01323-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Hepatitis B virus (HBV) infection is one of main contributors to poor prognosis and rapid progression of hepatocellular cancer (HCC). We previously identified the important role of the phosphorylation of ubiquitin-like with PHD and ring finger domains (UHRF2) in HBV-associated HCC. In this study we identify upregulated UHRF2 protein levels in HBV-associated HCC cells and tissues. UHRF2 overexpression promotes the viability, proliferation, migration and invasiveness of HBV-positive HCC cell lines, and enhances HBV DNA replication. To obtain a comprehensive understanding of the interaction networks of UHRF2 and their underlying mechanism, this study suggests that UHRF2 facilitates the ubiquitin-proteasome-mediated proteolysis of DExD/H (Asp-Glu-Ala-His) -box helicase enzyme 9 (DHX9). However, phosphorylation of UHRF2 by HBx at S643 inhibits E3 ubiquitin ligase activity of UHRF2 and improves DHX9 protein stability. Furthermore, results suggest that HBx promotes phosphorylation of UHRF2 by the ETS1-CDK2 axis through the downregulation of miR-222-3p in HBV-associated HCC specimens and cells. Our findings suggest that HBx-induced phosphorylation of UHRF2 S643 acts as a "switch" in HBV-associated HCC oncogenesis, activating the positive feedback between phosphorylated UHRF2 and HBV, provide evidence that UHRF2 is a new regulator and a potential prognostic indicator of poor prognosis for HBV-associated HCC.
Collapse
Affiliation(s)
- Kejia Wu
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| | - Yiqi Zhang
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| | - Yuxin Liu
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| | - Qingxiu Li
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| | - Yong Chen
- grid.203458.80000 0000 8653 0555Department of Hepatobillary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 China
| | - Juan Chen
- grid.412461.40000 0004 9334 6536Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 China
| | - Changzhu Duan
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
54
|
Z-DNA and Z-RNA: Methods-Past and Future. Methods Mol Biol 2023; 2651:295-329. [PMID: 36892776 DOI: 10.1007/978-1-0716-3084-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A quote attributed to Yogi Berra makes the observation that "It's tough to make predictions, especially about the future," highlighting the difficulties posed to an author writing a manuscript like the present. The history of Z-DNA shows that earlier postulates about its biology have failed the test of time, both those from proponents who were wildly enthusiastic in enunciating roles that till this day still remain elusive to experimental validation and those from skeptics within the larger community who considered the field a folly, presumably because of the limitations in the methods available at that time. If anything, the biological roles we now know for Z-DNA and Z-RNA were not anticipated by anyone, even when those early predictions are interpreted in the most favorable way possible. The breakthroughs in the field were made using a combination of methods, especially those based on human and mouse genetic approaches informed by the biochemical and biophysical characterization of the Zα family of proteins. The first success was with the p150 Zα isoform of ADAR1 (adenosine deaminase RNA specific), with insights into the functions of ZBP1 (Z-DNA-binding protein 1) following soon after from the cell death community. Just as the replacement of mechanical clocks by more accurate designs changed expectations about navigation, the discovery of the roles assigned by nature to alternative conformations like Z-DNA has forever altered our view of how the genome operates. These recent advances have been driven by better methodology and by better analytical approaches. This article will briefly describe the methods that were key to these discoveries and highlight areas where new method development is likely to further advance our knowledge.
Collapse
|
55
|
Boleslavska B, Oravetzova A, Shukla K, Nascakova Z, Ibini O, Hasanova Z, Andrs M, Kanagaraj R, Dobrovolna J, Janscak P. DDX17 helicase promotes resolution of R-loop-mediated transcription-replication conflicts in human cells. Nucleic Acids Res 2022; 50:12274-12290. [PMID: 36453994 PMCID: PMC9757067 DOI: 10.1093/nar/gkac1116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex. However, how R-loops are eliminated to allow the sequential restart of transcription and replication in this pathway remains elusive. Here, we identified the human DDX17 helicase as a factor that associates with R-loops and counteracts R-loop-mediated replication stress to preserve genome stability. We show that DDX17 unwinds R-loops in vitro and promotes MUS81-dependent restart of R-loop-stalled forks in human cells in a manner dependent on its helicase activity. Loss of DDX17 helicase induces accumulation of R-loops and the formation of R-loop-dependent anaphase bridges and micronuclei. These findings establish DDX17 as a component of the MUS81-LIG4-ELL pathway for resolution of R-loop-mediated transcription-replication conflicts, which may be involved in R-loop unwinding.
Collapse
Affiliation(s)
- Barbora Boleslavska
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic,Faculty of Science, Charles University in Prague, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Anna Oravetzova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic,Faculty of Science, Charles University in Prague, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Kaustubh Shukla
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Zuzana Nascakova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | - Zdenka Hasanova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martin Andrs
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radhakrishnan Kanagaraj
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK,School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK,Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Jana Dobrovolna
- Correspondence may also be addressed to Jana Dobrovolna. Tel: +420 241063127;
| | - Pavel Janscak
- To whom correspondence should be addressed. Tel: +41 44 6353470;
| |
Collapse
|
56
|
Zhou J, Zhang W, Sun Q. R-loop: The new genome regulatory element in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2275-2289. [PMID: 36223078 DOI: 10.1111/jipb.13383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
An R-loop is a three-stranded chromatin structure that consists of a displaced single strand of DNA and an RNA:DNA hybrid duplex, which was thought to be a rare by-product of transcription. However, recent genome-wide data have shown that R-loops are widespread and pervasive in a variety of genomes, and a growing body of experimental evidence indicates that R-loops have both beneficial and harmful effects on an organism. To maximize benefit and avoid harm, organisms have evolved several means by which they tightly regulate R-loop levels. Here, we summarize our current understanding of the biogenesis and effects of R-loops, the mechanisms that regulate them, and methods of R-loop profiling, reviewing recent research advances on R-loops in plants. Furthermore, we provide perspectives on future research directions for R-loop biology in plants, which might lead to a more comprehensive understanding of R-loop functions in plant genome regulation and contribute to future agricultural improvements.
Collapse
Affiliation(s)
- Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
57
|
Pongor LS, Tlemsani C, Elloumi F, Arakawa Y, Jo U, Gross JM, Mosavarpour S, Varma S, Kollipara RK, Roper N, Teicher BA, Aladjem MI, Reinhold W, Thomas A, Minna JD, Johnson JE, Pommier Y. Integrative epigenomic analyses of small cell lung cancer cells demonstrates the clinical translational relevance of gene body methylation. iScience 2022; 25:105338. [DOI: 10.1016/j.isci.2022.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022] Open
|
58
|
Tu J, Yu S, Li J, Ren M, Zhang Y, Luo J, Sun K, Lv Y, Han Y, Huang Y, Ren X, Jiang T, Tang Z, Williams MTS, Lu Q, Liu M. Dhx38 is required for the maintenance and differentiation of erythro-myeloid progenitors and hematopoietic stem cells by alternative splicing. Development 2022; 149:276218. [DOI: 10.1242/dev.200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mutations that occur in RNA-splicing machinery may contribute to hematopoiesis-related diseases. How splicing factor mutations perturb hematopoiesis, especially in the differentiation of erythro-myeloid progenitors (EMPs), remains elusive. Dhx38 is a pre-mRNA splicing-related DEAH box RNA helicase, for which the physiological functions and splicing mechanisms during hematopoiesis currently remain unclear. Here, we report that Dhx38 exerts a broad effect on definitive EMPs as well as the differentiation and maintenance of hematopoietic stem and progenitor cells (HSPCs). In dhx38 knockout zebrafish, EMPs and HSPCs were found to be arrested in mitotic prometaphase, accompanied by a ‘grape’ karyotype, owing to the defects in chromosome alignment. Abnormal alternatively spliced genes related to chromosome segregation, the microtubule cytoskeleton, cell cycle kinases and DNA damage were present in the dhx38 mutants. Subsequently, EMPs and HSPCs in dhx38 mutants underwent P53-dependent apoptosis. This study provides novel insights into alternative splicing regulated by Dhx38, a process that plays a crucial role in the proliferation and differentiation of fetal EMPs and HSPCs.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology 2 , Wuhan, Hubei 430065 , P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mengmeng Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yangjun Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 3 , Wuhan 430030 , P.R. China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mark Thomas Shaw Williams
- Charles Oakley Laboratories 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
- Glasgow Caledonian University 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| |
Collapse
|
59
|
Kok V, Tang JY, Eng G, Tan SY, Chin J, Quek C, Lai WX, Lim TK, Lin Q, Chua J, Cheong J. SFPQ promotes RAS-mutant cancer cell growth by modulating 5'-UTR mediated translational control of CK1α. NAR Cancer 2022; 4:zcac027. [PMID: 36177382 PMCID: PMC9513841 DOI: 10.1093/narcan/zcac027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Oncogenic mutations in the RAS family of small GTPases are commonly found in human cancers and they promote tumorigenesis by altering gene expression networks. We previously demonstrated that Casein Kinase 1α (CK1α), a member of the CK1 family of serine/threonine kinases, is post-transcriptionally upregulated by oncogenic RAS signaling. Here, we report that the CK1α mRNA contains an exceptionally long 5'-untranslated region (UTR) harbouring several translational control elements, implicating its involvement in translational regulation. We demonstrate that the CK1α 5'-UTR functions as an IRES element in HCT-116 colon cancer cells to promote cap-independent translation. Using tobramycin-affinity RNA-pulldown assays coupled with identification via mass spectrometry, we identified several CK1α 5'-UTR-binding proteins, including SFPQ. We show that RNA interference targeting SFPQ reduced CK1α protein abundance and partially blocked RAS-mutant colon cancer cell growth. Importantly, transcript and protein levels of SFPQ and other CK1α 5'-UTR-associated RNA-binding proteins (RBPs) are found to be elevated in early stages of RAS-mutant cancers, including colorectal and lung adenocarcinoma. Taken together, our study uncovers a previously unappreciated role of RBPs in promoting RAS-mutant cancer cell growth and their potential to serve as promising biomarkers as well as tractable therapeutic targets in cancers driven by oncogenic RAS.
