51
|
Dance A. How did life begin? One key ingredient is coming into view. Nature 2023; 615:22-25. [PMID: 36854922 DOI: 10.1038/d41586-023-00574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
52
|
Benner SA. Rethinking nucleic acids from their origins to their applications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220027. [PMID: 36633284 PMCID: PMC9835595 DOI: 10.1098/rstb.2022.0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 01/13/2023] Open
Abstract
Reviewed are three decades of synthetic biology research in our laboratory that has generated alternatives to standard DNA and RNA as possible informational systems to support Darwinian evolution, and therefore life, and to understand their natural history, on Earth and throughout the cosmos. From this, we have learned that: • the core structure of nucleic acids appears to be a natural outcome of non-biological chemical processes probably in constrained, intermittently irrigated, sub-aerial aquifers on the surfaces of rocky planets like Earth and/or Mars approximately 4.36 ± 0.05 billion years ago; • however, this core is not unique. Synthetic biology has generated many different molecular systems able to support the evolution of molecular information; • these alternatives to standard DNA and RNA support biotechnology, including DNA synthesis, human diagnostics, biomedical research and medicine; • in particular, they support laboratory in vitro evolution (LIVE) with performance to generate catalysts at least 104-105 fold better than standard DNA libraries, enhancing access to receptors and catalysts on demand. Coupling nanostructures to the products of LIVE with expanded DNA offers new approaches for disease therapy; and • nevertheless, a polyelectrolyte structure and size regular building blocks are required for any informational polymer to support Darwinian evolution. These features serve as universal and agnostic biosignatures, useful for seeking life throughout the Solar System. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Steven A. Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard no. 7, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard no. 17, Alachua, FL 32615, USA
| |
Collapse
|
53
|
Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol 2023; 24:414-429. [PMID: 36732602 DOI: 10.1038/s41580-022-00573-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/04/2023]
Abstract
One of the first biological machineries to be created seems to have been the ribosome. Since then, organisms have dedicated great efforts to optimize this apparatus. The ribosomal RNA (rRNA) contained within ribosomes is crucial for protein synthesis and maintenance of cellular function in all known organisms. In eukaryotic cells, rRNA is produced from ribosomal DNA clusters of tandem rRNA genes, whose organization in the nucleolus, maintenance and transcription are strictly regulated to satisfy the substantial demand for rRNA required for ribosome biogenesis. Recent studies have elucidated mechanisms underlying the integrity of ribosomal DNA and regulation of its transcription, including epigenetic mechanisms and a unique recombination and copy-number control system to stably maintain high rRNA gene copy number. In this Review, we disucss how the crucial maintenance of rRNA gene copy number through control of gene amplification and of rRNA production by RNA polymerase I are orchestrated. We also discuss how liquid-liquid phase separation controls the architecture and function of the nucleolus and the relationship between rRNA production, cell senescence and disease.
Collapse
|
54
|
Guo W, Ji D, Kinghorn AB, Chen F, Pan Y, Li X, Li Q, Huck WTS, Kwok CK, Shum HC. Tuning Material States and Functionalities of G-Quadruplex-Modulated RNA-Peptide Condensates. J Am Chem Soc 2023; 145:2375-2385. [PMID: 36689740 DOI: 10.1021/jacs.2c11362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RNA encodes sequence- and structure-dependent interactions to modulate the assembly and properties of biomolecular condensates. RNA G-quadruplexes (rG4s) formed by guanine-rich sequences can trigger the formation of liquid- or solid-like condensates that are involved in many aberrant phase transitions. However, exactly how rG4 motifs modulate different phase transitions and impart distinct material properties to condensates is unclear. Here, using RNA oligonucleotides and cationic peptides as model systems, we show that RNA-peptide condensates exhibit tunability in material properties over a wide spectrum via interactions arising from rG4 folding/unfolding kinetics. rG4-containing oligonucleotides formed strong pairwise attraction with peptides and tended to form solid-like condensates, while their less-structured non-G4 mutants formed liquid-like droplets. We find that the coupling between rG4 dissociation and RNA-peptide complex coacervation triggers solid-to-liquid transition of condensates prior to the complete unfolding of rG4s. This coupling points to a mechanism that material states of rG4-modulated condensates can be finely tuned from solid-like to liquid-like by the addition of less-structured RNA oligonucleotides, which have weak but dominant binding with peptides. We further show that the tunable material states of condensates can enhance RNA aptamer compartmentalization and RNA cleavage reactions. Our results suggest that condensates with complex properties can emerge from subtle changes in RNA oligonucleotides, contributing ways to treat dysfunctional condensates in diseases and insights into prebiotic compartmentalization.
