51
|
Komogortsev AN, Lichitsky BV, Melekhina VG, Nasyrova DI, Milyutin CV. Photoinduced 6π-Electrocyclization of a 1,3,5-Hexatriene System Containing an Allomaltol Fragment. J Org Chem 2021; 86:15345-15356. [PMID: 34637303 DOI: 10.1021/acs.joc.1c01902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For the first time, the possibility of photocyclization of the 1,3,5-hexatriene system containing a fragment of allomaltol was demonstrated. A preparative method for the synthesis of previously unknown benzo[5,6]chromeno[8,7-d]oxazole-2,7(3H)-diones was developed based on the investigated photoreaction. A distinctive feature of this approach is the modification of the starting terarylenes aimed at blocking the competitive process leading to side reactions of the pyranone fragment. It was shown that the proposed photocyclization of substituted oxazol-2-ones can be used for the photogeneration of biologically active alcohols and various acids. The structure of one of the cyclization products was determined by X-ray diffraction.
Collapse
Affiliation(s)
- Andrey N Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Boris V Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Valeriya G Melekhina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Darina I Nasyrova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Constantine V Milyutin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| |
Collapse
|
52
|
Elias MG, Mehanna S, Elias E, Khnayzer RS, Daher CF. A photoactivatable chemotherapeutic Ru(II) complex bearing bathocuproine ligand efficiently induces cell death in human malignant melanoma cells through a multi-mechanistic pathway. Chem Biol Interact 2021; 348:109644. [PMID: 34508709 DOI: 10.1016/j.cbi.2021.109644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/03/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022]
Abstract
Photoactivated chemotherapy (PACT) is an emerging strategy for targeted cancer therapy. Strained Ru complexes with pseudo-octahedral geometry may undergo photo-induced ligand dissociation, forming aquated photoproducts that are significantly more cytotoxic compared to the precursor complex. The complexes investigated were the strained complex [Ru(bpy)2BC]Cl2 (where bpy = 2,2'-bipyridine and BC = bathocuproine) and its unstrained control [Ru(bpy)2phen]Cl2 (where phen = 1,10-phenanthroline). The uptake of [Ru(bpy)2BC]Cl2, assessed by ICP/MS, started immediately post-incubation and plateaued after 24 h. Active transport was found as the main mode of intracellular transport. Cell viability assays on A375 cells indicated a mean phototoxicity index of 340-fold, and the effect was shown to be primarily mediated by the aquated photoproducts rather than the dissociating ligands. A significant increase in ROS production and DNA damage was also observed. Flow cytometry confirmed the induction of early apoptosis at 48 h that proceeds to late apoptosis/necrosis by 72 h post-treatment. Western blot analysis of pro- and anti-apoptotic proteins revealed that apoptosis was mediated through an interplay between the intrinsic and extrinsic pathways, as well as autophagy and via inhibition of the MAPK and PI3K pathways. In conclusion, this study demonstrates that [Ru(bpy)2BC]Cl2 is a multi-mechanistic PACT drug which exhibits promising anticancer potential.
Collapse
Affiliation(s)
- Maria George Elias
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Stephanie Mehanna
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Elias Elias
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, Beirut, 1102-2801, Lebanon
| | - Costantine F Daher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
53
|
Arias-Ramos N, Ibarra LE, Serrano-Torres M, Yagüe B, Caverzán MD, Chesta CA, Palacios RE, López-Larrubia P. Iron Oxide Incorporated Conjugated Polymer Nanoparticles for Simultaneous Use in Magnetic Resonance and Fluorescent Imaging of Brain Tumors. Pharmaceutics 2021; 13:1258. [PMID: 34452219 PMCID: PMC8400017 DOI: 10.3390/pharmaceutics13081258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Conjugated polymer nanoparticles (CPNs) have emerged as advanced polymeric nanoplatforms in biomedical applications by virtue of extraordinary properties including high fluorescence brightness, large absorption coefficients of one and two-photons, and excellent photostability and colloidal stability in water and physiological medium. In addition, low cytotoxicity, easy functionalization, and the ability to modify CPN photochemical properties by the incorporation of dopants, convert them into excellent theranostic agents with multifunctionality for imaging and treatment. In this work, CPNs were designed and synthesized by incorporating a metal oxide magnetic core (Fe3O4 and NiFe2O4 nanoparticles, 5 nm) into their matrix during the nanoprecipitation method. This modification allowed the in vivo monitoring of nanoparticles in animal models using magnetic resonance imaging (MRI) and intravital fluorescence, techniques widely used for intracranial tumors evaluation. The modified CPNs were assessed in vivo in glioblastoma (GBM) bearing mice, both heterotopic and orthotopic developed models. Biodistribution studies were performed with MRI acquisitions and fluorescence images up to 24 h after the i.v. nanoparticles administration. The resulting IONP-doped CPNs were biocompatible in GBM tumor cells in vitro with an excellent cell incorporation depending on nanoparticle concentration exposure. IONP-doped CPNs were detected in tumor and excretory organs of the heterotopic GBM model after i.v. and i.t. injection. However, in the orthotopic GBM model, the size of the nanoparticles is probably hindering a higher effect on intratumorally T2-weighted images (T2WI) signals and T2 values. The photodynamic therapy (PDT)-cytotoxicity of CPNs was not either affected by the IONPs incorporation into the nanoparticles.