Collapse
Affiliation(s)
- Venetia Jing Tong Kok
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Jia Ying Tang
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Gracie Wee Ling Eng
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Shin Yi Tan
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Joseph Tin Foong Chin
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Chun Hian Quek
- School of Applied Science, Temasek Polytechnic, Singapore
| | - Wei Xuan Lai
- Department of Physiology, YLLSoM, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, YLLSoM, National University of Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, YLLSoM, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore
- Department of Biochemistry, YLLSoM, National University of Singapore, Singapore
| |
Collapse
|
60
|
Bruno T, Corleone G, Catena V, Cortile C, De Nicola F, Fabretti F, Gumenyuk S, Pisani F, Mengarelli A, Passananti C, Fanciulli M. AATF/Che-1 localizes to paraspeckles and suppresses R-loops accumulation and interferon activation in Multiple Myeloma. EMBO J 2022; 41:e109711. [PMID: 35929179 PMCID: PMC9670196 DOI: 10.15252/embj.2021109711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 01/13/2023] Open
Abstract
Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.
Collapse
Affiliation(s)
- Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Clelia Cortile
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany,Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Svitlana Gumenyuk
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Francesco Pisani
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Andrea Mengarelli
- Hematology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Claudio Passananti
- Department of Molecular Medicine, CNR‐Institute of Molecular Biology and PathologySapienza University of RomeRomeItaly
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research AreaIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
61
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
62
|
Saha S, Yang X, Huang SYN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM, Wang W, Pommier Y. Resolution of R-loops by topoisomerase III-β (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 2022; 40:111067. [PMID: 35830799 PMCID: PMC10575568 DOI: 10.1016/j.celrep.2022.111067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The present study demonstrates how TOP3B is involved in resolving R-loops. We observed elevated R-loops in TOP3B knockout cells (TOP3BKO), which are suppressed by TOP3B transfection. R-loop-inducing agents, the topoisomerase I inhibitor camptothecin, and the splicing inhibitor pladienolide-B also induce higher R-loops in TOP3BKO cells. Camptothecin- and pladienolide-B-induced R-loops are concurrent with the induction of TOP3B cleavage complexes (TOP3Bccs). RNA/DNA hybrid IP-western blotting show that TOP3B is physically associated with R-loops. Biochemical assays using recombinant TOP3B and oligonucleotides mimicking R-loops show that TOP3B cleaves the single-stranded DNA displaced by the R-loop RNA-DNA duplex. IP-mass spectrometry and IP-western experiments reveal that TOP3B interacts with the R-loop helicase DDX5 independently of TDRD3. Finally, we demonstrate that DDX5 and TOP3B are epistatic in resolving R-loops in a pathway parallel with senataxin. We propose a decatenation model for R-loop resolution by TOP3B-DDX5 protecting cells from R-loop-induced damage.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
63
|
Wang Y, Ma B, Liu X, Gao G, Che Z, Fan M, Meng S, Zhao X, Sugimura R, Cao H, Zhou Z, Xie J, Lin C, Luo Z. ZFP281-BRCA2 prevents R-loop accumulation during DNA replication. Nat Commun 2022; 13:3493. [PMID: 35715464 PMCID: PMC9205938 DOI: 10.1038/s41467-022-31211-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
R-loops are prevalent in mammalian genomes and involved in many fundamental cellular processes. Depletion of BRCA2 leads to aberrant R-loop accumulation, contributing to genome instability. Here, we show that ZFP281 cooperates with BRCA2 in preventing R-loop accumulation to facilitate DNA replication in embryonic stem cells. ZFP281 depletion reduces PCNA levels on chromatin and impairs DNA replication. Mechanistically, we demonstrate that ZFP281 can interact with BRCA2, and that BRCA2 is enriched at G/C-rich promoters and requires both ZFP281 and PRC2 for its proper recruitment to the bivalent chromatin at the genome-wide scale. Furthermore, depletion of ZFP281 or BRCA2 leads to accumulation of R-loops over the bivalent regions, and compromises activation of the developmental genes by retinoic acid during stem cell differentiation. In summary, our results reveal that ZFP281 recruits BRCA2 to the bivalent chromatin regions to ensure proper progression of DNA replication through preventing persistent R-loops. R-loops are prevalent in mammalian genomes and involved in many fundamental cellular processes. Here, Wang et al. report that ZFP281 cooperates with BRCA2 in preventing R-loop accumulation to facilitate DNA replication in embryonic stem cells.
Collapse
Affiliation(s)
- Yan Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Binbin Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaoxu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ge Gao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, 999077, China
| | - Zhuanzhuan Che
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Menghan Fan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Siyan Meng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Xiru Zhao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Rio Sugimura
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, 999077, China
| | - Hua Cao
- Key Laboratory of Technical Evaluation of Fertility Regulation of Non-human primate, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, 999077, China
| | - Jing Xie
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chengqi Lin
- Key Laboratory of Technical Evaluation of Fertility Regulation of Non-human primate, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China. .,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China. .,Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Nanshan District, Shenzhen, 518063, China.
| | - Zhuojuan Luo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China. .,Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Nanshan District, Shenzhen, 518063, China.
| |
Collapse
|
64
|
Cuartas J, Gangwani L. R-loop Mediated DNA Damage and Impaired DNA Repair in Spinal Muscular Atrophy. Front Cell Neurosci 2022; 16:826608. [PMID: 35783101 PMCID: PMC9243258 DOI: 10.3389/fncel.2022.826608] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Defects in DNA repair pathways are a major cause of DNA damage accumulation leading to genomic instability and neurodegeneration. Efficient DNA damage repair is critical to maintain genomicstability and support cell function and viability. DNA damage results in the activation of cell death pathways, causing neuronal death in an expanding spectrum of neurological disorders, such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), Alzheimer’s disease (AD), and spinal muscular atrophy (SMA). SMA is a neurodegenerative disorder caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. SMA is characterized by the degeneration of spinal cord motor neurons due to low levels of the SMN protein. The molecular mechanism of selective motor neuron degeneration in SMA was unclear for about 20 years. However, several studies have identified biochemical and molecular mechanisms that may contribute to the predominant degeneration of motor neurons in SMA, including the RhoA/ROCK, the c-Jun NH2-terminal kinase (JNK), and p53-mediated pathways, which are involved in mediating DNA damage-dependent cell death. Recent studies provided insight into selective degeneration of motor neurons, which might be caused by accumulation of R-loop-mediated DNA damage and impaired non-homologous end joining (NHEJ) DNA repair pathway leading to genomic instability. Here, we review the latest findings involving R-loop-mediated DNA damage and defects in neuron-specific DNA repair mechanisms in SMA and discuss these findings in the context of other neurodegenerative disorders linked to DNA damage.