Collapse
Affiliation(s)
- Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Feipeng Chen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Pan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Qingchuan Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| |
Collapse
|
55
|
Kitoun C, Saidjalolov S, Bouquet D, Djago F, Remaury QB, Sargueil B, Poinot P, Etheve-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation to Access Stable Aminoacyl- or Peptidyl-Dinucleotide. ACS OMEGA 2023; 8:3850-3860. [PMID: 36743074 PMCID: PMC9893454 DOI: 10.1021/acsomega.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Aminoacyl- and peptidyl-tRNA are specific biomolecules involved in many biological processes, from ribosomal protein synthesis to the synthesis of peptidoglycan precursors. Here, we report a post-synthetic approach based on traceless Staudinger ligation for the synthesis of a stable amide bond to access aminoacyl- or peptidyl-di-nucleotide. A series of amino-acid and peptide ester phenyl phosphines were synthetized, and their reactivity was studied on a 2'-N3 di-nucleotide. The corresponding 2'-amide di-nucleotides were obtained and characterized by LC-HRMS, and mechanistic interpretations of the influence of the amino acid phenyl ester phosphine were proposed. We also demonstrated that enzymatic 5'-OH phosphorylation is compatible with the acylated di-nucleotide, allowing the possibility to access stable aminoacylated-tRNA.
Collapse
Affiliation(s)
- Camélia Kitoun
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Saidbakhrom Saidjalolov
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Delphine Bouquet
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Fabiola Djago
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Quentin Blancart Remaury
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Bruno Sargueil
- Université
Paris Cité, CNRS, UMR 8038/CiTCoM, Paris F-75006, France
| | - Pauline Poinot
- Institut
de Chimie des Milieux et Matériaux de Poitiers IC2MP, Université
de Poitiers, UMR 7285, Poitiers 86073, France
| | - Mélanie Etheve-Quelquejeu
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Laura Iannazzo
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| |
Collapse
|
56
|
Thoma B, Powner MW. Selective Synthesis of Lysine Peptides and the Prebiotically Plausible Synthesis of Catalytically Active Diaminopropionic Acid Peptide Nitriles in Water. J Am Chem Soc 2023; 145:3121-3130. [PMID: 36700882 PMCID: PMC9912261 DOI: 10.1021/jacs.2c12497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Why life encodes specific proteinogenic amino acids remains an unsolved problem, but a non-enzymatic synthesis that recapitulates biology's universal strategy of stepwise N-to-C terminal peptide growth may hold the key to this selection. Lysine is an important proteinogenic amino acid that, despite its essential structural, catalytic, and functional roles in biochemistry, has widely been assumed to be a late addition to the genetic code. Here, we demonstrate that lysine thioacids undergo coupling with aminonitriles in neutral water to afford peptides in near-quantitative yield, whereas non-proteinogenic lysine homologues, ornithine, and diaminobutyric acid cannot form peptides due to rapid and quantitative cyclization that irreversibly blocks peptide synthesis. We demonstrate for the first time that ornithine lactamization provides an absolute differentiation of lysine and ornithine during (non-enzymatic) N-to-C-terminal peptide ligation. We additionally demonstrate that the shortest lysine homologue, diaminopropionic acid, undergoes effective peptide ligation. This prompted us to discover a high-yielding prebiotically plausible synthesis of the diaminopropionic acid residue, by peptide nitrile modification, through the addition of ammonia to a dehydroalanine nitrile. With this synthesis in hand, we then discovered that the low basicity of diaminopropionyl residues promotes effective, biomimetic, imine catalysis in neutral water. Our results suggest diaminopropionic acid, synthesized by peptide nitrile modification, can replace or augment lysine residues during early evolution but that lysine's electronically isolated sidechain amine likely provides an evolutionary advantage for coupling and coding as a preformed monomer in monomer-by-monomer peptide translation.
