51
|
van Essen M, Riepsaame J, Jacob J. CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR J 2021; 4:634-655. [PMID: 34582693 DOI: 10.1089/crispr.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Directing the fates of human pluripotent stem cells (hPSC) to generate a multitude of differentiated cell types allows the study of the genetic regulation of human development and disease. The translational potential of hPSC is maximized by exploiting CRISPR to silence or activate genes with spatial and temporal precision permanently or reversibly. Here, we summarize the increasingly refined and diverse CRISPR toolkit for the latter forms of gene perturbation in hPSC and their downstream applications. We discuss newer methods to install edits efficiently with single nucleotide resolution and describe pooled CRISPR screens as a powerful means of unbiased discovery of genes associated with a phenotype of interest. Last, we discuss the potential of these combined technologies in the treatment of hitherto intractable human diseases and the challenges to their implementation in the clinic.
Collapse
Affiliation(s)
- Max van Essen
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom
| | - Joey Riepsaame
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom
| |
Collapse
|
52
|
Efficient Genetic Safety Switches for Future Application of iPSC-Derived Cell Transplants. J Pers Med 2021; 11:jpm11060565. [PMID: 34204193 PMCID: PMC8234706 DOI: 10.3390/jpm11060565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived cell products hold great promise as a potential cell source in personalized medicine. As concerns about the potential risk of graft-related severe adverse events, such as tumor formation from residual pluripotent cells, currently restrict their applicability, we established an optimized tool for therapeutic intervention that allows drug-controlled, specific and selective ablation of either iPSCs or the whole graft through genetic safety switches. To identify the best working system, different tools for genetic iPSC modification, promoters to express safety switches and different safety switches were combined. Suicide effects were slightly stronger when the suicide gene was delivered through lentiviral (LV) vectors compared to integration into the AAVS1 locus through TALEN technology. An optimized HSV-thymidine kinase and the inducible Caspase 9 both mediated drug-induced, efficient in vitro elimination of transgene-positive iPSCs. Choice of promoter allowed selective elimination of distinct populations within the graft: the hOct4 short response element restricted transgene expression to iPSCs, while the CAGs promoter ubiquitously drove expression in iPSCs and their progeny. Remarkably, both safety switches were able to prevent in vivo teratoma development and even effectively eliminated established teratomas formed by LV CAGs-transgenic iPSCs. These optimized tools to increase safety provide an important step towards clinical application of iPSC-derived transplants.
Collapse
|
53
|
Abbas M, Moradi F, Hu W, Regudo KL, Osborne M, Pettipas J, Atallah DS, Hachem R, Ott-Peron N, Stuart JA. Vertebrate cell culture as an experimental approach – limitations and solutions. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110570. [DOI: 10.1016/j.cbpb.2021.110570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
|
54
|
Characteristics, Classification, and Application of Stem Cells Derived from Human Teeth. Stem Cells Int 2021; 2021:8886854. [PMID: 34194509 PMCID: PMC8184333 DOI: 10.1155/2021/8886854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Since mesenchymal stem cells derived from human teeth are characterized as having the properties of excellent proliferation, multilineage differentiation, and immune regulation. Dental stem cells exhibit fibroblast-like microscopic appearance and express mesenchymal markers, embryonic markers, and vascular markers but do not express hematopoietic markers. Dental stem cells are a mixed population with different sensitive markers, characteristics, and therapeutic effects. Single or combined surface markers are not only helpful for understanding the subpopulation of mixed stem cell populations according to cell function but also for improving the stable treatment effect of dental stem cells. Focusing on the discovery and characterization of stem cells isolated from human teeth over the past 20 years, this review outlines the effect of marker sorting on cell proliferation and differentiation ability and the assessment of the clinical application potential. Classified dental stem cells from markers and functional molecules can solve the problem of heterogeneity and ensure the efficacy of cell therapy strategies including dentistry, neurologic diseases, bone repair, and tissue engineering.