Collapse
Affiliation(s)
- Nuria Arias-Ramos
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y CONICET, Córdoba X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Córdoba X5800BIA, Argentina; (M.D.C.)
| | - María Serrano-Torres
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Balbino Yagüe
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Matías Daniel Caverzán
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Córdoba X5800BIA, Argentina; (M.D.C.)
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Córdoba X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Córdoba X5800BIA, Argentina
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| |
Collapse
|
54
|
da Fonseca ADS, Mencalha AL, de Paoli F. Antimicrobial photodynamic therapy against Acinetobacter baumannii. Photodiagnosis Photodyn Ther 2021; 35:102430. [PMID: 34233224 DOI: 10.1016/j.pdpdt.2021.102430] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 01/22/2023]
Abstract
Acinetobacter baumannii (A. baumannii) has emerged as a pathogen of global importance able to cause opportunistic infections on the skin, urinary tract, lungs, and bloodstream, being frequently involved in hospital outbreaks. Such bacterium can resist a variety of environmental conditions and develop resistance to different classes of antibiotics. Antimicrobial photodynamic therapy (aPDT) has been considered a promising approach to overcome bacterial resistance once it does not cause selective environmental pressure on bacteria. In this review, studies on aPDT were accessed on PubMed, and their findings were summarized regarding its efficacy against A. baumannii. The data obtained from the literature show that exogenous photosensitizers belonging to different chemical classes are effective against multidrug-resistant A. baumannii strains. However, most of such data is from in vitro studies, and additional studies are necessary to evaluate if the exogenous photosensitizers may induce selective pressure on A. baumannii and the effectiveness of such photosensitizers in clinical practice.
Collapse
Affiliation(s)
- Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil; Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil.
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Khelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| |
Collapse
|
55
|
Sunitinib with photoirradiation-mediated reactive oxygen species generation induces apoptosis of renal cell carcinoma cells. Photodiagnosis Photodyn Ther 2021; 35:102427. [PMID: 34216806 DOI: 10.1016/j.pdpdt.2021.102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Photodynamic therapy is a clinically approved, minimally invasive,therapeutic procedure used for the treatment of several cancers. In recent years, sunitinib, one of the tyrosine kinase inhibitors, has also attracted attention as a novel photosensitizer. However, there is currently no data available on the combined cytotoxic effects of sunitinib and photoirradiation on renal cell carcinoma including how the treatment induced cellular toxicity. METHODS In the present study, we used sunitinib as a photosensitizer and evaluated the effects of sunitinib and photodynamic therapy treatment on renal cancer cell lines, including the induction of cell death. RESULTS Our study showed that treatment with sunitinib and photoirradiation at 8 mW/cm2 for 30 min resulted in the production intracellular reactive oxygen species (ROS), which is indicated by the increase in mRNA expression levels of PAI-1, NF-κβ, and Caspase-3. An increase in rate of apoptotic reaction and increase in the expression level of apoptotic marker were also observed when cells undergo treatment with sunitinib and photoirradiation. CONCLUSIONS Our findings suggest that combining photodynamic therapy with sunitinib represents a minimally invasive therapeutic procedure with cancer selectivity for renal cell carcinoma.