Collapse
|
57
|
Demongeot J, Thellier M. Primitive Oligomeric RNAs at the Origins of Life on Earth. Int J Mol Sci 2023; 24:ijms24032274. [PMID: 36768599 PMCID: PMC9916791 DOI: 10.3390/ijms24032274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
There are several theories on the origin of life, which differ by choosing the preponderant factor of emergence: main function (autocatalysis versus replication), initial location (black smokers versus ponds) or first molecule (RNA versus DNA). Among the two last ones, the first assumes that an RNA world involving a collaboration of small RNAs with amino-acids pre-existed and the second that DNA-enzyme-lipid complexes existed first. The debate between these classic theories is not closed and the arguments for one or the other of these theories have recently fueled a debate in which the two have a high degree of likelihood. It therefore seems interesting to propose a third intermediate way, based on the existence of an RNA that may have existed before the latter stages postulated by these theories, and therefore may be the missing link towards a common origin of them. To search for a possible ancestral structure, we propose as candidate a small RNA existing in ring or hairpin form in the early stages of life, which could have acted as a "proto-ribosome" by favoring the synthesis of the first peptides. Remnants of this putative candidate RNA exist in molecules nowadays involved in the ribosomal factory, the concentrations of these relics depending on the seniority of these molecules within the translation process.
Collapse
Affiliation(s)
- Jacques Demongeot
- Faculty of Medicine, Université Grenoble Alpes, Laboratory AGEIS EA 7407 Tools for e-Gnosis Medical, 38700 Grenoble, France
- Correspondence:
| | - Michel Thellier
- Académie des Sciences, Section Biologie Integrative, 75006 Paris, France
| |
Collapse
|
58
|
Kashiwagi A, Yomo T. Construction of a mini-RNA replicon in Escherichia coli. Synth Biol (Oxf) 2023; 8:ysad004. [PMID: 36926307 PMCID: PMC10013734 DOI: 10.1093/synbio/ysad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
How the ribonucleic acid (RNA) world transited to the deoxyribonucleic acid (DNA) world has remained controversial in evolutionary biology. At a certain time point in the transition from the RNA world to the DNA world, 'RNA replicons', in which RNAs produce proteins to replicate their coding RNA, and 'DNA replicons', in which DNAs produce RNA to synthesize proteins that replicate their coding DNA, can be assumed to coexist. The coexistent state of RNA replicons and DNA replicons is desired for experimental approaches to determine how the DNA world overtook the RNA world. We constructed a mini-RNA replicon in Escherichia coli. This mini-RNA replicon encoded the β subunit, one of the subunits of the Qβ replicase derived from the positive-sense single-stranded Qβ RNA phage and is replicated by the replicase in E. coli. To maintain the mini-RNA replicon persistently in E. coli cells, we employed a system of α complementation of LacZ that was dependent on the Qβ replicase, allowing the cells carrying the RNA replicon to grow in the lactose minimal medium selectively. The coexistent state of the mini-RNA replicon and DNA replicon (E. coli genome) was successively synthesized. The coexistent state can be used as a starting system to experimentally demonstrate the transition from the RNA-protein world to the DNA world, which will contribute to progress in the research field of the origin of life.
