51
|
Guan Z, Chen S, Pan F, Fan L, Sun D. Effects of Gene Delivery Approaches on Differentiation Potential and Gene Function of Mesenchymal Stem Cells. IEEE Trans Biomed Eng 2021; 69:83-95. [PMID: 34101578 DOI: 10.1109/tbme.2021.3087129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction of a gene to mesenchymal stem cells (MSCs) is a well-known strategy to purposely manipulate the cell fate and further enhance therapeutic performance in cell-based therapy. Viral and chemical approaches for gene delivery interfere with differentiation potential. Although microinjection as a physical delivery method is commonly used for transfection, its influence on MSC cell fate is not fully understood. The current study aimed to evaluate the effects of four nonviral gene delivery methods on stem cell multi-potency. The four delivery methods are robotic microinjection, polyethylenimine (PEI), cationic liposome (cLipo), and calcium phosphate nanoparticles (CaP). Among the four methods, microinjection has exhibited the highest transfection efficiency of ~60%, while the three others showed lower efficiency of 10-25%. Robotic microinjection preserved fibroblast-like cell morphology, stress fibre intactness, and mature focal adhesion complex, while PEI caused severe cytotoxicity. No marked differentiation bias was observed after microinjection and cLipo treatment. By contrast, CaP-treated MSCs exhibited excessive osteogenesis, while PEI-treated MSCs showed excessive adipogenesis. Robotic microinjection system was used to inject the CRISPR/Cas9-encoding plasmid to knock out PPAR gene in MSCs, and the robotic microinjection did not interfere with PPAR function in differentiation commitment. Meanwhile, the bias in osteo-adipogenic differentiation exhibited in CaP and PEI-treated MSCs after PPAR knockout via chemical carriers. Our results indicate that gene delivery vehicles variously disturb MSCs differentiation and interfere with exogenous gene function. Our findings further suggest that robotic microinjection offers a promise of generating genetically modified MSCs without disrupting stem cell multi-potency and therapeutic gene function.
Collapse
|
52
|
Upregulated PPARG2 facilitates interaction with demethylated AKAP12 gene promoter and suppresses proliferation in prostate cancer. Cell Death Dis 2021; 12:528. [PMID: 34023860 PMCID: PMC8141057 DOI: 10.1038/s41419-021-03820-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCA) is one of the most common male genitourinary tumors. However, the molecular mechanisms involved in the occurrence and progression of PCA have not been fully clarified. The present study aimed to investigate the biological function and molecular mechanism of the nuclear receptor peroxisome proliferator-activated receptor gamma 2 (PPARG2) in PCA. Our results revealed that PPARG2 was downregulated in PCA, and overexpression of PPARG2 inhibited cell migration, colony formation, invasion and induced cell cycle arrest of PCA cells in vitro. In addition, PPARG2 overexpression modulated the activation of the Akt signaling pathway, as well as inhibited tumor growth in vivo. Moreover, mechanistic analysis revealed that PPARG2 overexpression induced increased expression level of miR-200b-3p, which targeted 3′ UTR of the downstream targets DNMT3A/3B, and facilitated interaction with demethylated AKAP12 gene promoter and suppressed cell proliferation in PCA. Our findings provided the first evidence for a novel PPARG2-AKAP12 axis mediated epigenetic regulatory network. The study identified a molecular mechanism involving an epigenetic modification that could be possibly targeted as an antitumoral strategy against prostate cancer.
Collapse
|
53
|
Iyyanki T, Zhang B, Wang Q, Hou Y, Jin Q, Xu J, Yang H, Liu T, Wang X, Song F, Luan Y, Yamashita H, Chien R, Lyu H, Zhang L, Wang L, Warrick J, Raman JD, Meeks JJ, DeGraff DJ, Yue F. Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer. Genome Biol 2021; 22:105. [PMID: 33858483 PMCID: PMC8048365 DOI: 10.1186/s13059-021-02325-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Muscle-invasive bladder cancers are characterized by their distinct expression of luminal and basal genes, which could be used to predict key clinical features such as disease progression and overall survival. Transcriptionally, FOXA1, GATA3, and PPARG are shown to be essential for luminal subtype-specific gene regulation and subtype switching, while TP63, STAT3, and TFAP2 family members are critical for regulation of basal subtype-specific genes. Despite these advances, the underlying epigenetic mechanisms and 3D chromatin architecture responsible for subtype-specific regulation in bladder cancer remain unknown. RESULT: We determine the genome-wide transcriptome, enhancer landscape, and transcription factor binding profiles of FOXA1 and GATA3 in luminal and basal subtypes of bladder cancer. Furthermore, we report the first-ever mapping of genome-wide chromatin interactions by Hi-C in both bladder cancer cell lines and primary patient tumors. We show that subtype-specific transcription is accompanied by specific open chromatin and epigenomic marks, at least partially driven by distinct transcription factor binding at distal enhancers of luminal and basal bladder cancers. Finally, we identify a novel clinically relevant transcription factor, Neuronal PAS Domain Protein 2 (NPAS2), in luminal bladder cancers that regulates other subtype-specific genes and influences cancer cell proliferation and migration. CONCLUSION: In summary, our work identifies unique epigenomic signatures and 3D genome structures in luminal and basal urinary bladder cancers and suggests a novel link between the circadian transcription factor NPAS2 and a clinical bladder cancer subtype.