Collapse
|
56
|
Stetkevich S, Burkhart C. Light's progression as immunomodulation therapy. Int J Dermatol 2021; 61:e203-e204. [PMID: 34138467 DOI: 10.1111/ijd.15728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/15/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel Stetkevich
- Department of Medicine, Division of Dermatology, University of Toledo, College of Medicine, Toledo, OH, USA
| | - Craig Burkhart
- University of Toledo, College of Medicine, Toledo, OH, USA.,Ohio University College of Osteopathic Medicine, Athens, OH, USA
| |
Collapse
|
57
|
Morais JAV, Almeida LR, Rodrigues MC, Azevedo RB, Muehlmann LA. The induction of immunogenic cell death by photodynamic therapy in B16F10 cells in vitro is effected by the concentration of the photosensitizer. Photodiagnosis Photodyn Ther 2021; 35:102392. [PMID: 34133961 DOI: 10.1016/j.pdpdt.2021.102392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) can trigger immune responses against cancer cells. The induction of immunogenic cell death (ICD) is one of the possible mechanisms behind this event, but the protocol conditions necessary for a robust induction of ICD by PDT have not been defined. In this work, the immunogenicity of B16F10 melanoma cells treated with different PDT protocols was investigated. The exposure of damage-associated molecules (DAMPs), namely HMGB1, calreticulin and ATP, a hallmark of ICD, and the presence of apoptotic and necrotic cells were assessed after the application of PDT mediated by different concentrations of aluminum-phthalocyanine (AlPcNE) in vitro. Furthermore, the in vivo immunogenicity of PDT-treated B16F10 cells was investigated with an immunization-challenge model in C57BL/6 mice. The percentage of dead cells was directly proportional to the concentration of AlPcNE. The IC50, IC70 and IC90 concentrations of AlPcNE induced the exposure of DAMPs by B16F10 cells after PDT. In the in vivo model, however, only the B16F10 cells treated with PDT-AlPcNE at the IC50 or IC70 rendered C57BL/6 significantly more resistant to a subsequent challenge with viable B16F10 cells. Thus, the induction of ICD in B16F10 cells by PDT occurs only at a specific range of AlPcNE concentrations.
Collapse
Affiliation(s)
- José Athayde Vasconcelos Morais
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil; Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil
| | - Letícia R Almeida
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil; Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil
| | - Mosar C Rodrigues
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil; Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil
| | - Ricardo B Azevedo
- Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil
| | - Luis A Muehlmann
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, Brazil; Laboratory of Nanobiotechnology. Department of Genetics and Morphology, Institute of Biological Sciences. University of Brasilia, Brasilia/DF, Brazil.
| |
Collapse
|
58
|
Mekseriwattana W, Phungsom A, Sawasdee K, Wongwienkham P, Kuhakarn C, Chaiyen P, Katewongsa KP. Dual Functions of Riboflavin-functionalized Poly(lactic-co-glycolic acid) Nanoparticles for Enhanced Drug Delivery Efficiency and Photodynamic Therapy in Triple-negative Breast Cancer Cells. Photochem Photobiol 2021; 97:1548-1557. [PMID: 34109623 DOI: 10.1111/php.13464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Combating triple-negative breast cancer (TNBC) is one of the greatest challenges in cancer therapy. This is primarily due to the difficulties in developing drug delivery systems that can effectively target cancer sites. In this study, we demonstrated a proof-of-principle concept using modified surfaces of poly(lactic-co-glycolic acid) nanoparticles linked with a riboflavin analogue (PLGA-CSRf) to obtain a dual-functional material. PLGA-CSRf nanoparticles were able to function as a drug delivery ligand and a photodynamic therapy agent for TNBC cells (MDA-MB-231). Biocompatibility of novel PLGA-CSRf nanoparticles was evaluated with both breast cancer and normal breast (MCF-10A) cells. In vitro studies revealed a six-fold increase in the cellular uptake of PLGA-CSRf nanoparticles in cancer cells compared with normal cells. The results demonstrate the ability of riboflavin (Rf) to enhance the delivery of PLGA nanoparticles to TNBC cells. The viability of TNBC cells was decreased following treatment with doxorubicin-encapsulated PLGA-CSRf nanoparticles in combination with UV irradiation, due to the photosensitizing property of Rf on the surface of the nanoparticles. This work demonstrated the ability of PLGA-CSRf to function both as an effective drug delivery carrier and as a therapeutic entity, with the potential to enhance photodynamic effects in the highly aggressive TNBC model.
