51
|
Siedlik MJ, Yang Z, Kadam PS, Eberwine J, Issadore D. Micro- and Nano-Devices for Studying Subcellular Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005793. [PMID: 33345457 PMCID: PMC8258219 DOI: 10.1002/smll.202005793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Indexed: 05/27/2023]
Abstract
Cells are complex machines whose behaviors arise from their internal collection of dynamically interacting organelles, supramolecular complexes, and cytoplasmic chemicals. The current understanding of the nature by which subcellular biology produces cell-level behaviors is limited by the technological hurdle of measuring the large number (>103 ) of small-sized (<1 μm) heterogeneous organelles and subcellular structures found within each cell. In this review, the emergence of a suite of micro- and nano-technologies for studying intracellular biology on the scale of organelles is described. Devices that use microfluidic and microelectronic components for 1) extracting and isolating subcellular structures from cells and lysate; 2) analyzing the physiology of individual organelles; and 3) recreating subcellular assembly and functions in vitro, are described. The authors envision that the continued development of single organelle technologies and analyses will serve as a foundation for organelle systems biology and will allow new insight into fundamental and clinically relevant biological questions.
Collapse
Affiliation(s)
- Michael J Siedlik
- Department of Bioengineering, 335 Skirkanich Hall, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Zijian Yang
- Department of Mechanical Engineering and Applied Science, 335 Skirkanich Hall, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Parnika S Kadam
- Systems Pharmacology and Translational Therapeutics, 38 John Morgan Building, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - James Eberwine
- Systems Pharmacology and Translational Therapeutics, 38 John Morgan Building, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, 335 Skirkanich Hall, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
52
|
Dhorne-Pollet S, Barrey E, Pollet N. A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics 2020; 21:785. [PMID: 33176683 PMCID: PMC7661214 DOI: 10.1186/s12864-020-07183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial DNA is remarkably polymorphic. This is why animal geneticists survey mitochondrial genomes variations for fundamental and applied purposes. We present here an approach to sequence whole mitochondrial genomes using nanopore long-read sequencing. Our method relies on the selective elimination of nuclear DNA using an exonuclease treatment and on the amplification of circular mitochondrial DNA using a multiple displacement amplification step. RESULTS We optimized each preparative step to obtain a 100 million-fold enrichment of horse mitochondrial DNA relative to nuclear DNA. We sequenced these amplified mitochondrial DNA using nanopore sequencing technology and obtained mitochondrial DNA reads that represented up to half of the sequencing output. The sequence reads were 2.3 kb of mean length and provided an even coverage of the mitochondrial genome. Long-reads spanning half or more of the whole mtDNA provided a coverage that varied between 118X and 488X. We evaluated SNPs identified using these long-reads by Sanger sequencing as ground truth and found a precision of 100.0%; a recall of 93.1% and a F1-score of 0.964 using the Twilight horse mtDNA reference. The choice of the mtDNA reference impacted variant calling efficiency with F1-scores varying between 0.947 and 0.964. CONCLUSIONS Our method to amplify mtDNA and to sequence it using the nanopore technology is usable for mitochondrial DNA variant analysis. With minor modifications, this approach could easily be applied to other large circular DNA molecules.
