51
|
Huang H, Lyu Y, Nan K. Soft robot-enabled controlled release of oral drug formulations. SOFT MATTER 2023; 19:1269-1281. [PMID: 36723379 DOI: 10.1039/d2sm01624a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The creation of highly effective oral drug delivery systems (ODDSs) has long been the main objective of pharmaceutical research. Multidisciplinary efforts involving materials, electronics, control, and pharmaceutical sciences encourage the development of robot-enabled ODDSs. Compared with conventional rigid robots, soft robots potentially offer better mechanical compliance and biocompatibility with biological tissues, more versatile shape control and maneuverability, and multifunctionality. In this paper, we first describe and highlight the importance of manipulating drug release kinetics, i.e. pharmaceutical kinetics. We then introduce an overview of state-of-the-art soft robot-based ODDSs comprising resident, shape-programming, locomotive, and integrated soft robots. Finally, the challenges and outlook regarding future soft robot-based ODDS development are discussed.
Collapse
Affiliation(s)
- Hao Huang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
52
|
Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS NANO 2023; 17:27-50. [PMID: 36534488 DOI: 10.1021/acsnano.2c04716] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Untethered miniature robots enable targeted delivery and therapy deep inside the gastrointestinal tract in a minimally invasive manner. By combining actuation systems and imaging tools, significant progress has been made toward the development of functional microrobots. These robots can be actuated by external fields and fuels while featuring real-time tracking feedback toward certain regions and can perform the therapeutic process by rational exertion of the local environment of the gastrointestinal tract (e.g., pH, enzyme). Compared with conventional surgical tools, such as endoscopic devices and catheters, miniature robots feature minimally invasive diagnosis and treatment, multifunctionality, high safety and adaptivity, embodied intelligence, and easy access to tortuous and narrow lumens. In addition, the active motion of microrobots enhances local penetration and retention of drugs in tissues compared to common passive oral drug delivery. Based on the dissimilar microenvironments in the various sections of the gastrointestinal tract, this review introduces the advances of miniature robots for minimally invasive targeted delivery and therapy of diseases along the gastrointestinal tract. The imaging modalities for the tracking and their application scenarios are also discussed. We finally evaluate the challenges and barriers that retard their applications and hint on future research directions in this field.
Collapse
Affiliation(s)
- Yun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen518036, P.R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| |
Collapse
|
53
|
Guo P, Tao S. Chirality enhanced shear‐free mixing of highly viscous fluids in an origami reactor. AIChE J 2022. [DOI: 10.1002/aic.18002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pengfei Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering Dalian University of Technology Dalian China
- Department of Chemistry, School of Chemical Engineering Dalian University of Technology Dalian Liaoning China
| | - Shengyang Tao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering Dalian University of Technology Dalian China
- Department of Chemistry, School of Chemical Engineering Dalian University of Technology Dalian Liaoning China
| |
Collapse
|
54
|
Zhang S, Ke X, Jiang Q, Chai Z, Wu Z, Ding H. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200671. [PMID: 35732070 DOI: 10.1002/adma.202200671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Small-scale soft robots are attracting increasing interest for visible and potential applications owing to their safety and tolerance resulting from their intrinsic soft bodies or compliant structures. However, it is not sufficient that the soft bodies merely provide support or system protection. More importantly, to meet the increasing demands of controllable operation and real-time feedback in unstructured/complicated scenarios, these robots are required to perform simplex and multimodal functionalities for sensing, communicating, and interacting with external environments during large or dynamic deformation with the risk of mismatch or delamination. Challenges are encountered during fabrication and integration, including the selection and fabrication of composite/materials and structures, integration of active/passive functional modules with robust interfaces, particularly with highly deformable soft/stretchable bodies. Here, methods and strategies of fabricating structural soft bodies and integrating them with functional modules for developing small-scale soft robots are investigated. Utilizing templating, 3D printing, transfer printing, and swelling, small-scale soft robots can be endowed with several perceptual capabilities corresponding to diverse stimulus, such as light, heat, magnetism, and force. The integration of sensing and functionalities effectively enhances the agility, adaptability, and universality of soft robots when applied in various fields, including smart manufacturing, medical surgery, biomimetics, and other interdisciplinary sciences.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingxing Ke
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qin Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Chai
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
55
|
Greenwood TE, Cagle H, Pulver B, Pak OS, Lin Kong Y. Ingestible Functional Magnetic Robot with Localized Flexibility (MR-LF). ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 4:2200166. [PMID: 37994359 PMCID: PMC10665024 DOI: 10.1002/aisy.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/24/2023]
Abstract
The integration of an ingestible dosage form with sensing, actuation, and drug delivery capabilities can enable a broad range of surgical-free diagnostic and treatment strategies. However, the gastrointestinal (GI) tract is a highly constrained and complex luminal construct that fundamentally limits the size of an ingestible system. Recent advancements in mesoscale magnetic crawlers have demonstrated the ability to effectively traverse complex and confined systems by leveraging magnetic fields to induce contraction and bending-based locomotion. However, the integration of functional components (e.g., electronics) in the proposed ingestible system remains fundamentally challenging. Herein, the creation of a centralized compartment in a magnetic robot by imparting localized flexibility (MR-LF) is demonstrated. The centralized compartment enables MR-LF to be readily integrated with modular functional components and payloads, such as commercial off-the-shelf electronics and medication, while preserving its bidirectionality in an ingestible form factor. The ability of MR-LF to incorporate electronics, perform drug delivery, guide continuum devices such as catheters, and navigate air-water environments in confined lumens is demonstrated. The MR-LF enables functional integration to create a highly-integrated ingestible system that can ultimately address a broad range of unmet clinical needs.