Collapse
Affiliation(s)
- Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Tetsuya Yomo
- School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
59
|
Juhas M. The World of Microorganisms. BRIEF LESSONS IN MICROBIOLOGY 2023:1-16. [DOI: 10.1007/978-3-031-29544-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
60
|
Guo X, Su M. The Origin of Translation: Bridging the Nucleotides and Peptides. Int J Mol Sci 2022; 24:ijms24010197. [PMID: 36613641 PMCID: PMC9820756 DOI: 10.3390/ijms24010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extant biology uses RNA to record genetic information and proteins to execute biochemical functions. Nucleotides are translated into amino acids via transfer RNA in the central dogma. tRNA is essential in translation as it connects the codon and the cognate amino acid. To reveal how the translation emerged in the prebiotic context, we start with the structure and dissection of tRNA, followed by the theory and hypothesis of tRNA and amino acid recognition. Last, we review how amino acids assemble on the tRNA and further form peptides. Understanding the origin of life will also promote our knowledge of artificial living systems.
Collapse
Affiliation(s)
- Xuyuan Guo
- School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40 Dublin, Ireland
| | - Meng Su
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Correspondence:
| |
Collapse
|
61
|
Vibhute MA, Mutschler H. A Primer on Building Life‐Like Systems. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahesh A. Vibhute
- TU Dortmund University Department of Chemistry and Chemical Biology Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Hannes Mutschler
- TU Dortmund University Department of Chemistry and Chemical Biology Otto-Hahn-Str. 4a 44227 Dortmund Germany
| |
Collapse
|
62
|
Lei HT, Wang ZH, Li B, Sun Y, Mei SQ, Yang JH, Qu LH, Zheng LL. tModBase: deciphering the landscape of tRNA modifications and their dynamic changes from epitranscriptome data. Nucleic Acids Res 2022; 51:D315-D327. [PMID: 36408909 PMCID: PMC9825477 DOI: 10.1093/nar/gkac1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
tRNA molecules contain dense, abundant modifications that affect tRNA structure, stability, mRNA decoding and tsRNA formation. tRNA modifications and related enzymes are responsive to environmental cues and are associated with a range of physiological and pathological processes. However, there is a lack of resources that can be used to mine and analyse these dynamically changing tRNA modifications. In this study, we established tModBase (https://www.tmodbase.com/) for deciphering the landscape of tRNA modification profiles from epitranscriptome data. We analysed 103 datasets generated with second- and third-generation sequencing technologies and illustrated the misincorporation and termination signals of tRNA modification sites in ten species. We thus systematically demonstrate the modification profiles across different tissues/cell lines and summarize the characteristics of tRNA-associated human diseases. By integrating transcriptome data from 32 cancers, we developed novel tools for analysing the relationships between tRNA modifications and RNA modification enzymes, the expression of 1442 tRNA-derived small RNAs (tsRNAs), and 654 DNA variations. Our database will provide new insights into the features of tRNA modifications and the biological pathways in which they participate.
Collapse
Affiliation(s)
- Hao-Tian Lei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhang-Hao Wang
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yang Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shi-Qiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian-Hua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ling-Ling Zheng
- To whom correspondence should be addressed. Tel: +86 20 84112399; Fax: +86 20 84036551;
| |
Collapse
|
63
|
Borišek J, Aupič J, Magistrato A. Establishing the catalytic and regulatory mechanism of
RNA
‐based machineries. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jure Borišek
- Theory Department National Institute of Chemistry Ljubljana Slovenia
| | | | | |
Collapse
|
64
|
Ishida T. Emergence Simulation of Biological Cell-like Shapes Satisfying the Conditions of Life Using a Lattice-Type Multiset Chemical Model. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101580. [PMID: 36295015 PMCID: PMC9605168 DOI: 10.3390/life12101580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary One of the great challenges in science is determining when, where, why, and how life first arose as well as the form taken by this life. In the present study, life was assumed to be (1) bounded, (2) replicating, (3) able to inherit information, and (4) able to metabolize energy. The various existing hypotheses provide little explanation of how these four conditions for life were established. Indeed, “how” a chemical process that simultaneously satisfies all four conditions emerged after the materials for life were in place is not always clear. In this study, a multiset chemical lattice model, which allows for virtual molecules of multiple types to be placed in each cell on a two-dimensional space, was considered. Using only the processes of molecular diffusion, reaction, and polymerization and modeling the chemical reactions of 15 types of molecules and 2 types of polymerized molecules, as well as using the morphogenesis rule of the Turing model, the process of emergence of a cell-like form with all three conditions except evolution ability was modeled and demonstrated. Abstract Although numerous reports using methods such as molecular dynamics, cellular automata, and artificial chemistry have clarified the process connecting non-life and life on protocell simulations, none of the models could simultaneously explain the emergence of cell shape, continuous self-replication, and replication control solely from molecular reactions and diffusion. Herein, we developed a model to generate all three conditions, except evolution ability, from hypothetical chains of chemical and molecular polymerization reactions. The present model considers a 2D lattice cell space, where virtual molecules are placed in each cell, and molecular reactions in each cell are based on a multiset rewriting rule, indicating stochastic transition of molecular species. The reaction paths of virtual molecules were implemented by replacing the rules of cellular automata that generate Turing patterns with molecular reactions. The emergence of a cell-like form with all three conditions except evolution ability was modeled and demonstrated using only molecular diffusion, reaction, and polymerization for modeling the chemical reactions of 15 types of molecules and 2 types of polymerized molecules. Furthermore, controlling self-replication is possible by changing the initial arrangement of a specific molecule. In summary, the present model is capable of investigating and refining existing hypotheses on the emergence of life.
Collapse
Affiliation(s)
- Takeshi Ishida
- Department of Ocean Mechanical Engineering, National Fisheries University, Shimonoseki 759-6595, Japan
| |
Collapse
|
65
|
Abstract
α-Amino acids are essential molecular constituents of life, twenty of which are privileged because they are encoded by the ribosomal machinery. The question remains open as to why this number and why this 20 in particular, an almost philosophical question that cannot be conclusively resolved. They are closely related to the evolution of the genetic code and whether nucleic acids, amino acids, and peptides appeared simultaneously and were available under prebiotic conditions when the first self-sufficient complex molecular system emerged on Earth. This report focuses on prebiotic and metabolic aspects of amino acids and proteins starting with meteorites, followed by their formation, including peptides, under plausible prebiotic conditions, and the major biosynthetic pathways in the various kingdoms of life. Coenzymes play a key role in the present analysis in that amino acid metabolism is linked to glycolysis and different variants of the tricarboxylic acid cycle (TCA, rTCA, and the incomplete horseshoe version) as well as the biosynthesis of the most important coenzymes. Thus, the report opens additional perspectives and facets on the molecular evolution of primary metabolism.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
66
|
Yarus M. A crescendo of competent coding (c3) contains the Standard Genetic Code. RNA (NEW YORK, N.Y.) 2022; 28:1337-1347. [PMID: 35868841 PMCID: PMC9479743 DOI: 10.1261/rna.079275.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The Standard Genetic Code (SGC) can arise by fusion of partial codes evolved in different individuals, perhaps for differing prior tasks. Such code fragments can be unified into an SGC after later evolution of accurate third-position Crick wobble. Late wobble advent fills in the coding table, leaving only later development of translational initiation and termination to reach the SGC in separated domains of life. This code fusion mechanism is computationally implemented here. Late Crick wobble after C3 fusion (c3-lCw) is tested for its ability to evolve the SGC. Compared with previously studied isolated coding tables, or with increasing numbers of parallel, but nonfusing codes, c3-lCw reaches the SGC sooner, is successful in a smaller population, and presents accurate and complete codes more frequently. Notably, a long crescendo of SGC-like codes is exposed for selection of superior translation. c3-lCw also effectively suppresses varied disordered assignments, thus converging on a unified code. Such merged codes closely approach the SGC, making its selection plausible. For example: Under routine conditions, ≈1 of 22 c3-lCw environments evolves codes with ≥20 assignments and ≤3 differences from the SGC, notably including codes identical to the Standard Genetic Code.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| |
