51
|
Liu M, Zhang J, Su H, Jiang Y, Zhou W, Yang C, Bo S, Pan J, Liu Q. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat Commun 2024; 15:1675. [PMID: 38396104 PMCID: PMC10891135 DOI: 10.1038/s41467-024-45990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Single-atom catalysts, especially those with metal-N4 moieties, hold great promise for facilitating the oxygen reduction reaction. However, the symmetrical distribution of electrons within the metal-N4 moiety results in unsatisfactory adsorption strength of intermediates, thereby limiting their performance improvements. Herein, we present atomically coordination-regulated Co single-atom catalysts that comprise a symmetry-broken Cl-Co-N4 moiety, which serves to break the symmetrical electron distribution. In situ characterizations reveal the dynamic evolution of the symmetry-broken Cl-Co-N4 moiety into a coordination-reduced Cl-Co-N2 structure, effectively optimizing the 3d electron filling of Co sites toward a reduced d-band electron occupancy (d5.8 → d5.28) under reaction conditions for a fast four-electron oxygen reduction reaction process. As a result, the coordination-regulated Co single-atom catalysts deliver a large half-potential of 0.93 V and a mass activity of 5480 A gmetal-1. Importantly, a Zn-air battery using the coordination-regulated Co single-atom catalysts as the cathode also exhibits a large power density and excellent stability.
Collapse
Affiliation(s)
- Meihuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, Hunan, China
| | - Jing Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Yaling Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, Hunan, China.
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China.
| |
Collapse
|
52
|
Zhu HJ, Si DH, Guo H, Chen Z, Cao R, Huang YB. Oxygen-tolerant CO 2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy. Nat Commun 2024; 15:1479. [PMID: 38368417 PMCID: PMC10874412 DOI: 10.1038/s41467-024-45959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
The direct use of flue gas for the electrochemical CO2 reduction reaction is desirable but severely limited by the thermodynamically favorable oxygen reduction reaction. Herein, a photonicswitching unit 1,2-Bis(5'-formyl-2'-methylthien-3'-yl)cyclopentene (DAE) is integrated into a cobalt porphyrin-based covalent organic framework for highly efficient CO2 electrocatalysis under aerobic environment. The DAE moiety in the material can reversibly modulate the O2 activation capacity and electronic conductivity by the framework ring-closing/opening reactions under UV/Vis irradiation. The DAE-based covalent organic framework with ring-closing type shows a high CO Faradaic efficiency of 90.5% with CO partial current density of -20.1 mA cm-2 at -1.0 V vs. reversible hydrogen electrode by co-feeding CO2 and 5% O2. This work presents an oxygen passivation strategy to realize efficient CO2 electroreduction performance by co-feeding of CO2 and O2, which would inspire to design electrocatalysts for the practical CO2 source such as flue gas from power plants or air.
Collapse
Affiliation(s)
- Hong-Jing Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Hui Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Ziao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China
- University of Chinese Academy of Science, 100049, Beijing, PR China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, PR China.
- University of Chinese Academy of Science, 100049, Beijing, PR China.
| |
Collapse
|
53
|
Zhang L, Liu T, Liu X, Li S, Zhang X, Luo Q, Ding T, Yao T, Zhang W. Highly dispersed ultrafine PtCo alloy nanoparticles on unique composite carbon supports for proton exchange membrane fuel cells. NANOSCALE 2024; 16:2868-2876. [PMID: 38235504 DOI: 10.1039/d3nr05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The design of highly efficient and robust platinum-based electrocatalysts is pivotal for proton exchange membrane fuel cells (PEMFC). One of the long-standing issues for PEMFC is the rapid deactivation of the catalyst under working conditions. Here, we report a simple synthesis strategy for ultrafine PtCo alloy nanoparticles loaded on a unique carbon support derived from a zeolitic imidazolate framework-67 (ZIF-67) and Ketjen Black (KB) composite, exhibiting a remarkable catalytic performance toward the oxygen reduction reaction (ORR) and PEMFC. Benefitting from the N-doping and wide pore size distribution of the composite carbon supports, the growth of PtCo nanoparticles can be evenly restricted, leading to a uniform distribution. The Pt-integrated catalyst delivers an outstanding electrochemical performance with a mass activity that is 8.6 times higher than that of the commercial Pt/C catalyst. Impressively, the accelerated durability test (ADT) demonstrates that the hybrid carbon support can significantly enhance the durability. Theoretical simulations highlight the synergistic contribution between the supports and the PtCo nanoparticles. Moreover, hydrogen-oxygen fuel cells assembled with the catalyst exhibited a high power density of 1.83 W cm-2 at 4 A cm-2. These results provide a new opportunity to design advanced catalysts for PEMFC.