Collapse
Affiliation(s)
- Tejaswi Iyyanki
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Baozhen Zhang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
- Present address: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Fan Song
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Hironobu Yamashita
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
- Department of Surgery, Division of Urology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Ruby Chien
- University of Illinois College of Medicine, Chicago, IL, USA
| | - Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Joshua Warrick
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
- Department of Surgery, Division of Urology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Jay D Raman
- Department of Surgery, Division of Urology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Joshua J Meeks
- Department of Urology, Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, College of Medicine, Hershey, PA, USA.
- Department of Surgery, Division of Urology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| |
Collapse
|
54
|
Dou M, Zhou X, Li L, Zhang M, Wang W, Wang M, Jing Y, Ma R, Zhao J, Zhu L. Illumination of Molecular Pathways in Multiple Sclerosis Lesions and the Immune Mechanism of Matrine Treatment in EAE, a Mouse Model of MS. Front Immunol 2021; 12:640778. [PMID: 33912166 PMCID: PMC8072148 DOI: 10.3389/fimmu.2021.640778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is not clear, and the treatment of MS presents a great challenge. This study aimed to investigate the pathogenesis and potential therapeutic targets of MS and to define target genes of matrine, a quinolizidine alkaloid component derived from the root of Sophorae flavescens that effectively suppressed experimental autoimmune encephalomyelitis (EAE), an animal model of MS. To this end, the GSE108000 gene data set in the Gene Expression Omnibus Database, which included 7 chronic active MS lesions and 10 control samples of white matter, was analyzed for differentially expressed genes (DEGs). X cell was used to analyze the microenvironmental differences in brain tissue samples of MS patients, including 64 types of immune cells and stromal cells. The biological functions and enriched signaling pathways of DEGs were analyzed by multiple approaches, including GO, KEGG, GSEA, and GSVA. The results by X cell showed significantly increased numbers of immune cell populations in the MS lesions, with decreased erythrocytes, megakaryocytes, adipocytes, keratinocytes, endothelial cells, Th1 cells and Tregs. In GSE108000, there were 637 DEGs, including 428 up-regulated and 209 down-regulated genes. Potential target genes of matrine were then predicted by the network pharmacology method of Traditional Chinese medicine, and 12 key genes were obtained by cross analysis of the target genes of matrine and DEGs in MS lesions. Finally, we confirmed by RT-PCR the predicted expression of these genes in brain tissues of matrine-treated EAE mice. Among these genes, 2 were significantly downregulated and 6 upregulated by matrine treatment, and the significance of this gene regulation was further investigated. In conclusion, our study defined several possible matrine target genes, which can be further elucidated as mechanism(s) of matrine action, and novel targets in the treatment of MS.
Collapse
Affiliation(s)
- Mengmeng Dou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, the Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueliang Zhou
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Mingliang Zhang
- Department of Pharmacy, the first Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wenbin Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, the Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yilei Jing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Ma
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Lin Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
55
|
Chen B, Chen X, Wang W, Shen J, Song Z, Ji H, Zhang F, Wu J, Na J, Li S. Tissue-engineered autologous peritoneal grafts for bladder reconstruction in a porcine model. J Tissue Eng 2021; 12:2041731420986796. [PMID: 33613958 PMCID: PMC7874343 DOI: 10.1177/2041731420986796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Ileal neobladder construction is a common treatment for patients with bladder cancer after radical cystectomy. However, metabolic disorders caused by transposed bowel segments occur frequently. Bladder tissue engineering is a promising alternative approach. Although numerous studies have reported bladder reconstruction using acellular and cellular scaffolds, there are also disadvantages associated with these methods, such as immunogenicity of synthetic grafts and incompatible mechanical properties of the biomaterials. Here, we engineered an autologous peritoneal graft consisting of a peritoneal sheet and the seromuscular layer from the ileum. Three months after the surgery, compared with the neobladder made from the ileum, the reconstructed neobladder using our new method showed normal function and better gross morphological characteristics. Moreover, histopathological and transcriptomic analysis revealed urothelium-like cells expressing urothelial biomarkers appeared in the neobladder, while no such changes were observed in the control group. Overall, our study provides a new strategy for bladder tissue engineering and informs a variety of future research prospects.