Collapse
Affiliation(s)
- Juliana Cuartas
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- *Correspondence: Laxman Gangwani
| |
Collapse
|
65
|
Network assisted analysis of de novo variants using protein-protein interaction information identified 46 candidate genes for congenital heart disease. PLoS Genet 2022; 18:e1010252. [PMID: 35671298 PMCID: PMC9205499 DOI: 10.1371/journal.pgen.1010252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
De novo variants (DNVs) with deleterious effects have proved informative in identifying risk genes for early-onset diseases such as congenital heart disease (CHD). A number of statistical methods have been proposed for family-based studies or case/control studies to identify risk genes by screening genes with more DNVs than expected by chance in Whole Exome Sequencing (WES) studies. However, the statistical power is still limited for cohorts with thousands of subjects. Under the hypothesis that connected genes in protein-protein interaction (PPI) networks are more likely to share similar disease association status, we developed a Markov Random Field model that can leverage information from publicly available PPI databases to increase power in identifying risk genes. We identified 46 candidate genes with at least 1 DNV in the CHD study cohort, including 18 known human CHD genes and 35 highly expressed genes in mouse developing heart. Our results may shed new insight on the shared protein functionality among risk genes for CHD. The topologic information in a pathway may be informative to identify functionally interrelated genes and help improve statistical power in DNV studies. Under the hypothesis that connected genes in PPI networks are more likely to share similar disease association status, we developed a novel statistical model that can leverage information from publicly available PPI databases. Through simulation studies under multiple settings, we proved our method can increase statistical power in identifying additional risk genes compared to methods without using the PPI network information. We then applied our method to a real example for CHD DNV data, and then visualized the subnetwork of candidate genes to find potential functional gene clusters for CHD.
Collapse
|
66
|
Wang C, Xu Q, Zhang X, Day DS, Abraham BJ, Lun K, Chen L, Huang J, Ji X. BRD2 interconnects with BRD3 to facilitate Pol II transcription initiation and elongation to prime promoters for cell differentiation. Cell Mol Life Sci 2022; 79:338. [PMID: 35665862 PMCID: PMC11072765 DOI: 10.1007/s00018-022-04349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022]
Abstract
The bromodomain and extraterminal motif (BET) proteins are critical drug targets for diseases. The precise functions and relationship of BRD2 with other BET proteins remain elusive mechanistically. Here, we used acute protein degradation and quantitative genomic and proteomic approaches to investigate the primary functions of BRD2 in transcription. We report that BRD2 is required for TAF3-mediated Pol II initiation at promoters with low levels of H3K4me3 and for R-loop suppression during Pol II elongation. Single and double depletion revealed that BRD2 and BRD3 function additively, independently, or perhaps antagonistically in Pol II transcription at different promoters. Furthermore, we found that BRD2 regulates the expression of different genes during embryonic body differentiation processes by promoter priming in embryonic stem cells. Therefore, our results suggest complex interconnections between BRD2 and BRD3 at promoters to fine-tune Pol II initiation and elongation for control of cell state.
Collapse
Affiliation(s)
- Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qiqin Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xianhong Zhang
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Daniel S Day
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kehuan Lun
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
67
|
Dang TT, Lerner M, Saunders D, Smith N, Gulej R, Zalles M, Towner RA, Morales JC. XRN2 Is Required for Cell Motility and Invasion in Glioblastomas. Cells 2022; 11:1481. [PMID: 35563787 PMCID: PMC9100175 DOI: 10.3390/cells11091481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
One of the major obstacles in treating brain cancers, particularly glioblastoma multiforme, is the occurrence of secondary tumor lesions that arise in areas of the brain and are inoperable while obtaining resistance to current therapeutic agents. Thus, gaining a better understanding of the cellular factors that regulate glioblastoma multiforme cellular movement is imperative. In our study, we demonstrate that the 5'-3' exoribonuclease XRN2 is important to the invasive nature of glioblastoma. A loss of XRN2 decreases cellular speed, displacement, and movement through a matrix of established glioblastoma multiforme cell lines. Additionally, a loss of XRN2 abolishes tumor formation in orthotopic mouse xenograft implanted with G55 glioblastoma multiforme cells. One reason for these observations is that loss of XRN2 disrupts the expression profile of several cellular factors that are important for tumor invasion in glioblastoma multiforme cells. Importantly, XRN2 mRNA and protein levels are elevated in glioblastoma multiforme patient samples. Elevation in XRN2 mRNA also correlates with poor overall patient survival. These data demonstrate that XRN2 is an important cellular factor regulating one of the major obstacles in treating glioblastomas and is a potential molecular target that can greatly enhance patient survival.
Collapse
Affiliation(s)
- Tuyen T. Dang
- Department of Neurosurgery, Sttephenson Cancer Center University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| | - Megan Lerner
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| | - Debra Saunders
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Nataliya Smith
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Rafal Gulej
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Michelle Zalles
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Rheal A. Towner
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Julio C. Morales
- Department of Neurosurgery, Sttephenson Cancer Center University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
68
|
Miller HE, Ilieva M, Bishop AJR, Uchida S. Current Status of Epitranscriptomic Marks Affecting lncRNA Structures and Functions. Noncoding RNA 2022; 8:ncrna8020023. [PMID: 35447886 PMCID: PMC9025719 DOI: 10.3390/ncrna8020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) belong to a class of non-protein-coding RNAs with their lengths longer than 200 nucleotides. Most of the mammalian genome is transcribed as RNA, yet only a small percent of the transcribed RNA corresponds to exons of protein-coding genes. Thus, the number of lncRNAs is predicted to be several times higher than that of protein-coding genes. Because of sheer number of lncRNAs, it is often difficult to elucidate the functions of all lncRNAs, especially those arising from their relationship to their binding partners, such as DNA, RNA, and proteins. Due to their binding to other macromolecules, it has become evident that the structures of lncRNAs influence their functions. In this regard, the recent development of epitranscriptomics (the field of study to investigate RNA modifications) has become important to further elucidate the structures and functions of lncRNAs. In this review, the current status of lncRNA structures and functions influenced by epitranscriptomic marks is discussed.
Collapse
Affiliation(s)
- Henry E. Miller
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; (H.E.M.); (A.J.R.B.)
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Bioinformatics Research Network, Atlanta, GA 30317, USA
| | - Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark;
| | - Alexander J. R. Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; (H.E.M.); (A.J.R.B.)
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- May’s Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark;
- Correspondence: or
| |
Collapse
|
69
|
Palombo R, Paronetto MP. pncCCND1_B Engages an Inhibitory Protein Network to Downregulate CCND1 Expression upon DNA Damage. Cancers (Basel) 2022; 14:cancers14061537. [PMID: 35326688 PMCID: PMC8946712 DOI: 10.3390/cancers14061537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Promoter-associated noncoding RNAs (pancRNAs) represent a class of noncoding transcripts driven from the promoter region of protein-coding or non-coding genes that operate as cis-acting elements to regulate the expression of the host gene. PancRNAs act by altering the chromatin structure and recruiting transcription regulators. PncCCND1_B is driven by the promoter region of CCND1 and regulates CCND1 expression in Ewing sarcoma through recruitment of a multi-molecular complex composed of the RNA binding protein Sam68 and the DNA/RNA helicase DHX9. In this study, we investigated the regulation of CCND1 expression in Ewing sarcoma cells upon exposure to chemotherapeutic drugs. Pan-inhibitor screening indicated that etoposide, a drug used for Ewing sarcoma treatment, promotes transcription of pncCCND1_B and repression of CCND1 expression. RNA immunoprecipitation experiments showed increased binding of Sam68 to the pncCCND1_B after treatment, despite the significant reduction in DHX9 protein. This effect was associated with the formation of DNA:RNA duplexes at the CCND1 promoter. Furthermore, Sam68 interacted with HDAC1 in etoposide treated cells, thus contributing to chromatin remodeling and epigenetic changes. Interestingly, inhibition of the ATM signaling pathway by KU 55,933 treatment was sufficient to inhibit etoposide-induced Sam68-HDAC1 interaction without rescuing DHX9 expression. In these conditions, the DNA:RNA hybrids persist, thus contributing to the local chromatin inactivation at the CCND1 promoter region. Altogether, our results show an active role of Sam68 in DNA damage signaling and chromatin remodeling on the CCND1 gene by fine-tuning transitions of epigenetic complexes on the CCND1 promoter.