Collapse
Affiliation(s)
- Lingling Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Tong Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Sicheng Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Xue Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Tao Ding
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
54
|
Cui K, Tang X, Xu X, Kou M, Lyu P, Xu Y. Crystalline Dual-Porous Covalent Triazine Frameworks as a New Platform for Efficient Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202317664. [PMID: 38131249 DOI: 10.1002/anie.202317664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Crystalline covalent triazine frameworks (CTFs) have gained considerable interest in energy and catalysis owing to their well-defined nitrogen-rich π-conjugated porosity and superior physicochemical properties, however, suffer from very limited molecular structures. Herein we report a novel solvent-free FeCl3 -catalyzed polymerization of 2, 6-pyridinedicarbonitrile (DCP) to achieve the first synthesis of crystalline, dual-porous, pyridine-based CTF (Fe-CTF). The FeCl3 could not only act as a highly active Lewis acid catalyst for promoting the two-dimensional ordered polymerization of DCP monomers, but also in situ coordinate with the tridentate chelators generated between pyridine and triazine groups to yield unique Fe-N3 single-atom active sites in Fe-CTF. Abundant few-layer crystalline nanosheets (Fe-CTF NSs) could be prepared through simple ball-milling exfoliation of the bulk layered Fe-CTF and exhibited remarkable electrocatalytic performance for oxygen reduction reaction (ORR) with a half-wave potential and onset potential up to 0.902 and 1.02 V respectively, and extraordinary Zn-air battery performance with an ultrahigh specific capacity and power density of 811 mAh g-1 and 230 mW cm-2 respectively. By combining operando X-ray absorption spectroscopy with density functional theory calculations, we revealed a dynamic and reversible evolution of Fe-N3 to Fe-N2 during the electrocatalytic process, which could further accelerate the electrocatalytic reaction.
Collapse
Affiliation(s)
- Kai Cui
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiaoliang Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiaopei Xu
- College of Science, Henan University of Technology, Zhengzhou, 450001, Henan Province, China
| | - Manchang Kou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
55
|
Jin Z, Jiao D, Dong Y, Liu L, Fan J, Gong M, Ma X, Wang Y, Zhang W, Zhang L, Gen Yu Z, Voiry D, Zheng W, Cui X. Boosting Electrocatalytic Carbon Dioxide Reduction via Self-Relaxation of Asymmetric Coordination in Fe-Based Single Atom Catalyst. Angew Chem Int Ed Engl 2024; 63:e202318246. [PMID: 38102742 DOI: 10.1002/anie.202318246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Addressing the limitations arising from the consistent catalytic behavior observed for various intermediates during the electrochemical carbon dioxide reduction reaction (CO2 RR) poses a significant challenge in the optimization of catalytic activity. In this study, we aimed to address this challenge by constructing an asymmetric coordination Fe single atom catalyst (SCA) with a dynamically evolved structure. Our catalyst, consisting of a Fe atom coordinated with one S atom and three N atoms (Fe-S1 N3 ), exhibited exceptional selectivity (CO Faradaic efficiency of 99.02 %) and demonstrated a high intrinsic activity (TOF of 7804.34 h-1 ), and remarkable stability. Using operando XAFS spectra and Density Functional Theory (DFT) calculations, we elucidated the self-relaxation of geometric distortion and dynamic evolution of bond lengths within the catalyst. These structure changes enabled independent regulation of the *COOH and *CO intermediate adsorption energies, effectively breaking the linear scale relationship and enhancing the intrinsic activity of CO2 RR. This study provides valuable insights into the dynamic evolution of SACs and paves the way for targeted catalyst designs aimed to disrupt the linear scaling relationships.