Collapse
|
55
|
Flahou C, Morishima T, Takizawa H, Sugimoto N. Fit-For-All iPSC-Derived Cell Therapies and Their Evaluation in Humanized Mice With NK Cell Immunity. Front Immunol 2021; 12:662360. [PMID: 33897711 PMCID: PMC8059435 DOI: 10.3389/fimmu.2021.662360] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can be limitlessly expanded and differentiated into almost all cell types. Moreover, they are amenable to gene manipulation and, because they are established from somatic cells, can be established from essentially any person. Based on these characteristics, iPSCs have been extensively studied as cell sources for tissue grafts, blood transfusions and cancer immunotherapies, and related clinical trials have started. From an immune-matching perspective, autologous iPSCs are perfectly compatible in principle, but also require a prolonged time for reaching the final products, have high cost, and person-to-person variation hindering their common use. Therefore, certified iPSCs with reduced immunogenicity are expected to become off-the-shelf sources, such as those made from human leukocyte antigen (HLA)-homozygous individuals or genetically modified for HLA depletion. Preclinical tests using immunodeficient mice reconstituted with a human immune system (HIS) serve as an important tool to assess the human alloresponse against iPSC-derived cells. Especially, HIS mice reconstituted with not only human T cells but also human natural killer (NK) cells are considered crucial. NK cells attack so-called “missing self” cells that do not express self HLA class I, which include HLA-homozygous cells that express only one allele type and HLA-depleted cells. However, conventional HIS mice lack enough reconstituted human NK cells for these tests. Several measures have been developed to overcome this issue including the administration of cytokines that enhance NK cell expansion, such as IL-2 and IL-15, the administration of vectors that express those cytokines, and genetic manipulation to express the cytokines or to enhance the reconstitution of human myeloid cells that express IL15R-alpha. Using such HIS mice with enhanced human NK cell reconstitution, alloresponses against HLA-homozygous and HLA-depleted cells have been studied. However, most studies used HLA-downregulated tumor cells as the target cells and tested in vitro after purifying human cells from HIS mice. In this review, we give an overview of the current state of iPSCs in cell therapies, strategies to lessen their immunogenic potential, and then expound on the development of HIS mice with reconstituted NK cells, followed by their utilization in evaluating future universal HLA-engineered iPSC-derived cells.
Collapse
Affiliation(s)
- Charlotte Flahou
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
56
|
Augustine R, Dan P, Hasan A, Khalaf IM, Prasad P, Ghosal K, Gentile C, McClements L, Maureira P. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother 2021; 138:111425. [PMID: 33756154 DOI: 10.1016/j.biopha.2021.111425] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide. Cardiac tissue engineering strategies focusing on biomaterial scaffolds incorporating cells and growth factors are emerging as highly promising for cardiac repair and regeneration. The use of stem cells within cardiac microengineered tissue constructs present an inherent ability to differentiate into cell types of the human heart. Stem cells derived from various tissues including bone marrow, dental pulp, adipose tissue and umbilical cord can be used for this purpose. Approaches ranging from stem cell injections, stem cell spheroids, cell encapsulation in a suitable hydrogel, use of prefabricated scaffold and bioprinting technology are at the forefront in the field of cardiac tissue engineering. The stem cell microenvironment plays a key role in the maintenance of stemness and/or differentiation into cardiac specific lineages. This review provides a detailed overview of the recent advances in microengineering of autologous stem cell-based tissue engineering platforms for the repair of damaged cardiac tissue. A particular emphasis is given to the roles played by the extracellular matrix (ECM) in regulating the physiological response of stem cells within cardiac tissue engineering platforms.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | - Pan Dan
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France; Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | | | - Parvathy Prasad
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Kajal Ghosal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur 713206, India
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; School of Medicine, Faculty of Medicine and Health, University of Sydney, NSW 2000, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Pablo Maureira
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France
| |
Collapse
|
57
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
58
|
Saito-Moriya R, Nakayama J, Kamiya G, Kitada N, Obata R, Maki SA, Aoyama H. How to Select Firefly Luciferin Analogues for In Vivo Imaging. Int J Mol Sci 2021; 22:1848. [PMID: 33673331 PMCID: PMC7918177 DOI: 10.3390/ijms22041848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bioluminescence reactions are widely applied in optical in vivo imaging in the life science and medical fields. Such reactions produce light upon the oxidation of a luciferin (substrate) catalyzed by a luciferase (enzyme), and this bioluminescence enables the quantification of tumor cells and gene expression in animal models. Many researchers have developed single-color or multicolor bioluminescence systems based on artificial luciferin analogues and/or luciferase mutants, for application in vivo bioluminescence imaging (BLI). In the current review, we focus on the characteristics of firefly BLI technology and discuss the development of luciferin analogues for high-resolution in vivo BLI. In addition, we discuss the novel luciferin analogues TokeOni and seMpai, which show potential as high-sensitivity in vivo BLI reagents.
