51
|
Scherzad A, Hagen R, Hackenberg S. Current Understanding of Nasal Epithelial Cell Mis-Differentiation. J Inflamm Res 2019; 12:309-317. [PMID: 31853193 PMCID: PMC6916682 DOI: 10.2147/jir.s180853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The functional role of the respiratory epithelium is to generate a physical barrier. In addition, the epithelium supports the innate and acquired immune system through various cytokines and chemokines. However, epithelial cells are also involved in the pathogenesis of various respiratory diseases, some of which are mediated by increased permeability of the mucosal membrane or disturbed mucociliary transport. In addition, it has been shown that epithelial cells are involved in the development of inflammatory respiratory diseases. The following review article focuses on the aspects of epithelial mis-differentiation, in particular with respect to nasal mucosal barrier function, epithelial immunogenicity, nasal epithelial-mesenchymal transition and nasal microbiome.
Collapse
Affiliation(s)
- Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, Würzburg97080, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, Würzburg97080, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, Würzburg97080, Germany
| |
Collapse
|
52
|
Kong D, Lv Z, Häring M, Lin B, Wolf F, Großhans J. In vivo optochemical control of cell contractility at single-cell resolution. EMBO Rep 2019; 20:e47755. [PMID: 31663248 PMCID: PMC6893293 DOI: 10.15252/embr.201947755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 09/14/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
The spatial and temporal dynamics of cell contractility plays a key role in tissue morphogenesis, wound healing, and cancer invasion. Here, we report a simple optochemical method to induce cell contractions in vivo during Drosophila morphogenesis at single-cell resolution. We employed the photolabile Ca2+ chelator o-nitrophenyl EGTA to induce bursts of intracellular free Ca2+ by laser photolysis in the epithelial tissue. Ca2+ bursts appear within seconds and are restricted to individual target cells. Cell contraction reliably followed within a minute, causing an approximately 50% drop in the cross-sectional area. Increased Ca2+ levels are reversible, and the target cells further participated in tissue morphogenesis. Depending on Rho kinase (ROCK) activity but not RhoGEF2, cell contractions are paralleled with non-muscle myosin II accumulation in the apico-medial cortex, indicating that Ca2+ bursts trigger non-muscle myosin II activation. Our approach can be, in principle, adapted to many experimental systems and species, as no specific genetic elements are required.
Collapse
Affiliation(s)
- Deqing Kong
- Institute for Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Zhiyi Lv
- Institute for Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Matthias Häring
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Benjamin Lin
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Fred Wolf
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
53
|
Lv X, Li Y, Li Y, Li H, Zhou L, Wang B, Zhi Z, Tang W. FAL1: A critical oncogenic long non-coding RNA in human cancers. Life Sci 2019; 236:116918. [PMID: 31610208 DOI: 10.1016/j.lfs.2019.116918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) are characterized as a group of endogenous RNAs that are more than 200 nucleotides in length and have no protein-encoding function. More and more evidence indicates that lncRNAs play vital roles in various human diseases, especially in tumorigenesis. Focally amplified lncRNA on chromosome 1 (FAL1), a novel lncRNA with enhancer-like activity, has been identified as an oncogene in multiple cancers and high expression level of FAL1 is usually associated with poor prognosis. Dysregulation of FAL1 has been shown to promote the proliferation and metastasis of cancer cells. In the present review, we summarized and illustrated the functions and underlying molecular mechanisms of FAL1 in the occurrence and development of different cancers and other diseases. FAL1 has the potential to appear as a feasible diagnostic and prognostic tool and new therapeutic target for cancer patients though further investigation is needed so as to accelerate clinical application.
Collapse
Affiliation(s)
- Xiurui Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuhan Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Binyu Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|