Collapse
Affiliation(s)
- Wid Mekseriwattana
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anunyaporn Phungsom
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Komkrich Sawasdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Food Processing Technology Management, Faculty of Agro-Industry, Panyapiwat Institute of Management, Nonthaburi, Thailand
| | | | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Kanlaya Prapainop Katewongsa
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
59
|
Wulf HC, Al-Chaer RN, Glud M, Philipsen PA, Lerche CM. A Skin Cancer Prophylaxis Study in Hairless Mice Using Methylene Blue, Riboflavin, and Methyl Aminolevulinate as Photosensitizing Agents in Photodynamic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14050433. [PMID: 34063120 PMCID: PMC8148192 DOI: 10.3390/ph14050433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
The high incidence of sunlight-induced human skin cancers reveals a need for more effective photosensitizing agents. In this study, we compared the efficacy of prophylactic photodynamic therapy (PDT) when methylene blue (MB), riboflavin (RF), or methyl aminolevulinate (MAL) were used as photosensitizers. All mice in four groups of female C3.Cg/TifBomTac hairless immunocompetent mice (N = 100) were irradiated with three standard erythema doses of solar-simulated ultraviolet radiation (UVR) thrice weekly. Three groups received 2 × 2 prophylactic PDT treatments (days 45 + 52 and 90 + 97). The PDT treatments consisted of topical administration of 16% MAL, 20% MB, or 20% RF, and subsequent illumination that matched the photosensitizers’ absorption spectra. Control mice received no PDT. We recorded when the first, second, and third skin tumors developed. The pattern of tumor development after MB-PDT or RF-PDT was similar to that observed in irradiated control mice (p > 0.05). However, the median times until the first, second, and third skin tumors developed in mice given MAL-PDT were significantly delayed, compared with control mice (256, 265, and 272 vs. 215, 222, and 230 days, respectively; p < 0.001). Only MAL-PDT was an effective prophylactic treatment against UVR-induced skin tumors in hairless mice.
Collapse
Affiliation(s)
- Hans Christian Wulf
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, DK-2400 Copenhagen, Denmark; (H.C.W.); (R.N.A.-C.); (M.G.); (P.A.P.)
| | - Rami Nabil Al-Chaer
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, DK-2400 Copenhagen, Denmark; (H.C.W.); (R.N.A.-C.); (M.G.); (P.A.P.)
| | - Martin Glud
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, DK-2400 Copenhagen, Denmark; (H.C.W.); (R.N.A.-C.); (M.G.); (P.A.P.)
| | - Peter Alshede Philipsen
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, DK-2400 Copenhagen, Denmark; (H.C.W.); (R.N.A.-C.); (M.G.); (P.A.P.)
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, DK-2400 Copenhagen, Denmark; (H.C.W.); (R.N.A.-C.); (M.G.); (P.A.P.)
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-28207100
| |
Collapse
|
60
|
The Comparison of In Vitro Photosensitizing Efficacy of Curcumin-Loaded Liposomes Following Photodynamic Therapy on Melanoma MUG-Mel2, Squamous Cell Carcinoma SCC-25, and Normal Keratinocyte HaCaT Cells. Pharmaceuticals (Basel) 2021; 14:ph14040374. [PMID: 33920669 PMCID: PMC8072566 DOI: 10.3390/ph14040374] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
The research focused on the investigation of curcumin encapsulated in hydrogenated soy phosphatidylcholine liposomes and its increased photoactive properties in photodynamic therapy (PDT). The goal of this study was two-fold: to emphasize the role of a natural photoactive plant-based derivative in the liposomal formulation as an easily bioavailable, alternative photosensitizer (PS) for the use in PDT of skin malignancies. Furthermore, the goal includes to prove the decreased cytotoxicity of phototoxic agents loaded in liposomes toward normal skin cells. Research was conducted on melanoma (MugMel2), squamous cell carcinoma (SCC-25), and normal human keratinocytes (HaCaT) cell lines. The assessment of viability with MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) evaluated cell death after exposure to blue light irradiation after 4 h of pre-incubation with free and encapsulated curcumin. Additionally, the wound healing assay, flow cytometry, and immunocytochemistry to detect apoptosis were performed. The malignant cells revealed increased phototoxicity after the therapy in comparison to normal cells. Moreover, liposome curcumin-based photodynamic therapy showed an increased ratio of apoptotic and necrotic cells. The study also demonstrated that nanocurcumin significantly decreased malignant cell motility following PDT treatment. Acquired results suggest that liposomal formulation of a poor soluble natural compound may improve photosensitizing properties of curcumin-mediated PDT treatment in skin cancers and reduce toxicity in normal keratinocytes.