Collapse
Affiliation(s)
- Sophie Dhorne-Pollet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Nicolas Pollet
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
53
|
Laidoudi Y, Davoust B, Varloud M, Niang EHA, Fenollar F, Mediannikov O. Development of a multiplex qPCR-based approach for the diagnosis of Dirofilaria immitis, D. repens and Acanthocheilonema reconditum. Parasit Vectors 2020; 13:319. [PMID: 32571427 PMCID: PMC7309989 DOI: 10.1186/s13071-020-04185-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Dirofilaria immitis, D. repens and Acanthocheilonema reconditum are the main causative agents of zoonotic canine filariosis. Methods We developed a combined multiplex approach for filaria and Wolbachia detection using the 28S-based pan-filarial and 16S-based pan-Wolbachia qPCRs, respectively, involving a fast typing method of positive samples using triplex qPCR targeting A. reconditum, D. immitis and D. repens, and a duplex qPCR targeting Wolbachia of D. immitis and D. repens. The approach was complemented by a duplex qPCR for the differential diagnosis of heartworms (D. immitis and Angiostrongylus vasorum) and pan-filarial cox1 and pan-Wolbachia ftsZ PCRs to identify other filarial parasites and their Wolbachia, respectively. A total of 168 canine blood and sera samples were used to validate the approach. Spearmanʼs correlation was used to assess the association between filarial species and the strain of Wolbachia. Positive samples for both the heartworm antigen-test after heating sera and at least one DNA-positive for D. immitis and its Wolbachia were considered true positive for heartworm infection. Indeed, the presence of D. repens DNA or that of its Wolbachia as well as A. reconditum DNA indicates true positive infections. Results The detection limit for Wolbachia and filariae qPCRs ranged from 5 × 10−1 to 1.5 × 10−4 mf/ml of blood. When tested on clinical samples, 29.2% (49/168) tested positive for filariae or Wolbachia DNA. Filarial species and Wolbachia genotypes were identified by the combined multiplex approach from all positive samples. Each species of Dirofilaria was significantly associated with a specific genotype of Wolbachia. Compared to the true positives, the approach showed excellent agreement (k = 0.98–1). Unlike D. immitis DNA, no A. vasorum DNA was detected by the duplex qPCR. The immunochromatographic test for heartworm antigen showed a substantial (k = 0.6) and a weak (k = 0.15) agreements before and after thermal pre-treatment of sera, respectively. Conclusions The proposed approach is a reliable tool for the exploration and diagnosis of occult and non-occult canine filariosis. The current diagnosis of heartworm disease based on antigen detection should always be confirmed by qPCR essays. Sera heat pre-treatment is not effective and strongly discouraged.![]()
Collapse
Affiliation(s)
- Younes Laidoudi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UMR Aix-Marseille University, IRD, APHM, IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France
| | - Bernard Davoust
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UMR Aix-Marseille University, IRD, APHM, IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France
| | - Marie Varloud
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500, Libourne, France
| | - El Hadji Amadou Niang
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UMR Aix-Marseille University, IRD, APHM, IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France
| | - Florence Fenollar
- IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France.,VITROME, UMR Aix-Marseille University, IRD, SSA, APHM, IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France
| | - Oleg Mediannikov
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UMR Aix-Marseille University, IRD, APHM, IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France. .,IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
54
|
Koller A, Fazzini F, Lamina C, Rantner B, Kollerits B, Stadler M, Klein-Weigel P, Fraedrich G, Kronenberg F. Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease. J Intern Med 2020; 287:569-579. [PMID: 32037598 PMCID: PMC7318579 DOI: 10.1111/joim.13027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dysfunctional mitochondria have an influence on inflammation and increased oxidative stress due to an excessive production of reactive oxygen species. The mitochondrial DNA copy number (mtDNA-CN) is a potential biomarker for mitochondrial dysfunction and has been associated with various diseases. However, results were partially contrasting which might have been caused by methodological difficulties to quantify mtDNA-CN. OBJECTIVE We aimed to investigate whether mtDNA-CN is associated with peripheral arterial disease (PAD) as well as all-cause mortality and cardiovascular events during seven years of follow-up. METHODS A total of 236 male patients with PAD from the Cardiovascular Disease in Intermittent Claudication (CAVASIC) study were compared with 249 age- and diabetes-matched controls. MtDNA-CN was measured with a well-standardized plasmid-normalized quantitative PCR-based assay determining the ratio between mtDNA-CN and nuclear DNA. RESULTS Individuals in the lowest quartile of mtDNA-CN had a twofold increased risk for PAD which, however, was no longer significant after adjusting for leukocytes and platelets. About 67 of the 236 patients had already experienced a cardiovascular event at baseline and those in the lowest mtDNA-CN quartile had a 2.34-fold increased risk for these events (95% CI 1.08-5.13). During follow-up, 37 PAD patients died and 66 patients experienced a cardiovascular event. Patients in the lowest mtDNA-CN quartile had hazard ratios of 2.66 (95% CI 1.27-5.58) for all-cause-mortality and 1.82 (95% CI 1.02-3.27) for cardiovascular events compared with the combined quartile 2-4 (adjusted for age, smoking, CRP, diabetes, prevalent cardiovascular disease, leukocytes and platelets). CONCLUSION This investigation supports the hypothesis of mitochondrial dysfunction in peripheral arterial disease and shows an association of low mtDNA-CNs with all-cause-mortality and prevalent and incident cardiovascular disease in PAD patients with intermittent claudication.