Collapse
Affiliation(s)
- Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
70
|
Xie J, Wen M, Zhang J, Wang Z, Wang M, Qiu Y, Zhao W, Zhu F, Yao M, Rong Z, Hu W, Pei Q, Sun X, Li J, Mao Z, Sun LQ, Tan R. The Roles of RNA Helicases in DNA Damage Repair and Tumorigenesis Reveal Precision Therapeutic Strategies. Cancer Res 2022; 82:872-884. [PMID: 34987058 DOI: 10.1158/0008-5472.can-21-2187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/04/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
UNLABELLED DEAD-box RNA helicases belong to a large group of RNA-processing factors and play vital roles unwinding RNA helices and in ribosomal RNA biogenesis. Emerging evidence indicates that RNA helicases are associated with genome stability, yet the mechanisms behind this association remain poorly understood. In this study, we performed a comprehensive analysis of RNA helicases using multiplatform proteogenomic databases. More than 50% (28/49) of detected RNA helicases were highly expressed in multiple tumor tissues, and more than 60% (17/28) of tumor-associated members were directly involved in DNA damage repair (DDR). Analysis of repair dynamics revealed that these RNA helicases are engaged in an extensively broad range of DDR pathways. Among these factors is DDX21, which was prominently upregulated in colorectal cancer. The high expression of DDX21 gave rise to frequent chromosome exchange and increased genome fragmentation. Mechanistically, aberrantly high expression of DDX21 triggered inappropriate repair processes by delaying homologous recombination repair and increasing replication stress, leading to genome instability and tumorigenesis. Treatment with distinct chemotherapeutic drugs caused higher lethality to cancer cells with genome fragility induced by DDX21, providing a perspective for treatment of tumors with high DDX21 expression. This study revealed the role of RNA helicases in DNA damage and their associations with cancer, which could expand therapeutic strategies and improve precision treatments for cancer patients with high expression of RNA helicases. SIGNIFICANCE The involvement of the majority of tumor-associated RNA helicases in the DNA damage repair process suggests a new mechanism of tumorigenesis and offers potential alternative therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Jinru Xie
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Ming Wen
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Zhang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Yanfang Qiu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Wenchao Zhao
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Fang Zhu
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Mianfeng Yao
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zhuoxian Rong
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Wenfeng Hu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Qian Pei
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lun-Quan Sun
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Tan
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
71
|
Luo H, Zhu G, Eshelman MA, Fung TK, Lai Q, Wang F, Zeisig BB, Lesperance J, Ma X, Chen S, Cesari N, Cogle C, Chen B, Xu B, Yang FC, So CWE, Qiu Y, Xu M, Huang S. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol Cell 2022; 82:833-851.e11. [PMID: 35180428 PMCID: PMC8985430 DOI: 10.1016/j.molcel.2022.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of β-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced β-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.
Collapse
MESH Headings
- Animals
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Gene Expression Regulation, Leukemic
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Transgenic
- R-Loop Structures
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Structure-Activity Relationship
- Transcription, Genetic
- Transcriptional Activation
- beta Catenin/genetics
- beta Catenin/metabolism
- Cohesins
Collapse
Affiliation(s)
- Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Melanie A Eshelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tsz Kan Fung
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Qian Lai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Fei Wang
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bernd B Zeisig
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xiaoyan Ma
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Shi Chen
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Nicholas Cesari
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher Cogle
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Baoan Chen
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Feng-Chun Yang
- Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Mays Cancer Center, Joe R. & Teresa Lozano Long School of Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Chi Wai Eric So
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK.
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mingjiang Xu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA.
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
72
|
Graham GT, Selvanathan SP, Zöllner SK, Stahl E, Shlien A, Caplen N, Üren A, Toretsky JA. Comprehensive profiling of mRNA splicing indicates that GC content signals altered cassette exon inclusion in Ewing sarcoma. NAR Cancer 2022; 4:zcab052. [PMID: 35047826 PMCID: PMC8759570 DOI: 10.1093/narcan/zcab052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Ewing sarcoma (EwS) is a small round blue cell tumor and is the second most frequent pediatric bone cancer. 85% of EwS tumors express the fusion oncoprotein EWS-FLI1, the product of a t(11;22) reciprocal translocation. Prior work has indicated that transcription regulation alone does not fully describe the oncogenic capacity of EWS-FLI1, nor does it provide an effective means to stratify patient tumors. Research using EwS cell lines and patient samples has suggested that EWS-FLI1 also disrupts mRNA biogenesis. In this work we both describe the underlying characteristics of mRNA that are aberrantly spliced in EwS tumor samples as well as catalogue mRNA splicing events across other pediatric tumor types. Here, we also use short- and long-read sequencing to identify cis-factors that contribute to splicing profiles we observe in Ewing sarcoma. Our analysis suggests that GC content upstream of cassette exons is a defining factor of mRNA splicing in EwS. We also describe specific splicing events that discriminate EwS tumor samples from the assumed cell of origin, human mesenchymal stem cells derived from bone marrow (hMSC-BM). Finally, we identify specific splicing factors PCBP2, RBMX, and SRSF9 by motif enrichment and confirm findings from tumor samples in EwS cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey A Toretsky
- To whom correspondence should be addressed. Tel: +1 202 687 8909; Fax: +1 202 687 8909;
| |
Collapse
|
73
|
Kannan A, Cuartas J, Gangwani P, Branzei D, Gangwani L. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain 2022; 145:3072-3094. [PMID: 35045161 PMCID: PMC9536298 DOI: 10.1093/brain/awab464] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Mutation in the senataxin (SETX) gene causes an autosomal dominant neuromuscular disorder, amyotrophic lateral sclerosis 4 (ALS4), characterized by degeneration of motor neurons, muscle weakness and atrophy. SETX is an RNA-DNA helicase that mediates resolution of co-transcriptional RNA:DNA hybrids (R-loops). The process of R-loop resolution is essential for the normal functioning of cells, including neurons. The molecular basis of ALS4 pathogenesis and the mechanism of R-loop resolution are unclear. We report that the zinc finger protein ZPR1 binds to RNA:DNA hybrids, recruits SETX onto R-loops and is critical for R-loop resolution. ZPR1 deficiency disrupts the integrity of R-loop resolution complexes containing SETX and causes increased R-loop accumulation throughout gene transcription. We uncover that SETX is a downstream target of ZPR1 and that overexpression of ZPR1 can rescue R-loop resolution complexe assembly in SETX-deficient cells but not vice versa. To uncover the mechanism of R-loop resolution, we examined the function of SETX-ZPR1 complexes using two genetic motor neuron disease models with altered R-loop resolution. Notably, chronic low levels of SETX-ZPR1 complexes onto R-loops result in a decrease of R-loop resolution activity causing an increase in R-loop levels in spinal muscular atrophy. ZPR1 overexpression increases recruitment of SETX onto R-loops, decreases R-loops and rescues the spinal muscular atrophy phenotype in motor neurons and patient cells. Strikingly, interaction of SETX with ZPR1 is disrupted in ALS4 patients that have heterozygous SETX (L389S) mutation. ZPR1 fails to recruit the mutant SETX homodimer but recruits the heterodimer with partially disrupted interaction between SETX and ZPR1. Interestingly, disruption of SETX-ZPR1 complexes causes increase in R-loop resolution activity leading to fewer R-loops in ALS4. Modulation of ZPR1 levels regulates R-loop accumulation and rescues the pathogenic R-loop phenotype in ALS4 patient cells. These findings originate a new concept, ‘opposite alterations in a cell biological activity (R-loop resolution) result in similar pathogenesis (neurodegeneration) in different genetic motor neuron disorders’. We propose that ZPR1 collaborates with SETX and may function as a molecular brake to regulate SETX-dependent R-loop resolution activity critical for the normal functioning of motor neurons.