Collapse
|
61
|
Lopes J, Ferreira-Gonçalves T, Figueiredo IV, Rodrigues CMP, Ferreira H, Ferreira D, Viana AS, Faísca P, Gaspar MM, Coelho JMP, Silva CO, Reis CP. Proof-of-Concept Study of Multifunctional Hybrid Nanoparticle System Combined with NIR Laser Irradiation for the Treatment of Melanoma. Biomolecules 2021; 11:511. [PMID: 33808293 PMCID: PMC8103244 DOI: 10.3390/biom11040511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
The global impact of cancer emphasizes the importance of developing innovative, effective and minimally invasive therapies. In the context of superficial cancers, the development of a multifunctional nanoparticle-based system and its in vitro and in vivo safety and efficacy characterization are, herein, proposed as a proof-of-concept. This multifunctional system consists of gold nanoparticles coated with hyaluronic and oleic acids, and functionalized with epidermal growth factor for greater specificity towards cutaneous melanoma cells. This nanoparticle system is activated by a near-infrared laser. The characterization of this nanoparticle system included several phases, with in vitro assays being firstly performed to assess the safety of gold nanoparticles without laser irradiation. Then, hairless immunocompromised mice were selected for a xenograft model upon inoculation of A375 human melanoma cells. Treatment with near-infrared laser irradiation for five minutes combined with in situ administration of the nanoparticles showed a tumor volume reduction of approximately 80% and, in some cases, led to the formation of several necrotic foci, observed histologically. No significant skin erythema at the irradiation zone was verified, nor other harmful effects on the excised organs. In conclusion, these assays suggest that this system is safe and shows promising results for the treatment of superficial melanoma.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Isabel V. Figueiredo
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - Hugo Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| | - David Ferreira
- MED-Mediterranean Institute for Agriculture, Environment and Development, Department of Veterinary Medicine, University of Évora, Pólo da Mitra, 7002-554 Évora, Portugal;
| | - Ana S. Viana
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Pedro Faísca
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| | - Catarina Oliveira Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
- Department of Biomedical Sciences, Faculty of Pharmacy, Campus Universitario, University of Alcalá, Ctra. A2 km 33,600, 28871 Alcalá de Henares, Spain
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (J.L.); (T.F.-G.); (C.M.P.R.); (M.M.G.); (C.O.S.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (H.F.); (J.M.P.C.)
| |
Collapse
|
62
|
Jung E, Shim I, An J, Ji MS, Jangili P, Chi SG, Kim JS. Phenylthiourea-Conjugated BODIPY as an Efficient Photosensitizer for Tyrosinase-Positive Melanoma-Targeted Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:2120-2127. [PMID: 35014340 DOI: 10.1021/acsabm.0c01322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melanoma is the most threatening form of metastatic skin cancer that develops from melanocytes and causes a large majority of deaths due to poor therapeutic prognosis. It has significant limitations in treatment because it shows great resistance to chemotherapy, radiotherapy, and other therapeutic methods. A noninvasive and clinically accepted therapeutic modality, photodynamic therapy (PDT), is a promising treatment option, but it is limitedly applied for melanoma skin cancer treatment. This is because most of the photosensitizers are unlikely to be expected to have a remarkable effect on melanoma due to drug efflux by melanin pigmentation and intrinsic antioxidant defense mechanisms. Moreover, melanin is a dominant absorber in the spectral region of 500-600 nm that can cause the decreased photoreaction efficiency of photosensitizers. Herein, to overcome these drawbacks, we have developed a phenylthiourea-conjugated BODIPY photosensitizer (PTUBDP) for tyrosinase-positive melanoma-targeted PDT. In light of our results, it exhibited an enhanced cytotoxic efficacy compared to BDP, a parallel PDT agent that absence of phenylthiourea unit. PTUBDP shows outstanding effects of increased oxidative stress by an enhanced cellular uptake of the tyrosinase positive melanoma cell line (B16F10). This work presents increased therapeutic efficacy through the combined therapeutic approach, enabling enhanced reactive oxygen species (ROS) generation as well as overcoming the critical limitations of melanoma.