Collapse
Affiliation(s)
- Zhaoyong Jin
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Dongxu Jiao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Yilong Dong
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Lin Liu
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Jinchang Fan
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Ming Gong
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Xingcheng Ma
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Ying Wang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Wei Zhang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Lei Zhang
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, 138632, Singapore, Singapore
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000, Montpellier, France
| | - Weitao Zheng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| |
Collapse
|
56
|
Wang T, Zhang Q, Lian K, Qi G, Liu Q, Feng L, Hu G, Luo J, Liu X. Fe nanoparticles confined by multiple-heteroatom-doped carbon frameworks for aqueous Zn-air battery driving CO 2 electrolysis. J Colloid Interface Sci 2024; 655:176-186. [PMID: 37935071 DOI: 10.1016/j.jcis.2023.10.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Metal-organic frameworks (MOF) derived carbon materials are considered to be excellent conductive mass transfer substrates, and the large specific surface area provides a favorable platform for loading metal nanoparticles. Tuning the coordination of metals through polyacid doping to change the MOF structure and specific surface area is an advanced strategy for designing catalysts. Modification of Fe-doped ZIF-8 pre-curing by pyrolysis of phosphomolybdic acid hydrate (PMo), Fe nanoparticles confined by Mo and N co-doped carbon frameworks (Fe-NP/MNCF) were fabricated, and the impact of PMo doping on the shape and functionality of the catalysts was investigated. The Zn-air battery (ZAB) driven CO2 electrolysis was realized by using Fe-NP/MNCF, which was used as bifunctional oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) catalysts. The results show that the half-wave potential (E1/2) of Fe-NP/MNCF is 0.89 V, and the limiting diffused current density (jL) is 6.4 mA cm-2. The ZAB constructed by Fe-NP/MNCF shows a high specific capacity of 794.8 mAh gZn-1, a high open-circuit voltage (OCV) of 1.475 V, and a high power density of 111.6 mW cm-2. Fe-NP/MNCF exhibited efficient CO2RR performance with high CO Faraday efficiency (FECO) of 87.5 % and current density for the generation of carbon dioxide (jCO) of 10 mA cm-2 at -0.9 V vs RHE. ZAB-driven CO2RR had strong catalytic stability. These findings provide new methods and techniques for the preparation of advanced carbon-based catalysts from MOFs.
Collapse
Affiliation(s)
- Tianwei Wang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Quan Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Kang Lian
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Gaocan Qi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| |
Collapse
|
57
|
Deng Z, Mostaghimi AHB, Gong M, Chen N, Siahrostami S, Wang X. Pd 4d Orbital Overlapping Modulation on Au@Pd Nanowires for Efficient H 2O 2 Production. J Am Chem Soc 2024; 146:2816-2823. [PMID: 38230974 DOI: 10.1021/jacs.3c13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Isolating Pd atoms has been shown to be crucial for the design of a Pd-based electrocatalyst toward 2e- oxygen reduction reaction (ORR). However, there are limited studies focusing on the systematic compositional design that leads to an optimal balance between activity and selectivity. Herein, we design a series of Au@Pd core@shell structures to investigate the influence of the Pd 4d orbital overlapping degree on 2e- ORR performance. Density functional theory (DFT) calculations indicate that enhanced H2O2 selectivity and activity are achieved at Pdn clusters with n ≤ 3, and Pd clusters larger than Pd3 should be active for 4e- ORR. However, experimental results show that Au@Pd nanowires (NWs) with Pd4 as the primary structure exhibit the optimal H2O2 performance in an acidic electrolyte with a high mass activity (7.05 A mg-1 at 0.4 V) and H2O2 selectivity (nearly 95%). Thus, we report that Pd4, instead of Pd3, is the upper threshold of Pd cluster size for an ideal 2e- ORR. It results from the oxygen coverage on the catalyst surface during the ORR process, and such an oxygen coverage phenomenon causes electron redistribution and weakened *OOH binding strength on active sites, leading to enhanced activity of Pd4 with only 0.06 V overpotential in acidic media.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
| | | | - Mingxing Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Ning Chen
- Canadian Light Source, 44 Innovation Blvd., Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Samira Siahrostami
- Department of Chemistry, University of Calgary, 2500 University Drive NW., Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
58
|
Su H, Yang C, Liu M, Zhang X, Zhou W, Zhang Y, Zheng K, Lian S, Liu Q. Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers. Nat Commun 2024; 15:95. [PMID: 38167374 PMCID: PMC10762142 DOI: 10.1038/s41467-023-44483-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Although the acidic oxygen evolution reaction (OER) plays a crucial role in proton-exchange membrane water electrolysis (PEMWE) devices, challenges remain owing to the lack of efficient and acid-stable electrocatalysts. Herein, we present a low-iridium electrocatalyst in which tensile-strained iridium atoms are localized at manganese-oxide surface cation sites (TS-Ir/MnO2) for high and sustainable OER activity. In situ synchrotron characterizations reveal that the TS-Ir/MnO2 can trigger a continuous localized lattice oxygen-mediated (L-LOM) mechanism. In particular, the L-LOM process could substantially boost the adsorption and transformation of H2O molecules over the oxygen vacancies around the tensile-strained Ir sites and prevent further loss of lattice oxygen atoms in the inner MnO2 bulk to optimize the structural integrity of the catalyst. Importantly, the resultant PEMWE device fabricated using TS-Ir/MnO2 delivers a current density of 500 mA cm-2 and operates stably for 200 h.