Collapse
Affiliation(s)
- Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Juliana Cuartas
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Pratik Gangwani
- Automated Driving Compute System Architecture, GM Global Technical Center - Sloan Engineering Center, Warren, Michigan 48092, USA
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology Foundation, IFOM Foundation, Via Adamello 16, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| |
Collapse
|
74
|
Exome Sequencing Reveals Novel Variants and Expands the Genetic Landscape for Congenital Microcephaly. Genes (Basel) 2021; 12:genes12122014. [PMID: 34946966 PMCID: PMC8700965 DOI: 10.3390/genes12122014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly. This etiological heterogeneity manifests in a clinical variability and presents a major diagnostic and therapeutic challenge, leaving an unacceptably large proportion of over half of microcephaly patients without molecular diagnosis. To elucidate the clinical and genetic landscapes of congenital microcephaly, we sequenced the exomes of 191 clinically diagnosed patients with microcephaly as one of the features. We established a molecular basis for microcephaly in 71 patients (37%), and detected novel variants in five high confidence candidate genes previously unassociated with this condition. We report a large number of patients with mutations in tubulin-related genes in our cohort as well as higher incidence of pathogenic mutations in MCPH genes. Our study expands the phenotypic and genetic landscape of microcephaly, facilitating differential clinical diagnoses for disorders associated with most commonly disrupted genes in our cohort.
Collapse
|
75
|
Lin R, Zhong X, Zhou Y, Geng H, Hu Q, Huang Z, Hu J, Fu XD, Chen L, Chen JY. R-loopBase: a knowledgebase for genome-wide R-loop formation and regulation. Nucleic Acids Res 2021; 50:D303-D315. [PMID: 34792163 PMCID: PMC8728142 DOI: 10.1093/nar/gkab1103] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
R-loops play versatile roles in many physiological and pathological processes, and are of great interest to scientists in multiple fields. However, controversy about their genomic localization and incomplete understanding of their regulatory network raise great challenges for R-loop research. Here, we present R-loopBase (https://rloopbase.nju.edu.cn) to tackle these pressing issues by systematic integration of genomics and literature data. First, based on 107 high-quality genome-wide R-loop mapping datasets generated by 11 different technologies, we present a reference set of human R-loop zones for high-confidence R-loop localization, and spot conservative genomic features associated with R-loop formation. Second, through literature mining and multi-omics analyses, we curate the most comprehensive list of R-loop regulatory proteins and their targeted R-loops in multiple species to date. These efforts help reveal a global regulatory network of R-loop dynamics and its potential links to the development of cancers and neurological diseases. Finally, we integrate billions of functional genomic annotations, and develop interactive interfaces to search, visualize, download and analyze R-loops and R-loop regulators in a well-annotated genomic context. R-loopBase allows all users, including those with little bioinformatics background to utilize these data for their own research. We anticipate R-loopBase will become a one-stop resource for the R-loop community.
Collapse
Affiliation(s)
- Ruoyao Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Yongli Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huichao Geng
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qingxi Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhihao Huang
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
76
|
Kim A, Wang GG. R-loop and its functions at the regulatory interfaces between transcription and (epi)genome. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194750. [PMID: 34461314 PMCID: PMC8627470 DOI: 10.1016/j.bbagrm.2021.194750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023]
Abstract
R-loop represents a prevalent and specialized chromatin structure critically involved in a wide range of biological processes. In particular, co-transcriptional R-loops, produced often due to RNA polymerase pausing or RNA biogenesis malfunction, can initiate molecular events to context-dependently regulate local gene transcription and crosstalk with chromatin modifications. Cellular "readers" of R-loops are identified, exerting crucial impacts on R-loop homeostasis and gene regulation. Mounting evidence also supports R-loop deregulation as a frequent, sometimes initiating, event during the development of human pathologies, notably cancer and neurological disorder. The purpose of this review is to cover recent advances in understanding the fundamentals of R-loop biology, which have started to unveil complex interplays of R-loops with factors involved in various biological processes such as transcription, RNA processing and epitranscriptomic modification (such as N6-methyladenosine), DNA damage sensing and repair, and epigenetic regulation.
Collapse
Affiliation(s)
- Arum Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
77
|
Camarillo R, Jimeno S, Huertas P. The Effect of Atypical Nucleic Acids Structures in DNA Double Strand Break Repair: A Tale of R-loops and G-Quadruplexes. Front Genet 2021; 12:742434. [PMID: 34691154 PMCID: PMC8531813 DOI: 10.3389/fgene.2021.742434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The fine tuning of the DNA double strand break repair pathway choice relies on different regulatory layers that respond to environmental and local cues. Among them, the presence of non-canonical nucleic acids structures seems to create challenges for the repair of nearby DNA double strand breaks. In this review, we focus on the recently published effects of G-quadruplexes and R-loops on DNA end resection and homologous recombination. Finally, we hypothesized a connection between those two atypical DNA structures in inhibiting the DNA end resection step of HR.
Collapse
Affiliation(s)
- Rosa Camarillo
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
78
|
Shi F, Cao S, Zhu Y, Yu Q, Guo W, Zhang S. High expression of DHX9 promotes the growth and metastasis of hepatocellular carcinoma. J Clin Lab Anal 2021; 35:e24052. [PMID: 34676915 PMCID: PMC8649379 DOI: 10.1002/jcla.24052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background DHX9, an NTP‐dependent RNA helicase, is closely associated with the proliferation and metastasis of some tumor cells and the prognosis of patients, but its role in hepatocellular carcinoma (HCC) is not well‐known. This study was performed to explore the expression and role of DHX9 in HCC. Methods The expression of DHX9 in HCC tissues and cell lines was detected by TCGA database, qPCR, western blotting, and immunohistochemistry. The relationship between the DHX9 expression level and the prognosis of patients with HCC was accessed. Then, the function of DHX9 knockdown in HCC cells was examined by CCK‐8, scratch, Transwell, and apoptosis assays. Epithelial‐mesenchymal transition (EMT) was detected by western blotting. Results DHX9 was highly expressed in HCC tissues by analyzing both TCGA database and clinical samples. High DHX9 expression level was associated with TNM stage, vascular invasion and metastasis of HCC patients, and was an independent adverse prognostic factor. DHX9 knockdown significantly inhibited cell proliferation, migration, invasion and EMT and increased cell apoptosis in HCC cells. Conclusion Our findings suggest that DHX9 participates in the progression of HCC as an oncogene and may be a potential target for the clinical diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Feng Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Yaohua Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| |
Collapse
|
79
|
Zhang Y, Liu T, Yuan F, Garcia-Martinez L, Lee KD, Stransky S, Sidoli S, Verdun RE, Zhang Y, Wang Z, Morey L. The Polycomb protein RING1B enables estrogen-mediated gene expression by promoting enhancer-promoter interaction and R-loop formation. Nucleic Acids Res 2021; 49:9768-9782. [PMID: 34428304 PMCID: PMC8464076 DOI: 10.1093/nar/gkab723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Polycomb complexes have traditionally been prescribed roles as transcriptional repressors, though increasing evidence demonstrate they can also activate gene expression. However, the mechanisms underlying positive gene regulation mediated by Polycomb proteins are poorly understood. Here, we show that RING1B, a core component of Polycomb Repressive Complex 1, regulates enhancer-promoter interaction of the bona fide estrogen-activated GREB1 gene. Systematic characterization of RNA:DNA hybrid formation (R-loops), nascent transcription and RNA Pol II activity upon estrogen administration revealed a key role of RING1B in gene activation by regulating R-loop formation and RNA Pol II elongation. We also found that the estrogen receptor alpha (ERα) and RNA are both necessary for full RING1B recruitment to estrogen-activated genes. Notably, RING1B recruitment was mostly unaffected upon RNA Pol II depletion. Our findings delineate the functional interplay between RING1B, RNA and ERα to safeguard chromatin architecture perturbations required for estrogen-mediated gene regulation and highlight the crosstalk between steroid hormones and Polycomb proteins to regulate oncogenic programs.