Collapse
Affiliation(s)
- Eugeine Jung
- Department of Chemistry, Korea University, Seoul 02841, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Inseob Shim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | | | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
63
|
Wang X, Gong Q, Song C, Fang J, Yang Y, Liang X, Huang X, Liu J. Berberine-photodynamic therapy sensitizes melanoma cells to cisplatin-induced apoptosis through ROS-mediated P38 MAPK pathways. Toxicol Appl Pharmacol 2021; 418:115484. [PMID: 33716044 DOI: 10.1016/j.taap.2021.115484] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022]
Abstract
The clinical use of cisplatin are limited due to its drug resistance. Thus, it is urgent to find effective combination therapy that sensitizes tumor cells to this drug. The combined chemo-photodynamic therapy could increase anti-tumor efficacy while also reduce the side effects of cisplatin. Berberine is an isoquinoline alkaloid, which has been reported to show high photosensitizing activity. In this study, we have examined the effect of a combination of cisplatin and berberine-PDT in cisplatin-resistant melanoma cells. The cytotoxic effects of berberine-PDT alone or in combination with cisplatin were tested by MTT assays. We then examined the subcellular localization of berberine with confocal fluorescence microscopy. The percentage of apoptotic cells, the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) generation assessed using flow cytometry analysis. Western blotting used in this study to determine the expression levels of MAPK signaling pathways and apoptosis-related proteins. Experimental data revealed that the mode of cell death is the caspase-dependent mitochondrial apoptotic pathways. Excessive accumulation of ROS played a key role in this process, which is confirmed by alleviation of cytotoxicity upon pretreatment with NAC. Furthermore, we found that the combined treatment activated MAPK signaling pathway. The inhibition of p38 MAPK by pretreating with SB203580 block the combined treatment-induced apoptotic cell death. In conclusion, berberine-PDT could be used as a chemo-sensitizer by promoting cell death through activation of a ROS/p38/caspase cascade.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qianyi Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaping Fang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Yang
- Department of Pharmacy, School of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xuan Huang
- Department of Pharmacy, School of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China; Natural Medicine and Health Food Research & Technology Innovation Team of Jiaxing, Jiaxing, Zhejiang 314001, China; Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research, China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
64
|
Vigueras G, Markova L, Novohradsky V, Marco A, Cutillas N, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. A photoactivated Ir(iii) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melanoma cells characteristic of immunogenic cell death. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00856k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The new iridium complex selectively targets cancer stem cells and has potential to induce immunogenic cell death in cancer cells.
Collapse
Affiliation(s)
- Gloria Vigueras
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Alicia Marco
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - José Ruiz
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
65
|
Mugas ML, Calvo G, Marioni J, Céspedes M, Martinez F, Sáenz D, Di Venosa G, Cabrera JL, Montoya SN, Casas A. Photodynamic therapy of tumour cells mediated by the natural anthraquinone parietin and blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112089. [PMID: 33271387 DOI: 10.1016/j.jphotobiol.2020.112089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is a treatment for superficial tumours involving the administration of a photosensitiser followed by irradiation. The potential of the natural anthraquinone parietin (PTN) in PDT is still relatively unexploited. In the present work, PTN isolated from the lichen Teoloschistes nodulifer (Nyl.) Hillman (Telochistaceae) was evaluated as a potential photosensitiser on tumour cells employing UVA-Vis and blue light. Blue light of 2 J/cm2 induced 50% death of K562 leukaemic cells treated 1 h with 30 μM PTN (Protocol a). Higher light doses (8 J/cm2) were needed to achieve the same percentage of cell death employing lower PTN concentrations (3 μM) and higher exposure times (24 h) (Protocol b). Cell cycle analysis after both protocols of PTN-PDT revealed a high percentage of sub-G1 cells. PTN was found to be taken up by K562 cells mainly by passive diffusion. Other tumour cells such as ovary cancer IGROV-1 and LM2 mammary carcinoma, as well as the normal keratinocytes HaCaT, were also photosensitised with PTN-PDT. We conclude that PTN is a promising photosensitiser for PDT of superficial malignancies and purging of leukaemic cells, when illuminated with blue light. Thus, this light wavelength is proposed to replace the Vis-UVA lamps generally employed for the photosensitisation of anthraquinones.