Collapse
Affiliation(s)
- A Koller
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - F Fazzini
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - C Lamina
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Rantner
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - B Kollerits
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Stadler
- 3rd Medical Department of Metabolic Diseases and Nephrology, Hietzing Hospital, Vienna, Austria.,Diabetes Research Group, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - P Klein-Weigel
- Clinic of Angiology, Center of Vascular Medicine, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - G Fraedrich
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - F Kronenberg
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
55
|
Kuffner K, Triebelhorn J, Meindl K, Benner C, Manook A, Sudria-Lopez D, Siebert R, Nothdurfter C, Baghai TC, Drexler K, Berneburg M, Rupprecht R, Milenkovic VM, Wetzel CH. Major Depressive Disorder is Associated with Impaired Mitochondrial Function in Skin Fibroblasts. Cells 2020; 9:cells9040884. [PMID: 32260327 PMCID: PMC7226727 DOI: 10.3390/cells9040884] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial malfunction is supposed to be involved in the etiology and pathology of major depressive disorder (MDD). Here, we aimed to identify and characterize the molecular pathomechanisms related to mitochondrial dysfunction in adult human skin fibroblasts, which were derived from MDD patients or non-depressive control subjects. We found that MDD fibroblasts showed significantly impaired mitochondrial functioning: basal and maximal respiration, spare respiratory capacity, non-mitochondrial respiration and adenosine triphosphate (ATP)-related oxygen consumption was lower. Moreover, MDD fibroblasts harbor lower ATP levels and showed hyperpolarized mitochondrial membrane potential. To investigate cellular resilience, we challenged both groups of fibroblasts with hormonal (dexamethasone) or metabolic (galactose) stress for one week, and found that both stressors increased oxygen consumption but lowered ATP content in MDD as well as in non-depressive control fibroblasts. Interestingly, the bioenergetic differences between fibroblasts from MDD or non-depressed subjects, which were observed under non-treated conditions, could not be detected after stress. Our findings support the hypothesis that altered mitochondrial function causes a bioenergetic imbalance, which is associated with the molecular pathophysiology of MDD. The observed alterations in the oxidative phosphorylation system (OXPHOS) and other mitochondria-related properties represent a basis for further investigations of pathophysiological mechanisms and might open new ways to gain insight into antidepressant signaling pathways.
Collapse
Affiliation(s)
- Kerstin Kuffner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Julian Triebelhorn
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Katrin Meindl
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Christoph Benner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - André Manook
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Daniel Sudria-Lopez
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Ramona Siebert
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Thomas C. Baghai
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Konstantin Drexler
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
- Correspondence: ; Tel.: +49-941-944-8955
| |
Collapse
|
56
|
Decreased mitochondrial DNA copy number in children with cerebral palsy quantified by droplet digital PCR. Clin Chim Acta 2020; 503:122-127. [DOI: 10.1016/j.cca.2020.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
|
57
|
OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation. Nat Commun 2020; 11:1487. [PMID: 32198407 PMCID: PMC7083862 DOI: 10.1038/s41467-020-15237-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Rewiring of energy metabolism and adaptation of mitochondria are considered to impact on prostate cancer development and progression. Here, we report on mitochondrial respiration, DNA mutations and gene expression in paired benign/malignant human prostate tissue samples. Results reveal reduced respiratory capacities with NADH-pathway substrates glutamate and malate in malignant tissue and a significant metabolic shift towards higher succinate oxidation, particularly in high-grade tumors. The load of potentially deleterious mitochondrial-DNA mutations is higher in tumors and associated with unfavorable risk factors. High levels of potentially deleterious mutations in mitochondrial Complex I-encoding genes are associated with a 70% reduction in NADH-pathway capacity and compensation by increased succinate-pathway capacity. Structural analyses of these mutations reveal amino acid alterations leading to potentially deleterious effects on Complex I, supporting a causal relationship. A metagene signature extracted from the transcriptome of tumor samples exhibiting a severe mitochondrial phenotype enables identification of tumors with shorter survival times.
Collapse
|
58
|
Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet 2020; 139:381-399. [PMID: 31997134 PMCID: PMC7147958 DOI: 10.1007/s00439-020-02119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Our cells operate based on two distinct genomes that are enclosed in the nucleus and mitochondria. The mitochondrial genome presumably originates from endosymbiotic bacteria. With time, a large portion of the original genes in the bacterial genome is considered to have been lost or transferred to the nuclear genome, leaving a reduced 16.5 Kb circular mitochondrial DNA (mtDNA). Traditionally only 37 genes, including 13 proteins, were thought to be encoded within mtDNA, its genetic repertoire is expanding with the identification of mitochondrial-derived peptides (MDPs). The biology of aging has been largely unveiled to be regulated by genes that are encoded in the nuclear genome, whereas the mitochondrial genome remained more cryptic. However, recent studies position mitochondria and mtDNA as an important counterpart to the nuclear genome, whereby the two organelles constantly regulate each other. Thus, the genomic network that regulates lifespan and/or healthspan is likely constituted by two unique, yet co-evolved, genomes. Here, we will discuss aspects of mitochondrial biology, especially mitochondrial communication that may add substantial momentum to aging research by accounting for both mitonuclear genomes to more comprehensively and inclusively map the genetic and molecular networks that govern aging and age-related diseases.