Collapse
Affiliation(s)
- Taylor E Greenwood
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 (USA)
| | - Henry Cagle
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 (USA)
| | - Benson Pulver
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 (USA)
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053 (USA)
| | - Yong Lin Kong
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 (USA)
| |
Collapse
|
56
|
Wang D, Liu Y, Deng J, Zhang S, Li J, Wang W, Liu J, Chen W, Quan Q, Liu G, Xie H, Zhao J. Miniature Amphibious Robot Actuated by Rigid-Flexible Hybrid Vibration Modules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203054. [PMID: 35981889 PMCID: PMC9561757 DOI: 10.1002/advs.202203054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Amphibious robots can undertake various tasks in terrestrial and aquatic environments for their superior environmental compatibility. However, the existing amphibious robots usually utilize multi-locomotion systems with transmission mechanisms, leading to complex and bulky structures. Here, a miniature amphibious robot based on vibration-driven locomotion mechanism is developed. The robot has two unique rigid-flexible hybrid modules (RFH-modules), in which a soft foot and a flexible fin are arranged on a rigid leg to conduct vibrations from an eccentric motor to the environment. Then, it can run on ground with the soft foot adopting the friction locomotion mechanism and swim on water with the flexible fin utilizing the vibration-induced flow mechanism. The robot is untethered with a compact size of 75 × 95 × 21 mm3 and a small weight of 35 g owing to no transmission mechanism or joints. It realizes the maximum speed of 815 mm s-1 on ground and 171 mm s-1 on water. The robot, actuated by the RFH-modules based on vibration-driven locomotion mechanism, exhibits the merits of miniature structure and fast movements, indicating its great potential for applications in narrow amphibious environments.
Collapse
Affiliation(s)
- Dehong Wang
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Yingxiang Liu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jie Deng
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Shijing Zhang
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jing Li
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Weiyi Wang
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Junkao Liu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Weishan Chen
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Qiquan Quan
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Gangfeng Liu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Hui Xie
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jie Zhao
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
57
|
Wang Z, Shi D, Wang X, Chen Y, Yuan Z, Li Y, Ge Z, Yang W. A Multifunctional Light-Driven Swimming Soft Robot for Various Application Scenarios. Int J Mol Sci 2022; 23:ijms23179609. [PMID: 36077007 PMCID: PMC9455906 DOI: 10.3390/ijms23179609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The locomotor behavior of creatures in nature can bring a lot of inspiration for the fabrication of soft actuators. In this paper, we fabricated a bionic light-driven swimming soft robot that can perform grasping of tiny objects and achieve the task of object transfer. By adding carbon nanotubes (CNTs), the temperature-sensitive hydrogels can be endowed with light-responsive properties. The fabricated composite hydrogel structure can control the contraction and expansion of volume by light, which is similar to the contraction and diastole behavior of muscles. The oscillation of the fish tail and the grasping action of the normally closed micromanipulator can be achieved by the control of the irradiation of the xenon light source. The bending of the bionic arm can be controlled by the irradiation of a near-infrared (NIR) laser, which transforms the spatial position and posture of the micromanipulator. The proposed scheme is feasible for miniaturized fabrication and application of flexible actuators. This work provides some important insights for the study of light-driven microrobots and light-driven flexible actuators.
Collapse
Affiliation(s)
- Zhen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Dongni Shi
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Zheng Yuan
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yan Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
- Correspondence: (Y.L.); (W.Y.)
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
- Correspondence: (Y.L.); (W.Y.)
| |
Collapse
|
58
|
Origami mini-robot does gymnastics for a good cause. Nature 2022. [DOI: 10.1038/d41586-022-01649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|