Collapse
Affiliation(s)
- Biao Chen
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Xia Chen
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Wenjia Wang
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Jun Shen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiqiang Song
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Haoyu Ji
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Fangyuan Zhang
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Jianchen Wu
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Shengwen Li
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| |
Collapse
|
56
|
Dong Y, Hao L, Fang K, Han XX, Yu H, Zhang JJ, Cai LJ, Fan T, Zhang WD, Pang K, Ma WM, Wang XT, Han CH. A network pharmacology perspective for deciphering potential mechanisms of action of Solanum nigrum L. in bladder cancer. BMC Complement Med Ther 2021; 21:45. [PMID: 33494738 PMCID: PMC7836472 DOI: 10.1186/s12906-021-03215-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Solanum nigrum L. decoction has been used as a folklore medicine in China to prevent the postoperative recurrence of bladder cancer (BC). However, there are no previous pharmacological studies on the protective mechanisms of this activity of the plant. Thus, this study aimed to perform a systematic analysis and to predict the potential action mechanisms underlying S. nigrum activity in BC based on network pharmacology. METHODS Based on network pharmacology, the active ingredients of S. nigrum and the corresponding targets were identified using the Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform database, and BC-related genes were screened using GeneCards and the Online Mendelian Inheritance in Man database. In addition, ingredient-target (I-T) and protein-protein interaction (PPI) networks were constructed using STRING and Cytoscape, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted, and then the pathways directly related to BC were integrated manually to reveal the pharmacological mechanism underlying S. nigrum-medicated therapeutic effects in BC. RESULTS Seven active herbal ingredients from 39 components of S. nigrum were identified, which shared 77 common target genes related to BC. I-T network analysis revealed that quercetin was associated with all targets and that NCOA2 was targeted by four ingredients. Besides, interleukin 6 had the highest degree value in the PPI network, indicating a hub role. A subsequent gene enrichment analysis yielded 86 significant GO terms and 89 significant pathways, implying that S. nigrum had therapeutic benefits in BC through multi-pathway effects, including the HIF-1, TNF, P53, MAPK, PI3K/Akt, apoptosis and bladder cancer pathway. CONCLUSIONS S. nigrum may mediate pharmacological effects in BC through multi-target and various signaling pathways. Further validation is required experimentally. Network pharmacology approach provides a predicative novel strategy to reveal the holistic mechanism of action of herbs.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Jiefang South Road, No. 199, Jiangsu, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Lin Hao
- Department of Urology, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Jiefang South Road, No. 199, Jiangsu, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Kun Fang
- Xuzhou Clinical Medical College of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Xuzhou, China
| | - Xiao-Xiao Han
- Center of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Yu
- Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Jian-Jun Zhang
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Long-Jun Cai
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Tao Fan
- Department of Urology, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Jiefang South Road, No. 199, Jiangsu, Xuzhou, China
| | - Wen-da Zhang
- Department of Urology, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Jiefang South Road, No. 199, Jiangsu, Xuzhou, China
| | - Kun Pang
- Department of Urology, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Jiefang South Road, No. 199, Jiangsu, Xuzhou, China
| | - Wei-Ming Ma
- Department of Urology, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Jiefang South Road, No. 199, Jiangsu, Xuzhou, China
| | - Xi-Tao Wang
- Department of Urology, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Jiefang South Road, No. 199, Jiangsu, Xuzhou, China
| | - Cong-Hui Han
- Department of Urology, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Jiefang South Road, No. 199, Jiangsu, Xuzhou, China. .,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China. .,Department of Biotechnology, College of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
57
|
Wang C, Lv X, Liu W, Liu S, Sun Z. Uncovering the pharmacological mechanism of motherwort (Leonurus japonicus Houtt.) for treating menstrual disorders: A systems pharmacology approach. Comput Biol Chem 2020; 89:107384. [PMID: 33017723 DOI: 10.1016/j.compbiolchem.2020.107384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
Leonurus japonicus (motherwort) is a traditional Chinese medicine that is widely used to treat menstrual disorders (MDs). However, the pharmacological mechanisms that underlie its clinical application remain unclear. In this study, a network pharmacology-based approach was used that integrated drug-likeness evaluation, oral bioavailability prediction, target exploration, network construction, bioinformatic annotation and molecular docking to investigate the mechanisms that underlie motherwort treatment for MDs. In total, 29 bioactive compounds were collected from 51 compounds in motherwort, which shared 17 common MDs-related targets. Network analysis indicated that motherwort played a therapeutic role in MDs treatment through multiple components that acted on multiple targets. Pathway enrichment analysis showed that the putative targets of motherwort were primarily involved in various pathways associated with the endocrine system, cancers, vascular system, and anti-inflammation process. Notably, five targets (i.e., AKT1, PTGS2, ESR1, AR and PPARG) were screened as hub genes based on a degree algorithm. Moreover, most of the bioactive components in motherwort had good binding ability with these genes, implying that motherwort could regulate their biological function. Collectively, this study elucidated the molecular mechanisms that underlay the efficiency of motherwort against MDs and demonstrated the potential of network pharmacology as an approach to uncover the action mechanism of herbal medicines.