Collapse
Affiliation(s)
- Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Meihuan Liu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, Hunan, China
| | - Xu Zhang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Yuhao Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Shixun Lian
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China.
| |
Collapse
|
59
|
Zhang T, Luo D, Xiao H, Liang X, Zhang F, Zhuang H, Xu M, Dai W, Qi S, Zheng L, Gao Q. Nonmetallic-Bonding Fe-Mn Diatomic Pairs Anchored on Hollow Carbonaceous Nanodisks for High-Performance Li-S Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306806. [PMID: 37688339 DOI: 10.1002/smll.202306806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The issues of polysulfide shuttling and lethargic sulfur redox reaction (SROR) kinetics are the toughest obstacles of lithium-sulfur (Li-S) battery. Herein, integrating the merits of increased density of metal sites and synergistic catalytic effect, a unique single-atom catalyst (SAC) with nonmetallic-bonding Fe-Mn diatomic pairs anchored on hollow nitrogen-doped carbonaceous nanodisk (denoted as FeMnDA@NC) is successfully constructed and well characterized by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, etc. Density functional theory calculation indicates that the Fe-Mn diatomic pairs can effectively inhibit the shuttle effect by enhancing the adsorption ability retarding the polysulfide migration and accelerate the SROR kinetics. As a result, the Li-S battery assembled with FeMnDA@NC modified separator possesses an excellent electrochemical performance with ultrahigh specific capacities of 1419 mAh g-1 at 0.1 C and 885 mAh g-1 at 3.0 C, respectively. An outstanding specific capacity of 1165 mAh g-1 is achieved at 1.0 C and maintains at 731 mAh g-1 after 700 cycles. Notably, the assembled Li-S battery with a high sulfur loading of 5.35 mg cm-2 harvests a practical areal capacity of 5.70 mAh cm-2 at 0.2 C. A new perspective is offered here to construct advanced SACs suitable for the Li-S battery.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dengfeng Luo
- Peng Cheng Laboratory, Shenzhen, 518055, P. R. China
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hong Xiao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiao Liang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Fanchao Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Huifeng Zhuang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mengyuan Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Wenjing Dai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shuanhu Qi
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiuming Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
60
|
Xia H, Pang R, Dong X, Liu Q, Chen J, Wang E, Li J. Boosting Oxygen Reduction Reaction Kinetics by Designing Rich Vacancy Coupling Pentagons in the Defective Carbon. J Am Chem Soc 2023; 145:25695-25704. [PMID: 37943722 DOI: 10.1021/jacs.3c08556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In the energy conversion context, the design and synthesis of high-performance metal-free carbon nanomaterials with topological defects for the oxygen reduction reaction (ORR) are essential. Herein, we first report a template-assisted strategy to fabricate carbon defect electrocatalysts with rich vacancy coupling pentagons (VP) as active sites in two-dimensional (2D) carbon nanosheets (VP/CNs). Experimental characterizations verify the presence of abundant VP active sites in the VP/CNs electrocatalyst, and the ORR activity is linearly related to the amounts of VP active sites. In situ spectroscopic results identify that the VP/CNs can catalyze direct O-O bond cleavage, bypassing the formation of traditional *OOH intermediates, resulting in the fast kinetics of ORR via a dissociative pathway. The as-prepared VP/CNs show outstanding intrinsic activity for alkaline ORR (half-wave potential of 0.86 V vs reversible hydrogen electrode) with an almost 99% efficiency for four-electron selectivity, outperforming that using the benchmark of Pt/C. Density functional theory calculations further reveal that the cooperative effect between carbon vacancy and adjacent pentagons significantly increases the charge transfer and achieves a lower ORR reaction energy barrier compared with the counterpart of adjacent pentagons or single pentagon. The well-designed carbon defects pave a new avenue for the rational design of metal-free electrocatalysts with high efficiency.