Collapse
Affiliation(s)
- Ryohei Saito-Moriya
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Genta Kamiya
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Nobuo Kitada
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Rika Obata
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Shojiro A Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Hiroshi Aoyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
59
|
Kim HJ, Hong SJ, Lee S, Park JM, Park J, Park JS, Shim SH, Park K. Induction of Bone Formation by 3D Biologically Active Scaffolds Containing RGD‐NPs, BMP2, and NtMPCs. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Suk Jun Hong
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sujin Lee
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Jong Min Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji‐In Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji Sun Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sung Han Shim
- Laboratory of Molecular Genetics Department of Biomedical Science College of Life Science CHA University 629, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Keun‐Hong Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| |
Collapse
|
60
|
Salicylic diamines selectively eliminate residual undifferentiated cells from pluripotent stem cell-derived cardiomyocyte preparations. Sci Rep 2021; 11:2391. [PMID: 33504837 PMCID: PMC7841182 DOI: 10.1038/s41598-021-81351-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical translation of pluripotent stem cell (PSC) derivatives is hindered by the tumorigenic risk from residual undifferentiated cells. Here, we identified salicylic diamines as potent agents exhibiting toxicity to murine and human PSCs but not to cardiomyocytes (CMs) derived from them. Half maximal inhibitory concentrations (IC50) of small molecules SM2 and SM6 were, respectively, 9- and 18-fold higher for human than murine PSCs, while the IC50 of SM8 was comparable for both PSC groups. Treatment of murine embryoid bodies in suspension differentiation cultures with the most effective small molecule SM6 significantly reduced PSC and non-PSC contamination and enriched CM populations that would otherwise be eliminated in genetic selection approaches. All tested salicylic diamines exerted their toxicity by inhibiting the oxygen consumption rate (OCR) in PSCs. No or only minimal and reversible effects on OCR, sarcomeric integrity, DNA stability, apoptosis rate, ROS levels or beating frequency were observed in PSC-CMs, although effects on human PSC-CMs seemed to be more deleterious at higher SM-concentrations. Teratoma formation from SM6-treated murine PSC-CMs was abolished or delayed compared to untreated cells. We conclude that salicylic diamines represent promising compounds for PSC removal and enrichment of CMs without the need for other selection strategies.
Collapse
|
61
|
Li S, Akrap N, Cerboni S, Porritt MJ, Wimberger S, Lundin A, Möller C, Firth M, Gordon E, Lazovic B, Sieńska A, Pane LS, Coelho MA, Ciotta G, Pellegrini G, Sini M, Xu X, Mitra S, Bohlooly-Y M, Taylor BJM, Sienski G, Maresca M. Universal toxin-based selection for precise genome engineering in human cells. Nat Commun 2021; 12:497. [PMID: 33479216 PMCID: PMC7820243 DOI: 10.1038/s41467-020-20810-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems.