Collapse
Affiliation(s)
- Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tong Liu
- Department of Computer Science, University of Miami, 1365 Memorial Drive, P.O. Box 248154, Coral Gables, FL 33124, USA
| | - Fenghua Yuan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kyutae D Lee
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ramiro E Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zheng Wang
- Department of Computer Science, University of Miami, 1365 Memorial Drive, P.O. Box 248154, Coral Gables, FL 33124, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
80
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
81
|
Long noncoding RNAs: Emerging regulators of normal and malignant hematopoiesis. Blood 2021; 138:2327-2336. [PMID: 34482397 DOI: 10.1182/blood.2021011992] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Genome wide analyses have revealed that long-noncoding RNAs (lncRNAs) are not only passive transcription products, but also major regulators of genome structure and transcription. In particular, lncRNAs exert profound effects on various biological processes, such as chromatin structure, transcription, RNA stability and translation, and protein degradation and localization, which depend on their localization and interacting partners. Recent studies have revealed that thousands of lncRNAs are aberrantly expressed in various cancer types and some of them are associated with malignant transformation. Despite extensive efforts, the diverse functions of lncRNAs and molecular mechanisms in which they act remain elusive. Many hematological disorders and malignancies are primarily resulted from genetic alterations that lead to the dysregulation of gene regulatory networks required for cellular proliferation and differentiation. Consequently, a growing list of lncRNAs has been reported for their involvement in the modulation of hematopoietic gene expression networks and hematopoietic stem and progenitor cell (HS/PC) function. Dysregulation of some of these lncRNAs has been attributed to pathogenesis of hematological malignancies. In this review, we will summarize current advances and knowledge of lncRNAs in gene regulation, focusing on the recent progresses on the role of lncRNAs in CTCF/cohesin mediated three-dimensional (3D) genome organization, and how such genome folding signals in turn regulate transcription, HS/PC function and transformation. The knowledge will provide mechanistic and translational insights into HS/PC biology and myeloid malignancy pathophysiology.
Collapse
|
82
|
Wu T, Nance J, Chu F, Fazzio TG. Characterization of R-Loop-Interacting Proteins in Embryonic Stem Cells Reveals Roles in rRNA Processing and Gene Expression. Mol Cell Proteomics 2021; 20:100142. [PMID: 34478875 PMCID: PMC8461376 DOI: 10.1016/j.mcpro.2021.100142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Chromatin-associated RNAs have diverse roles in the nucleus. However, their mechanisms of action are poorly understood, in part because of the inability to identify proteins that specifically associate with chromatin-bound RNAs. Here, we address this problem for a subset of chromatin-associated RNAs that form R-loops-RNA-DNA hybrid structures that include a displaced strand of ssDNA. R-loops generally form cotranscriptionally and have important roles in regulation of gene expression, immunoglobulin class switching, and other processes. However, unresolved R-loops can lead to DNA damage and chromosome instability. To identify factors that may bind and regulate R-loop accumulation or mediate R-loop-dependent functions, we used a comparative immunoprecipitation/MS approach, with and without RNA-protein crosslinking, to identify a stringent set of R-loop-binding proteins in mouse embryonic stem cells. We identified 364 R-loop-interacting proteins, which were highly enriched for proteins with predicted RNA-binding functions. We characterized several R-loop-interacting proteins of the DEAD-box family of RNA helicases and found that these proteins localize to the nucleolus and, to a lesser degree, the nucleus. Consistent with their localization patterns, we found that these helicases are required for rRNA processing and regulation of gene expression. Surprisingly, depletion of these helicases resulted in misregulation of highly overlapping sets of protein-coding genes, including many genes that function in differentiation and development. We conclude that R-loop-interacting DEAD-box helicases have nonredundant roles that are critical for maintaining the normal embryonic stem cell transcriptome.
Collapse
Affiliation(s)
- Tong Wu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jennifer Nance
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
83
|
Park SH, Bennett-Baker P, Ahmed S, Arlt MF, Ljungman M, Glover TW, Wilson TE. Locus-specific transcription silencing at the FHIT gene suppresses replication stress-induced copy number variant formation and associated replication delay. Nucleic Acids Res 2021; 49:7507-7524. [PMID: 34181717 PMCID: PMC8287918 DOI: 10.1093/nar/gkab559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Impaired replication progression leads to de novo copy number variant (CNV) formation at common fragile sites (CFSs). We previously showed that these hotspots for genome instability reside in late-replicating domains associated with large transcribed genes and provided indirect evidence that transcription is a factor in their instability. Here, we compared aphidicolin (APH)-induced CNV and CFS frequency between wild-type and isogenic cells in which FHIT gene transcription was ablated by promoter deletion. Two promoter-deletion cell lines showed reduced or absent CNV formation and CFS expression at FHIT despite continued instability at the NLGN1 control locus. APH treatment led to critical replication delays that remained unresolved in G2/M in the body of many, but not all, large transcribed genes, an effect that was reversed at FHIT by the promoter deletion. Altering RNase H1 expression did not change CNV induction frequency and DRIP-seq showed a paucity of R-loop formation in the central regions of large genes, suggesting that R-loops are not the primary mediator of the transcription effect. These results demonstrate that large gene transcription is a determining factor in replication stress-induced genomic instability and support models that CNV hotspots mainly result from the transcription-dependent passage of unreplicated DNA into mitosis.
Collapse
Affiliation(s)
- So Hae Park
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Samreen Ahmed
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas E Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
84
|
The evolutionary acquisition and mode of functions of promoter-associated non-coding RNAs (pancRNAs) for mammalian development. Essays Biochem 2021; 65:697-708. [PMID: 34328174 DOI: 10.1042/ebc20200143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.
Collapse
|
85
|
Yuan W, Al-Hadid Q, Wang Z, Shen L, Cho H, Wu X, Yang Y. TDRD3 promotes DHX9 chromatin recruitment and R-loop resolution. Nucleic Acids Res 2021; 49:8573-8591. [PMID: 34329467 PMCID: PMC8421139 DOI: 10.1093/nar/gkab642] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
R-loops, which consist of a DNA/RNA hybrid and a displaced single-stranded DNA (ssDNA), are increasingly recognized as critical regulators of chromatin biology. R-loops are particularly enriched at gene promoters, where they play important roles in regulating gene expression. However, the molecular mechanisms that control promoter-associated R-loops remain unclear. The epigenetic ‘reader’ Tudor domain-containing protein 3 (TDRD3), which recognizes methylarginine marks on histones and on the C-terminal domain of RNA polymerase II, was previously shown to recruit DNA topoisomerase 3B (TOP3B) to relax negatively supercoiled DNA and prevent R-loop formation. Here, we further characterize the function of TDRD3 in R-loop metabolism and introduce the DExH-box helicase 9 (DHX9) as a novel interaction partner of the TDRD3/TOP3B complex. TDRD3 directly interacts with DHX9 via its Tudor domain. This interaction is important for recruiting DHX9 to target gene promoters, where it resolves R-loops in a helicase activity-dependent manner to facilitate gene expression. Additionally, TDRD3 also stimulates the helicase activity of DHX9. This stimulation relies on the OB-fold of TDRD3, which likely binds the ssDNA in the R-loop structure. Thus, DHX9 functions together with TOP3B to suppress promoter-associated R-loops. Collectively, these findings reveal new functions of TDRD3 and provide important mechanistic insights into the regulation of R-loop metabolism.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Qais Al-Hadid
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Zhihao Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Hyejin Cho
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
86
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|
87
|
Chakraborty P, Hiom K. DHX9-dependent recruitment of BRCA1 to RNA promotes DNA end resection in homologous recombination. Nat Commun 2021; 12:4126. [PMID: 34226554 PMCID: PMC8257769 DOI: 10.1038/s41467-021-24341-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Double stranded DNA Breaks (DSB) that occur in highly transcribed regions of the genome are preferentially repaired by homologous recombination repair (HR). However, the mechanisms that link transcription with HR are unknown. Here we identify a critical role for DHX9, a RNA helicase involved in the processing of pre-mRNA during transcription, in the initiation of HR. Cells that are deficient in DHX9 are impaired in the recruitment of RPA and RAD51 to sites of DNA damage and fail to repair DSB by HR. Consequently, these cells are hypersensitive to treatment with agents such as camptothecin and Olaparib that block transcription and generate DSB that specifically require HR for their repair. We show that DHX9 plays a critical role in HR by promoting the recruitment of BRCA1 to RNA as part of the RNA Polymerase II transcription complex, where it facilitates the resection of DSB. Moreover, defects in DHX9 also lead to impaired ATR-mediated damage signalling and an inability to restart DNA replication at camptothecin-induced DSB. Together, our data reveal a previously unknown role for DHX9 in the DNA Damage Response that provides a critical link between RNA, RNA Pol II and the repair of DNA damage by homologous recombination. DHX9 is an RNA helicase involved in the processing of pre-mRNA during transcription. Here the authors reveal a role for DHX9 in the initiation of homologues recombination during the early steps of end-resection.