Collapse
|
67
|
Tingey M, Schnell SJ, Yu W, Saredy J, Junod S, Patel D, Alkurdi AA, Yang W. Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells 2022; 11:3079. [PMID: 36231040 PMCID: PMC9564294 DOI: 10.3390/cells11193079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
68
|
Kumar Bandela A, Sadihov‐Hanoch H, Cohen‐Luria R, Gordon C, Blake A, Poppitz G, Lynn DG, Ashkenasy G. The Systems Chemistry of Nucleic‐acid‐Peptide Networks. Isr J Chem 2022. [DOI: 10.1002/ijch.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anil Kumar Bandela
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Hava Sadihov‐Hanoch
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Rivka Cohen‐Luria
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Christella Gordon
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Alexis Blake
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - George Poppitz
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - David G. Lynn
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Gonen Ashkenasy
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
69
|
A High-Pressure, High-Temperature Flow Reactor Simulating the Hadean Earth Environment, with Application to the Pressure Dependence of the Cleavage of Avocado Viroid Hammerhead Ribozyme. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081224. [PMID: 36013404 PMCID: PMC9410335 DOI: 10.3390/life12081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
The RNA world hypothesis suggests that chemical networks consisting of functional RNA molecules could have constructed a primitive life-like system leading a first living system. The chemical evolution scenario of RNA molecules should be consistent with the Hadean Earth environment. We have demonstrated the importance of the environment at both high temperature and high pressure, using different types of hydrothermal flow reactor systems and high-pressure equipment. In the present study, we have attempted to develop an alternative easy-to-implement method for high-pressure measurements and demonstrate that the system is applicable as an efficient research tool for high-pressure experiments at pressures up to 30 MPa. We demonstrate the usefulness of the system by detecting the high-pressure influence for the self-cleavage of avocado hammerhead ribozyme (ASBVd(−):HHR) at 45–65 °C. A kinetic analysis of the high-pressure behavior of ASBVd(−):HHR shows that the ribozyme is active at 30 MPa and its activity is sensitive to pressures between 0.1–30 MPa. The surprising finding that such a short ribozyme is effective for self-cleavage at a high pressure suggests the importance of pressure as a factor for selection of adaptable RNA molecules towards an RNA-based life-like system in the Hadean Earth environment deep in the ocean.
Collapse
|
70
|
Noor E, Flamholz AI, Jayaraman V, Ross BL, Cohen Y, Patrick WM, Gruic‐Sovulj I, Tawfik DS. Uniform binding and negative catalysis at the origin of enzymes. Protein Sci 2022; 31:e4381. [PMID: 35900021 PMCID: PMC9281367 DOI: 10.1002/pro.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022]
Abstract
Enzymes are well known for their catalytic abilities, some even reaching "catalytic perfection" in the sense that the reaction they catalyze has reached the physical bound of the diffusion rate. However, our growing understanding of enzyme superfamilies has revealed that only some share a catalytic chemistry while others share a substrate-handle binding motif, for example, for a particular phosphate group. This suggests that some families emerged through a "substrate-handle-binding-first" mechanism ("binding-first" for brevity) instead of "chemistry-first" and we are, therefore, left to wonder what the role of non-catalytic binders might have been during enzyme evolution. In the last of their eight seminal, back-to-back articles from 1976, John Albery and Jeremy Knowles addressed the question of enzyme evolution by arguing that the simplest mode of enzyme evolution is what they defined as "uniform binding" (parallel stabilization of all enzyme-bound states to the same degree). Indeed, we show that a uniform-binding proto-catalyst can accelerate a reaction, but only when catalysis is already present, that is, when the transition state is already stabilized to some degree. Thus, we sought an alternative explanation for the cases where substrate-handle-binding preceded any involvement of a catalyst. We find that evolutionary starting points that exhibit negative catalysis can redirect the reaction's course to a preferred product without need for rate acceleration or product release; that is, if they do not stabilize, or even destabilize, the transition state corresponding to an undesired product. Such a mechanism might explain the emergence of "binding-first" enzyme families like the aldolase superfamily.