Collapse
Affiliation(s)
- Chenglong Wang
- Instituent of Ethnic Medicine, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Xiaohui Lv
- Guangxi University of Chinese Medicine, Nanning, China
| | - Wen Liu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Song Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430081, China; School of Pharmacy and Bioengineering, Keele University, Keele, Staff Ordshire, ST5 5BG, UK.
| | - Zongxi Sun
- Instituent of Ethnic Medicine, Guangxi International Zhuang Medicine Hospital, Nanning, China; Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
58
|
Jaladanki CK, He Y, Zhao LN, Maurer-Stroh S, Loo LH, Song H, Fan H. Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARγ-bound fatty acids. Arch Toxicol 2020; 95:355-374. [PMID: 32909075 PMCID: PMC7811525 DOI: 10.1007/s00204-020-02897-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Nuclear receptors (NRs) are key regulators of energy homeostasis, body development, and sexual reproduction. Xenobiotics binding to NRs may disrupt natural hormonal systems and induce undesired adverse effects in the body. However, many chemicals of concerns have limited or no experimental data on their potential or lack-of-potential endocrine-disrupting effects. Here, we propose a virtual screening method based on molecular docking for predicting potential endocrine-disrupting chemicals (EDCs) that bind to NRs. For 12 NRs, we systematically analyzed how multiple crystal structures can be used to distinguish actives and inactives found in previous high-throughput experiments. Our method is based on (i) consensus docking scores from multiple structures at a single functional state (agonist-bound or antagonist-bound), (ii) multiple functional states (agonist-bound and antagonist-bound), and (iii) multiple pockets (orthosteric site and alternative sites) of these NRs. We found that the consensus enrichment from multiple structures is better than or comparable to the best enrichment from a single structure. The discriminating power of this consensus strategy was further enhanced by a chemical similarity-weighted scoring scheme, yielding better or comparable enrichment for all studied NRs. Applying this optimized method, we screened 252 fatty acids against peroxisome proliferator-activated receptor gamma (PPARγ) and successfully identified 3 previously unknown fatty acids with Kd = 100-250 μM including two furan fatty acids: furannonanoic acid (FNA) and furanundecanoic acid (FUA), and one cyclopropane fatty acid: phytomonic acid (PTA). These results suggested that the proposed method can be used to rapidly screen and prioritize potential EDCs for further experimental evaluations.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Yang He
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Li Na Zhao
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore.
| |
Collapse
|
59
|
Does the Urothelium of Old Mice Regenerate after Chitosan Injury as Quickly as the Urothelium of Young Mice? Int J Mol Sci 2020; 21:ijms21103502. [PMID: 32429113 PMCID: PMC7278990 DOI: 10.3390/ijms21103502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
The aging of organisms leads to a decreased ability of tissue to regenerate after injury. The regeneration of the bladder urothelium after induced desquamation with biopolymer chitosan has been studied in young mice but not in old mice. Chitosan is a suitable inducer of urothelial desquamation because it is known to be non-toxic. We used chitosan for desquamation of urothelial cells in order to compare the dynamics of urothelial regeneration after injury between young and old mice. Our aim was to determine whether the urothelial function and structure of old mice is restored as fast as in young mice, and to evaluate the inflammatory response due to chitosan treatment. We discovered that the urothelial function restored comparably fast in both age groups and that the urothelium of young and old mice recovered within 5 days after injury, although the onset of proliferation and differentiation appeared later in old mice. Acute inflammation markers showed some differences in the inflammatory response in young versus old mice, but in both age groups, chitosan caused short-term acute inflammation. In conclusion, the restoration of urothelial function is not impaired in old mice, but the regeneration of the urothelial structure in old mice slightly lags behind the regeneration in young mice.
Collapse
|