Collapse
Affiliation(s)
- Hongyin Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xieyiming Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qixin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130022, Jilin, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
61
|
Liu J, Xu H, Zhu J, Cheng D. Understanding the Pathway Switch of the Oxygen Reduction Reaction from Single- to Double-/Triple-Atom Catalysts: A Dual Channel for Electron Acceptance-Backdonation. JACS AU 2023; 3:3031-3044. [PMID: 38034973 PMCID: PMC10685438 DOI: 10.1021/jacsau.3c00432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023]
Abstract
Recently, a lot of attention has been dedicated to double- or triple-atom catalysts (DACs/TACs) as promising alternatives to platinum-based catalysts for the oxygen reduction reaction (ORR) in fuel cell applications. However, the ORR activity of DACs/TACs is usually theoretically understood or predicted using the single-site association pathway (O2 → OOH* → O* → OH* → H2O) proposed from Pt-based alloy and single-atom catalysts (SACs). Here, we investigate the ORR process on a series of graphene-supported Fe-Co DACs/TACs by means of first-principles calculation and an electrode microkinetic model. We propose that a dual channel for electron acceptance-backdonation on adjacent metal sites of DACs/TACs efficiently promotes O-O bond breakage compared with SACs, which makes ORR switch to proceed through dual-site dissociation pathways (O2 → O* + OH* → 2OH* → OH* → H2O) from the traditional single-site association pathway. Following this revised ORR network, a complete reaction phase diagram of DACs/TACs is established, where the preferential ORR pathways and activity can be described by a three-dimensional volcano plot spanned by the adsorption free energies of ΔG(O*) and ΔG(OH*). Besides, the kinetics preferability of dual-site dissociation pathways is also appropriate for other graphene- or oxide-supported DACs/TACs. The contribution of dual-site dissociation pathways, rather than the traditional single-site association pathway, makes the theoretical ORR activity of DACs/TACs in better agreement with available experiments, rationalizing the superior kinetic behavior of DACs/TACs to that of SACs. This work reveals the origin of ORR pathway switching from SACs to DACs/TACs, which broadens the ideas and lays the theoretical foundation for the rational design of DACs/TACs and may also be heuristic for other reactions catalyzed by DACs/TACs.
Collapse
Affiliation(s)
- Jin Liu
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Haoxiang Xu
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Jiqin Zhu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Daojian Cheng
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| |
Collapse
|
62
|
Jin Z, Yang M, Dong Y, Ma X, Wang Y, Wu J, Fan J, Wang D, Xi R, Zhao X, Xu T, Zhao J, Zhang L, Singh DJ, Zheng W, Cui X. Atomic Dispersed Hetero-Pairs for Enhanced Electrocatalytic CO 2 Reduction. NANO-MICRO LETTERS 2023; 16:4. [PMID: 37930457 PMCID: PMC10628116 DOI: 10.1007/s40820-023-01214-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) involves a variety of intermediates with highly correlated reaction and ad-desorption energies, hindering optimization of the catalytic activity. For example, increasing the binding of the *COOH to the active site will generally increase the *CO desorption energy. Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO2RR, but remains an unsolved challenge. Herein, we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier. This system shows an unprecedented CO2RR intrinsic activity with TOF of 3336 h-1, high selectivity toward CO production, Faradaic efficiency of 95.96% at - 0.60 V and excellent stability. Theoretical calculations show that the Mo-Fe diatomic sites increased the *COOH intermediate adsorption energy by bridging adsorption of *COOH intermediates. At the same time, d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of *CO intermediates. Thus, the undesirable correlation between these steps is broken. This work provides a promising approach, specifically the use of di-atoms, for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
Collapse
Affiliation(s)
- Zhaoyong Jin
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Meiqi Yang
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Yilong Dong
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Xingcheng Ma
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiandong Wu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Dewen Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Rongshen Xi
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiao Zhao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Tianyi Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Jingxiang Zhao
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China.
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| | - David J Singh
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China.