Collapse
Affiliation(s)
- Elad Noor
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Avi I. Flamholz
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Resnick Sustainability InstituteCalifornia Institute of TechnologyPasadenaCAUSA
| | - Vijay Jayaraman
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Brian L. Ross
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Yair Cohen
- Department of Caltech Environmental Science and EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Wayne M. Patrick
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Ita Gruic‐Sovulj
- Department of Chemistry, Faculty of ScienceUniversity of ZagrebZagrebCroatia
| | - Dan S. Tawfik
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
71
|
Prosdocimi F, de Farias ST. Entering the labyrinth: A hypothesis about the emergence of metabolism from protobiotic routes. Biosystems 2022; 220:104751. [DOI: 10.1016/j.biosystems.2022.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
72
|
Ziemkiewicz K, Warminski M, Wojcik R, Kowalska J, Jemielity J. Quick Access to Nucleobase-Modified Phosphoramidites for the Synthesis of Oligoribonucleotides Containing Post-Transcriptional Modifications and Epitranscriptomic Marks. J Org Chem 2022; 87:10333-10348. [PMID: 35857285 PMCID: PMC9361293 DOI: 10.1021/acs.joc.2c01390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Herein, we report a straightforward one-step procedure
for modifying N-nucleophilic groups in the nucleobases
of commercially
available nucleoside phosphoramidites. This method involves the deprotonation
of amide groups under phase-transfer conditions and subsequent reaction
with electrophilic molecules such as alkyl halides or organic isocyanates.
Using this approach, we obtained 10 different classes of modified
nucleoside phosphoramidites suitable for the synthesis of oligonucleotides,
including several noncanonical nucleotides found in natural RNA or
DNA (e.g., m6A, i6A, m1A, g6A, m3C, m4C, m3U, m1G,
and m2G). Such modification of nucleobases is a common
mechanism for post-transcriptional regulation of RNA stability and
translational activity in various organisms. To better understand
this process, relevant cellular recognition partners (e.g., proteins)
must be identified and characterized. However, this step has been
impeded by limited access to molecular tools containing such modified
nucleotides.
Collapse
Affiliation(s)
- Kamil Ziemkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Radoslaw Wojcik
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| |
Collapse
|
73
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
74
|
Singh J, Whitaker D, Thoma B, Islam S, Foden CS, Aliev AE, Sheppard TD, Powner MW. Prebiotic Catalytic Peptide Ligation Yields Proteinogenic Peptides by Intramolecular Amide Catalyzed Hydrolysis Facilitating Regioselective Lysine Ligation in Neutral Water. J Am Chem Soc 2022; 144:10151-10155. [PMID: 35640067 PMCID: PMC9204760 DOI: 10.1021/jacs.2c03486] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The prebiotic origin
of catalyst-controlled peptide synthesis is
fundamental to understanding the emergence of life. Building on our
recent discovery that thiols catalyze the ligation of amino acids,
amides, and peptides with amidonitriles in neutral water, we demonstrate
the outcome of ligation depends on pH and that high pKa primary thiols are the ideal catalysts. While the most
rapid thiol catalyzed peptide ligation occurs at pH 8.5–9,
the most selective peptide ligation, that tolerates all proteinogenic
side chains, occurs at pH 7. We have also identified the highly selective
mechanism by which the intermediate peptidyl amidines undergo hydrolysis
to α-peptides while demonstrating that the hydrolysis of amidines
with nonproteinogenic structures, such as β- and γ-peptides,
displays poor selectivity. Notably, this discovery enables the highly
α-selective protecting-group-free ligation of lysine peptides
at neutral pH while leaving the functional ε-amine side chain
intact.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Daniel Whitaker
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Benjamin Thoma
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Saidul Islam
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom.,Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Callum S Foden
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Abil E Aliev
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Tom D Sheppard
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Matthew W Powner
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
75
|
Bonfio C. A possible path towards encoded protein synthesis on ancient Earth. Nature 2022; 605:231-232. [PMID: 35546187 DOI: 10.1038/d41586-022-01256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|