Collapse
Affiliation(s)
- Prasun Chakraborty
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Scotland, United Kingdom
| | - Kevin Hiom
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Scotland, United Kingdom.
| |
Collapse
|
88
|
Ngo GHP, Grimstead JW, Baird DM. UPF1 promotes the formation of R loops to stimulate DNA double-strand break repair. Nat Commun 2021; 12:3849. [PMID: 34158508 PMCID: PMC8219777 DOI: 10.1038/s41467-021-24201-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
DNA-RNA hybrid structures have been detected at the vicinity of DNA double-strand breaks (DSBs) occurring within transcriptional active regions of the genome. The induction of DNA-RNA hybrids strongly affects the repair of these DSBs, but the nature of these structures and how they are formed remain poorly understood. Here we provide evidence that R loops, three-stranded structures containing DNA-RNA hybrids and the displaced single-stranded DNA (ssDNA) can form at sub-telomeric DSBs. These R loops are generated independently of DNA resection but are induced alongside two-stranded DNA-RNA hybrids that form on ssDNA generated by DNA resection. We further identified UPF1, an RNA/DNA helicase, as a crucial factor that drives the formation of these R loops and DNA-RNA hybrids to stimulate DNA resection, homologous recombination, microhomology-mediated end joining and DNA damage checkpoint activation. Our data show that R loops and DNA-RNA hybrids are actively generated at DSBs to facilitate DNA repair.
Collapse
Affiliation(s)
- Greg H P Ngo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Julia W Grimstead
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
89
|
Fütterer A, Talavera-Gutiérrez A, Pons T, de Celis J, Gutiérrez J, Domínguez Plaza V, Martínez-A C. Impaired stem cell differentiation and somatic cell reprogramming in DIDO3 mutants with altered RNA processing and increased R-loop levels. Cell Death Dis 2021; 12:637. [PMID: 34155199 PMCID: PMC8217545 DOI: 10.1038/s41419-021-03906-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/08/2023]
Abstract
Embryonic stem cell (ESC) differentiation and somatic cell reprogramming are biological processes governed by antagonistic expression or repression of a largely common set of genes. Accurate regulation of gene expression is thus essential for both processes, and alterations in RNA processing are predicted to negatively affect both. We show that truncation of the DIDO gene alters RNA splicing and transcription termination in ESC and mouse embryo fibroblasts (MEF), which affects genes involved in both differentiation and reprogramming. We combined transcriptomic, protein interaction, and cellular studies to identify the underlying molecular mechanism. We found that DIDO3 interacts with the helicase DHX9, which is involved in R-loop processing and transcription termination, and that DIDO3-exon16 deletion increases nuclear R-loop content and causes DNA replication stress. Overall, these defects result in failure of ESC to differentiate and of MEF to be reprogrammed. MEF immortalization restored impaired reprogramming capacity. We conclude that DIDO3 has essential functions in ESC differentiation and somatic cell reprogramming by supporting accurate RNA metabolism, with its exon16-encoded domain playing the main role.
Collapse
Affiliation(s)
- Agnes Fütterer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Amaia Talavera-Gutiérrez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Tirso Pons
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Jesús de Celis
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Julio Gutiérrez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Verónica Domínguez Plaza
- Transgenesis Unit, CNB & Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain.
| |
Collapse
|
90
|
Palancade B, Rothstein R. The Ultimate (Mis)match: When DNA Meets RNA. Cells 2021; 10:cells10061433. [PMID: 34201169 PMCID: PMC8227541 DOI: 10.3390/cells10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.
Collapse
Affiliation(s)
- Benoit Palancade
- Institut Jacques Monod, Université de Paris, CNRS, F-75006 Paris, France
- Correspondence: (B.P.); (R.R.)
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (B.P.); (R.R.)
| |
Collapse
|
91
|
Klotz-Noack K, Klinger B, Rivera M, Bublitz N, Uhlitz F, Riemer P, Lüthen M, Sell T, Kasack K, Gastl B, Ispasanie SSS, Simon T, Janssen N, Schwab M, Zuber J, Horst D, Blüthgen N, Schäfer R, Morkel M, Sers C. SFPQ Depletion Is Synthetically Lethal with BRAF V600E in Colorectal Cancer Cells. Cell Rep 2021; 32:108184. [PMID: 32966782 DOI: 10.1016/j.celrep.2020.108184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Oncoproteins such as the BRAFV600E kinase endow cancer cells with malignant properties, but they also create unique vulnerabilities. Targeting of BRAFV600E-driven cytoplasmic signaling networks has proved ineffective, as patients regularly relapse with reactivation of the targeted pathways. We identify the nuclear protein SFPQ to be synthetically lethal with BRAFV600E in a loss-of-function shRNA screen. SFPQ depletion decreases proliferation and specifically induces S-phase arrest and apoptosis in BRAFV600E-driven colorectal and melanoma cells. Mechanistically, SFPQ loss in BRAF-mutant cancer cells triggers the Chk1-dependent replication checkpoint, results in decreased numbers and reduced activities of replication factories, and increases collision between replication and transcription. We find that BRAFV600E-mutant cancer cells and organoids are sensitive to combinations of Chk1 inhibitors and chemically induced replication stress, pointing toward future therapeutic approaches exploiting nuclear vulnerabilities induced by BRAFV600E.
Collapse
Affiliation(s)
- Kathleen Klotz-Noack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bertram Klinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Maria Rivera
- EPO Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Natalie Bublitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Uhlitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Pamela Riemer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Mareen Lüthen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Sell
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Katharina Kasack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Gastl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Sylvia S S Ispasanie
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Tincy Simon
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tuebingen, 72074 Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72074 Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, VBC, 1030 Vienna, Austria
| | - David Horst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reinhold Schäfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
92
|
Moreno R, Banerjee S, Jackson AW, Quinn J, Baillie G, Dixon JE, Dinkova-Kostova AT, Edwards J, de la Vega L. The stress-responsive kinase DYRK2 activates heat shock factor 1 promoting resistance to proteotoxic stress. Cell Death Differ 2021; 28:1563-1578. [PMID: 33268814 PMCID: PMC8166837 DOI: 10.1038/s41418-020-00686-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
To survive proteotoxic stress, cancer cells activate the proteotoxic-stress response pathway, which is controlled by the transcription factor heat shock factor 1 (HSF1). This pathway supports cancer initiation, cancer progression and chemoresistance and thus is an attractive therapeutic target. As developing inhibitors against transcriptional regulators, such as HSF1 is challenging, the identification and targeting of upstream regulators of HSF1 present a tractable alternative strategy. Here we demonstrate that in triple-negative breast cancer (TNBC) cells, the dual specificity tyrosine-regulated kinase 2 (DYRK2) phosphorylates HSF1, promoting its nuclear stability and transcriptional activity. DYRK2 depletion reduces HSF1 activity and sensitises TNBC cells to proteotoxic stress. Importantly, in tumours from TNBC patients, DYRK2 levels positively correlate with active HSF1 and associates with poor prognosis, suggesting that DYRK2 could be promoting TNBC. These findings identify DYRK2 as a key modulator of the HSF1 transcriptional programme and a potential therapeutic target.