Collapse
Affiliation(s)
- Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
59
|
Xavier C, Eduardoff M, Strobl C, Parson W. SD quants-Sensitive detection tetraplex-system for nuclear and mitochondrial DNA quantification and degradation inference. Forensic Sci Int Genet 2019; 42:39-44. [PMID: 31216503 DOI: 10.1016/j.fsigen.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/05/2023]
Abstract
Measuring the quantity of DNA present in a forensic sample is relevant in a number of ways. First, it informs the analyst about the general DNA content to adjust the volume of DNA extract used for the genotyping assay to the optimal conditions (when possible). Second, quantification values can serve as plausibility checks for the performance of the DNA extraction method used as extraction positive and negative controls demand expected values. Third and relevant to highly compromised specimens, DNA quantification can inform about the degradation state of the DNA extracted from the unknown biological sample and aid the choice of downstream genotyping assays. While there are different, commercial products for the quantification of nuclear DNA available, commercial mitochondrial DNA (mtDNA) quantification systems are rare. Even more so, the simultaneous quantification of nuclear and mtDNA that is of relevance in highly degraded forensic specimens has rarely been described. We present here a novel real-time qPCR based tetraplex system termed SD quants that targets two different-sized mtDNA and a nuclear DNA region and includes an internal positive control to monitor potential inhibition. SD quants was compared to other existing quantification systems and subjected to analysis of severely degraded DNA present in ancient DNA and aged forensic specimens. This study complies with the MIQE (Bustin et al., 2009) guidelines (when applicable).
Collapse
Affiliation(s)
- Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| | - Mayra Eduardoff
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
60
|
Fazzini F, Lamina C, Fendt L, Schultheiss UT, Kotsis F, Hicks AA, Meiselbach H, Weissensteiner H, Forer L, Krane V, Eckardt KU, Köttgen A, Kronenberg F. Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. Kidney Int 2019; 96:480-488. [PMID: 31248648 DOI: 10.1016/j.kint.2019.04.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
Damage of mitochondrial DNA (mtDNA) with reduction in copy number has been proposed as a biomarker for mitochondrial dysfunction and oxidative stress. Chronic kidney disease (CKD) is associated with increased mortality and risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. Here we investigated the prognostic role of mtDNA copy number for cause-specific mortality in 4812 patients from the German Chronic Kidney Disease study, an ongoing prospective observational national cohort study of patients with CKD stage G3 and A1-3 or G1-2 with overt proteinuria (A3) at enrollment. MtDNA was quantified in whole blood using a plasmid-normalized PCR-based assay. At baseline, 1235 patients had prevalent cardiovascular disease. These patients had a significantly lower mtDNA copy number than patients without cardiovascular disease (fully-adjusted model: odds ratio 1.03, 95% confidence interval [CI] 1.01-1.05 per 10 mtDNA copies decrease). After four years of follow-up, we observed a significant inverse association between mtDNA copy number and all-cause mortality, adjusted for kidney function and cardiovascular disease risk factors (hazard ratio 1.37, 95% CI 1.09-1.73 for quartile 1 compared to quartiles 2-4). When grouped by causes of death, estimates pointed in the same direction for all causes but in a fully-adjusted model decreased copy numbers were significantly lower only in infection-related death (hazard ratio 1.82, 95% CI 1.08-3.08). A similar association was observed for hospitalizations due to infections in 644 patients (hazard ratio 1.19, 95% CI 1.00-1.42 in the fully-adjusted model). Thus, our data support a role of mitochondrial dysfunction in increased cardiovascular disease and mortality risks as well as susceptibility to infections in patients with CKD.
Collapse
Affiliation(s)
- Federica Fazzini
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Liane Fendt
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, EURAC Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hansi Weissensteiner
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Vera Krane
- Division of Nephrology, Department of Internal Medicine I, Division of Nephrology and Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|