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
63
|
Li P, Jiao Y, Ruan Y, Fei H, Men Y, Guo C, Wu Y, Chen S. Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts. Nat Commun 2023; 14:6936. [PMID: 37907596 PMCID: PMC10618200 DOI: 10.1038/s41467-023-42749-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
A standing puzzle in electrochemistry is that why the metal-nitrogen-carbon catalysts generally exhibit dramatic activity drop for oxygen reduction when traversing from alkaline to acid. Here, taking FeCo-N6-C double-atom catalyst as a model system and combining the ab initio molecular dynamics simulation and in situ surface-enhanced infrared absorption spectroscopy, we show that it is the significantly distinct interfacial double-layer structures, rather than the energetics of multiple reaction steps, that cause the pH-dependent oxygen reduction activity on metal-nitrogen-carbon catalysts. Specifically, the greatly disparate charge densities on electrode surfaces render different orientations of interfacial water under alkaline and acid oxygen reduction conditions, thereby affecting the formation of hydrogen bonds between the surface oxygenated intermediates and the interfacial water molecules, eventually controlling the kinetics of the proton-coupled electron transfer steps. The present findings may open new and feasible avenues for the design of advanced metal-nitrogen-carbon catalysts for proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Peng Li
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuzhou Jiao
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yaner Ruan
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Houguo Fei
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yana Men
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Cunlan Guo
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuen Wu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China.
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
64
|
Dey G, Jana R, Saifi S, Kumar R, Bhattacharyya D, Datta A, Sinha ASK, Aijaz A. Dual Single-Atomic Co-Mn Sites in Metal-Organic-Framework-Derived N-Doped Nanoporous Carbon for Electrochemical Oxygen Reduction. ACS NANO 2023; 17:19155-19167. [PMID: 37774140 DOI: 10.1021/acsnano.3c05379] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Synthesizing dual single-atom catalysts (DSACs) with atomically isolated metal pairs is a challenging task but can be an effective way to enhance the performance for electrochemical oxygen reduction reaction (ORR). Herein, well-defined DSACs of Co-Mn, stabilized in N-doped porous carbon polyhedra (named CoMn/NC), are synthesized using high-temperature pyrolysis of a Co/Mn-doped zeolitic imidazolate framework. The atomically isolated Co-Mn site in CoMn/NC is recognized by combining microscopic as well as spectroscopic techniques. CoMn/NC exhibited excellent ORR activities in alkaline (E1/2 = 0.89 V) as well as in acidic (E1/2 = 0.82 V) electrolytes with long-term durability and enhanced methanol tolerance. Density functional theory (DFT) suggests that the Co-Mn site is efficiently activating the O-O bond via bridging adsorption, decisive for the 4e- oxygen reduction process. Though the Co-Mn sites favor O2 activation via the dissociative ORR mechanism, stronger adsorption of the intermediates in the dissociative path degrades the overall ORR activity. Our DFT studies conclude that the ORR on an Co-Mn site mainly occurs via bridging side-on O2 adsorption following thermodynamically and kinetically favorable associative mechanistic pathways with a lower overpotential and activation barrier. CoMn/NC performed excellently as a cathode in a proton exchange membrane (PEM) fuel cell and rechargeable Zn-air battery with high peak power densities of 970 and 176 mW cm-2, respectively. This work provides the guidelines for the rational design and synthesis of nonprecious DSACs for enhancing the ORR activity as well as the robustness of DSACs and suggests a design of multifunctional robust electrocatalysts for energy storage and conversion devices.