Collapse
Affiliation(s)
- Rita Moreno
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Sourav Banerjee
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093-0721, USA
| | - Angus W Jackson
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Jean Quinn
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gregg Baillie
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jack E Dixon
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093-0721, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Joanne Edwards
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
93
|
Abstract
Double-stranded RNA (dsRNA) is produced both by virus and host. Its recognition by the melanoma differentiation-associated gene 5 (MDA5) initiates type I interferon responses. How can a host distinguish self-transcripts from nonself to ensure that responses are targeted correctly? Here, I discuss a role for MDA5 helicase in inducing Z-RNA formation by Alu inverted repeat (AIR) elements. These retroelements have highly conserved sequences that favor Z-formation, creating a site for the dsRNA-specific deaminase enzyme ADAR1 to dock. The subsequent editing destabilizes the dsRNA, ending further interaction with MDA5 and terminating innate immune responses directed against self. By enabling self-recognition, Alu retrotransposons, once invaders, now are genetic elements that keep immune responses in check. I also discuss the possible but less characterized roles of the other helicases in modulating innate immune responses, focusing on DExH-box helicase 9 (DHX9) and Mov10 RISC complex RNA helicase (MOV10). DHX9 and MOV10 function differently from MDA5, but still use nucleic acid structure, rather than nucleotide sequence, to define self. Those genetic elements encoding the alternative conformations involved, referred to as flipons, enable helicases to dynamically shape a cell's repertoire of responses. In the case of MDA5, Alu flipons switch off the dsRNA-dependent responses against self. I suggest a number of genetic systems in which to study interactions between flipons and helicases further.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Charlestown, Massachusetts, United States of America
| |
Collapse
|
94
|
Leclerc S, Kitagawa K. The Role of Human Centromeric RNA in Chromosome Stability. Front Mol Biosci 2021; 8:642732. [PMID: 33869284 PMCID: PMC8044762 DOI: 10.3389/fmolb.2021.642732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosome instability is a hallmark of cancer and is caused by inaccurate segregation of chromosomes. One cellular structure used to avoid this fate is the kinetochore, which binds to the centromere on the chromosome. Human centromeres are poorly understood, since sequencing and analyzing repeated alpha-satellite DNA regions, which can span a few megabases at the centromere, are particularly difficult. However, recent analyses revealed that these regions are actively transcribed and that transcription levels are tightly regulated, unveiling a possible role of RNA at the centromere. In this short review, we focus on the recent discovery of the function of human centromeric RNA in the regulation and structure of the centromere, and discuss the consequences of dysregulation of centromeric RNA in cancer.
Collapse
Affiliation(s)
- Simon Leclerc
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
95
|
Dutertre M, Sfaxi R, Vagner S. Reciprocal Links between Pre-messenger RNA 3'-End Processing and Genome Stability. Trends Biochem Sci 2021; 46:579-594. [PMID: 33653631 DOI: 10.1016/j.tibs.2021.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The 3'-end processing of most pre-messenger RNAs (pre-mRNAs) involves RNA cleavage and polyadenylation and is coupled to transcription termination. In both yeast and human cells, pre-mRNA 3'-end cleavage is globally inhibited by DNA damage. Recently, further links between pre-mRNA 3'-end processing and the control of genome stability have been uncovered, as reviewed here. Upon DNA damage, various genes related to the DNA damage response (DDR) escape 3'-end processing inhibition or are regulated through alternative polyadenylation (APA). Conversely, various pre-mRNA 3'-end processing factors prevent genome instability and are found at sites of DNA damage. Finally, the reciprocal link between pre-mRNA 3'-end processing and genome stability control seems important because it is conserved in evolution and involved in disease development.
Collapse
Affiliation(s)
- Martin Dutertre
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer.
| | - Rym Sfaxi
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Stéphan Vagner
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer.
| |
Collapse
|
96
|
RNA Helicase A Regulates the Replication of RNA Viruses. Viruses 2021; 13:v13030361. [PMID: 33668948 PMCID: PMC7996507 DOI: 10.3390/v13030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Collapse
|
97
|
Chédin F, Hartono SR, Sanz LA, Vanoosthuyse V. Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J 2021; 40:e106394. [PMID: 33411340 PMCID: PMC7883053 DOI: 10.15252/embj.2020106394] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023] Open
Abstract
R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their distribution in genomes. A number of independent methods have been developed to visualize and map R-loops, but their results are at times discordant, leading to confusion. Here, we review the main existing methodologies for R-loop mapping and assess their limitations as well as the robustness of existing datasets. We offer a set of best practices to improve the reproducibility of maps, hoping that such guidelines could be useful for authors and referees alike. Finally, we propose a possible resolution for the apparent contradictions in R-loop mapping outcomes between antibody-based and RNase H1-based mapping approaches.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la CelluleCNRSUMR 5239Univ LyonÉcole Normale Supérieure de LyonLyonFrance
| |
Collapse
|
98
|
Tsao N, Schärer OD, Mosammaparast N. The complexity and regulation of repair of alkylation damage to nucleic acids. Crit Rev Biochem Mol Biol 2021; 56:125-136. [PMID: 33430640 DOI: 10.1080/10409238.2020.1869173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA damaging agents have been a cornerstone of cancer therapy for nearly a century. The discovery of many of these chemicals, particularly the alkylating agents, are deeply entwined with the development of poisonous materials originally intended for use in warfare. Over the last decades, their anti-proliferative effects have focused on the specific mechanisms by which they damage DNA, and the factors involved in the repair of such damage. Due to the variety of aberrant adducts created even for the simplest alkylating agents, numerous pathways of repair are engaged as a defense against this damage. More recent work has underscored the role of RNA damage in the cellular response to these agents, although the understanding of their role in relation to established DNA repair pathways is still in its infancy. In this review, we discuss the chemistry of alkylating agents, the numerous ways in which they damage nucleic acids, as well as the specific DNA and RNA repair pathways which are engaged to counter their effects.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
99
|
Russon MP, Westerhouse KM, Tran EJ. Transcription, translation, and DNA repair: new insights from emerging noncanonical substrates of RNA helicases. Biol Chem 2020; 402:637-644. [PMID: 33857360 DOI: 10.1515/hsz-2020-0333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022]
Abstract
RNA helicases are enzymes that exist in all domains of life whose canonical functions include ATP-dependent remodeling of RNA structures and displacement of proteins from ribonucleoprotein complexes (RNPs). These enzymes play roles in virtually all processes of RNA metabolism, including pre-mRNA splicing, rRNA processing, nuclear mRNA export, translation and RNA decay. Here we review emerging noncanonical substrates of RNA helicases including RNA-DNA hybrids (R-loops) and RNA and DNA G-quadruplexes and discuss their biological significance.
Collapse
Affiliation(s)
- Matthew P Russon
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Kirsten M Westerhouse
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN, 47907, USA.,Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
100
|
WDR82/PNUTS-PP1 Prevents Transcription-Replication Conflicts by Promoting RNA Polymerase II Degradation on Chromatin. Cell Rep 2020; 33:108469. [PMID: 33264625 DOI: 10.1016/j.celrep.2020.108469] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/05/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress. Depletion of PNUTS causes lower EdU uptake, S phase accumulation, and slower replication fork rates. In addition, the PNUTS binding partner WDR82 also promotes RNAPII-CTD dephosphorylation and suppresses replication stress. RNAPII has a longer residence time on chromatin after depletion of PNUTS or WDR82. Furthermore, the RNAPII residence time is greatly enhanced by proteasome inhibition in control cells but less so in PNUTS- or WDR82-depleted cells, indicating that PNUTS and WDR82 promote degradation of RNAPII on chromatin. Notably, reduced replication is dependent on transcription and the phospho-CTD binding protein CDC73 after depletion of PNUTS/WDR82. Altogether, our results suggest that RNAPII-CTD dephosphorylation is required for the continuous turnover of RNAPII on chromatin, thereby preventing T-R conflicts.
Collapse
|