Collapse
Affiliation(s)
- Songyuan Li
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Nina Akrap
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Silvia Cerboni
- Translational Science and Experimental Medicine, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michelle J Porritt
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Wimberger
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lundin
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carl Möller
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- R&D Data Infrastructure & Tools, AstraZeneca, Cambridge, UK
| | - Euan Gordon
- Discovery Biology SWE, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bojana Lazovic
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Aleksandra Sieńska
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luna Simona Pane
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Giovanni Ciotta
- Discovery Biology UK, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Giovanni Pellegrini
- CVRM pathology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcella Sini
- CVRM pathology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiufeng Xu
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Suman Mitra
- Inserm UMR1277 CNRS UMR9020 - CANTHER, Institut pour la Recherche sur le Cancer de Lille, Lille, France
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Benjamin J M Taylor
- Discovery Biology UK, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Grzegorz Sienski
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Marcello Maresca
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
62
|
Nakajima T, Ikeya M. Development of pluripotent stem cell-based human tenocytes. Dev Growth Differ 2020; 63:38-46. [PMID: 33270251 DOI: 10.1111/dgd.12702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (PSCs) are used as a platform for therapeutic purposes such as cell transplantation therapy and drug discovery. Another motivation for studying PSCs is to understand human embryogenesis and development. All cell types that make up the body tissues develop through defined trajectories during embryogenesis. For example, paraxial mesoderm is considered to differentiate into several cell types including skeletal muscle cells, chondrocytes, osteocytes, dermal fibroblasts, and tenocytes. Tenocytes are fibroblast cells that constitute the tendon. The step-wise narrowing fate decisions of paraxial mesoderm in the embryo have been modeled in vitro using PSCs; however, deriving tenocytes from human-induced PSCs and their application in cell therapy have long been challenging. PSC-derived tenocytes can be used for a source of cell transplantation to treat a damaged or ruptured tendon due to injury, disorder, or aging. In this review, we discuss the latest research findings on the use of PSCs for studying the biology of tenocyte development and their application in therapeutic settings.
Collapse
Affiliation(s)
- Taiki Nakajima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
63
|
Demirci S, Leonard A, Tisdale JF. Hematopoietic stem cells from pluripotent stem cells: Clinical potential, challenges, and future perspectives. Stem Cells Transl Med 2020; 9:1549-1557. [PMID: 32725882 PMCID: PMC7695636 DOI: 10.1002/sctm.20-0247] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The generation of hematopoietic stem cells (HSCs) from induced pluripotent stem cells (iPSCs) is an active and promising area of research; however, generating engraftable HSCs remains a major obstacle. Ex vivo HSC derivation from renewable sources such as iPSCs offers an experimental tool for studying developmental hematopoiesis, disease modeling, and drug discovery, and yields tremendous therapeutic potential for malignant and nonmalignant hematological disorders. Although initial attempts mostly recapitulated yolk sac primitive/definitive hematopoiesis with inability to engraft, recent advances suggest the feasibility of engraftable HSC derivation from iPSCs utilizing ectopic transcription factor expression. Strategic development for de novo HSC generation includes further investigations of HSC ontogeny, and elucidation of critical signaling pathways, epigenetic modulations, HSC and iPSC microenvironment, and cell-cell interactions that contribute to stem cell biology and function.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
64
|
Huang Z, Powell R, Phillips JB, Haastert-Talini K. Perspective on Schwann Cells Derived from Induced Pluripotent Stem Cells in Peripheral Nerve Tissue Engineering. Cells 2020; 9:E2497. [PMID: 33213068 PMCID: PMC7698557 DOI: 10.3390/cells9112497] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Schwann cells play a crucial role in successful peripheral nerve repair and regeneration by supporting both axonal growth and myelination. Schwann cells are therefore a feasible option for cell therapy treatment of peripheral nerve injury. However, sourcing human Schwann cells at quantities required for development beyond research is challenging. Due to their availability, rapid in vitro expansion, survival, and integration within the host tissue, stem cells have attracted considerable attention as candidate cell therapies. Among them, induced pluripotent stem cells (iPSCs) with the associated prospects for personalized treatment are a promising therapy to take the leap from bench to bedside. In this critical review, we firstly focus on the current knowledge of the Schwann cell phenotype in regard to peripheral nerve injury, including crosstalk with the immune system during peripheral nerve regeneration. Then, we review iPSC to Schwann cell derivation protocols and the results from recent in vitro and in vivo studies. We finally conclude with some prospects for the use of iPSCs in clinical settings.