Collapse
Affiliation(s)
- Gargi Dey
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Rajkumar Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India
| | - Shadab Saifi
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Ravi Kumar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - D Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India
| | - A S K Sinha
- Department of Chemical & Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Arshad Aijaz
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| |
Collapse
|
65
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
66
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
67
|
An Q, Zhang X, Yang C, Su H, Zhou W, Liu M, Zhang X, Sun X, Bo S, Yu F, Jiang J, Zheng K, Liu Q. Engineering Unsymmetrically Coordinated Fe Sites via Heteroatom Pairs Synergetic Contribution for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304303. [PMID: 37566779 DOI: 10.1002/smll.202304303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Indexed: 08/13/2023]
Abstract
Single-atom Fe catalysts are considered as the promising catalysts for oxygen reduction reaction (ORR). However, the high electronegativity of the symmetrical coordination N atoms around Fe site generally results in too strong adsorption of *OOH intermediates on the active site, severely limiting the catalytic performance. Herein, a "heteroatom pair synergetic modulation" strategy is proposed to tailor the coordination environment and spin state of Fe sites, enabling breaking the shackles of unsuitable adsorption of intermediate products on the active centers toward a more efficient ORR pathway. The unsymmetrically Co and B heteroatomic coordinated Fe single sites supported on an N-doped carbon (Fe─B─Co/NC) catalyst perform excellent ORR activity with high half-wave potential (E1/2 ) of 0.891 V and a large kinetic current density (Jk ) of 60.6 mA cm-2 , which is several times better than those of commercial Pt/C catalysts. By virtue of in situ electrochemical impedance and synchrotron infrared spectroscopy, it is observed that the optimized Fe sites can effectively accelerate the evolution of O2 into the *O intermediate, overcoming the sluggish O─O bond cleavage of the *OOH intermediate, which is responsible for fast four-electron reaction kinetics.
Collapse
Affiliation(s)
- Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xu Zhang
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, P. R. China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Meihuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xuan Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Feifan Yu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P. R. China
| | - Jingjing Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Kun Zheng
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
68
|
Li Z, Ji S, Wang C, Liu H, Leng L, Du L, Gao J, Qiao M, Horton JH, Wang Y. Geometric and Electronic Engineering of Atomically Dispersed Copper-Cobalt Diatomic Sites for Synergistic Promotion of Bifunctional Oxygen Electrocatalysis in Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300905. [PMID: 37040668 DOI: 10.1002/adma.202300905] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/09/2023] [Indexed: 06/19/2023]
Abstract
The development of rechargeable zinc-air batteries is heavily dependent on bifunctional oxygen electrocatalysts to offer exceptional oxygen reduction/evolution reaction (ORR/OER) activities. However, the design of such electrocatalysts with high activity and durability is challenging. Herein, a strategy is proposed to create an electrocatalyst comprised of copper-cobalt diatomic sites on a highly porous nitrogen-doped carbon matrix (Cu-Co/NC) with abundantly accessible metal sites and optimal geometric and electronic structures. Experimental findings and theoretical calculations demonstrate that the synergistic effect of Cu-Co dual-metal sites with metal-N4 coordination induce asymmetric charge distributions with moderate adsorption/desorption behavior with oxygen intermediates. This electrocatalyst exhibits extraordinary bifunctional oxygen electrocatalytic activities in alkaline media, with a half-wave potential of 0.92 V for ORR and a low overpotential of 335 mV at 10 mA cm-2 for OER. In addition, it demonstrates exceptional ORR activity in acidic (0.85 V) and neutral (0.74 V) media. When applied to a zinc-air battery, it achieves extraordinary operational performance and outstanding durability (510 h), ranking it as one of the most efficient bifunctional electrocatalysts reported to date. This work demonstrates the importance of geometric and electronic engineering of isolated dual-metal sites for boosting bifunctional electrocatalytic activity in electrochemical energy devices.
Collapse
Affiliation(s)
- Zhijun Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Siqi Ji
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Chun Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hongxue Liu
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Leipeng Leng
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Lei Du
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jincheng Gao
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Man Qiao
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - J Hugh Horton
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
- Department of Chemistry, Queen's University, Kingston, K7L 3N6, Canada
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
69
|
Zhang Z, Ma P, Luo L, Ding X, Zhou S, Zeng J. Regulating Spin States in Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202216837. [PMID: 36598399 DOI: 10.1002/anie.202216837] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Developing efficient and stable transition metal oxides catalysts for energy conversion processes such as oxygen evolution reaction and oxygen reduction reaction is one of the key measures to solve the problem of energy shortage. The spin state of transition metal oxides is strongly correlated with their catalytic activities. In an octahedral structure of transition metal oxides, the spin state of active centers could be regulated by adjusting the splitting energy and the electron pairing energy. Regulating spin state of active centers could directly modulate the d orbitals occupancy, which influence the strength of metal-ligand bonds and the adsorption behavior of the intermediates. In this review, we clarified the significance of regulating spin state of the active centers. Subsequently, we discussed several characterization technologies for spin state and some recent strategies to regulate the spin state of the active centers. Finally, we put forward some views on the future research direction of this vital field.
Collapse
Affiliation(s)
- Zhirong Zhang
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lei Luo
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xilan Ding
- National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|