Collapse
Affiliation(s)
- Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30623 Hannover, Germany;
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
| | - Rebecca Powell
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
- UCL Centre for Nerve Engineering, University College London, London WC1E 6BT, UK
| | - James B. Phillips
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
- UCL Centre for Nerve Engineering, University College London, London WC1E 6BT, UK
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30623 Hannover, Germany;
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
| |
Collapse
|
65
|
Luciani M, Gritti A, Meneghini V. Human iPSC-Based Models for the Development of Therapeutics Targeting Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:224. [PMID: 33062642 PMCID: PMC7530250 DOI: 10.3389/fmolb.2020.00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 01/30/2023] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of rare genetic conditions. The absence or deficiency of lysosomal proteins leads to excessive storage of undigested materials and drives secondary pathological mechanisms including autophagy, calcium homeostasis, ER stress, and mitochondrial abnormalities. A large number of LSDs display mild to severe central nervous system (CNS) involvement. Animal disease models and post-mortem tissues partially recapitulate the disease or represent the final stage of CNS pathology, respectively. In the last decades, human models based on induced pluripotent stem cells (hiPSCs) have been extensively applied to investigate LSD pathology in several tissues and organs, including the CNS. Neural stem/progenitor cells (NSCs) derived from patient-specific hiPSCs (hiPS-NSCs) are a promising tool to define the effects of the pathological storage on neurodevelopment, survival and function of neurons and glial cells in neurodegenerative LSDs. Additionally, the development of novel 2D co-culture systems and 3D hiPSC-based models is fostering the investigation of neuron-glia functional and dysfunctional interactions, also contributing to define the role of neurodevelopment and neuroinflammation in the onset and progression of the disease, with important implications in terms of timing and efficacy of treatments. Here, we discuss the advantages and limits of the application of hiPS-NSC-based models in the study and treatment of CNS pathology in different LSDs. Additionally, we review the state-of-the-art and the prospective applications of NSC-based therapy, highlighting the potential exploitation of hiPS-NSCs for gene and cell therapy approaches in the treatment of neurodegenerative LSDs.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
66
|
Nishimura T, Xu H, Iwasaki M, Karigane D, Saavedra B, Takahashi Y, Suchy FP, Monobe S, Martin RM, Ohtaka M, Nakanishi M, Burrows SR, Cleary ML, Majeti R, Shibuya A, Nakauchi H. Sufficiency for inducible Caspase-9 safety switch in human pluripotent stem cells and disease cells. Gene Ther 2020; 27:525-534. [PMID: 32704085 DOI: 10.1038/s41434-020-0179-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promising potential for opening new avenues in regenerative medicine. However, since the tumorigenic potential of undifferentiated pluripotent stem cells (PSCs) is a major safety concern for clinical transplantation, inducible Caspase-9 (iC9) is under consideration for use as a fail-safe system. Here, we used targeted gene editing to introduce the iC9 system into human iPSCs, and then interrogated the efficiency of inducible apoptosis with normal iPSCs as well as diseased iPSCs derived from patients with acute myeloid leukemia (AML-iPSCs). The iC9 system induced quick and efficient apoptosis to iPSCs in vitro. More importantly, complete eradication of malignant cells without AML recurrence was shown in disease mouse models by using AML-iPSCs. In parallel, it shed light on several limitations of the iC9 system usage. Our results suggest that careful use of the iC9 system will serve as an important countermeasure against posttransplantation adverse events in stem cell transplantation therapies.
Collapse
Affiliation(s)
- Toshinobu Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Haojun Xu
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Iwasaki
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Advanced Health Science, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Daiki Karigane
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Brandon Saavedra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yusuke Takahashi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shinichiro Monobe
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renata M Martin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8562, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8562, Japan
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Michael L Cleary
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.,Life Science Center of Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|