Collapse
Affiliation(s)
- María Laura Mugas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina
| | - Gustavo Calvo
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Juliana Marioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina
| | - Mariela Céspedes
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Florencia Martinez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Daniel Sáenz
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - José L Cabrera
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Susana Núñez Montoya
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
66
|
Raber HF, Heerde T, El Din SN, Flaig C, Hilgers F, Bitzenhofer N, Jäger KE, Drepper T, Gottschalk KE, Bodenberger NE, Weil T, Kubiczek DH, Rosenau F. Azulitox—A Pseudomonas aeruginosa P28-Derived Cancer-Cell-Specific Protein Photosensitizer. Biomacromolecules 2020; 21:5067-5076. [DOI: 10.1021/acs.biomac.0c01216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Heinz Fabian Raber
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Heerde
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Suzanne Nour El Din
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carolin Flaig
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute for Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Nora Bitzenhofer
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Karl-Erich Jäger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology) Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Kay-Eberhard Gottschalk
- Institute for Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Dennis Horst Kubiczek
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
67
|
Szlasa W, Supplitt S, Drąg-Zalesińska M, Przystupski D, Kotowski K, Szewczyk A, Kasperkiewicz P, Saczko J, Kulbacka J. Effects of curcumin based PDT on the viability and the organization of actin in melanotic (A375) and amelanotic melanoma (C32) - in vitro studies. Biomed Pharmacother 2020; 132:110883. [PMID: 33113417 DOI: 10.1016/j.biopha.2020.110883] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Curcumin is a turmeric, antioxidative compound, well-known of its anti-cancer properties. Nowadays more and more effort is made in the field of enhancing the efficiency of the anticancer therapies. Combining the photoactive properties of curcumin with the superficial localization of melanoma and photodynamic therapy (PDT) seems to be a promising treatment method. The research focused on the evaluation of the curcumin effectiveness as an anticancer therapeutic agent in the in vitro treatment of melanotic (A375) and amelanotic (C32) melanoma cell lines. Keratinocytes (HaCat) and fibroblasts (HGF) were used to assess the impact of the therapy on the skin tissue. The aim of the study was to investigate the cell death after exposure to light irradiation after preincubation with curcumin. Additionaly the authors analized the interactions between curcumin and the actin cytoskeleton. The cytotoxic effect initiated by curcumin and increased by irradiation confirm the usefulness of the flavonoid in the PDT approach. Depending on curcumin concentration and incubation time, melanoma cells survival rate ranged from: 93.68 % (C32 cell line, 10 μM, 24 h) and 83.47 % (A375 cell line, 10 μM, 24 h) to 8.98 % (C32 cell line, 50 μM, 48 h) and 12.42 % (A375 cell line, 50 μM, 48 h). Moreover, photodynamic therapy with curcumin increased the number of apoptotic and necrotic cells in comparison to incubation with curcumin without irradiation. The study demonstrated that PDT induced caspase-3 overexpression and DNA cleavage in the studied cell lines. The cells revealed decreased proliferation after the therapy due to the actin cytoskeleton rearrangement. Although effective, the therapy remains not selective towards melanoma cells.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland; Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw, Poland
| | | | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
68
|
Pires L, Demidov V, Wilson BC, Salvio AG, Moriyama L, Bagnato VS, Vitkin IA, Kurachi C. Dual-Agent Photodynamic Therapy with Optical Clearing Eradicates Pigmented Melanoma in Preclinical Tumor Models. Cancers (Basel) 2020; 12:cancers12071956. [PMID: 32708501 PMCID: PMC7409296 DOI: 10.3390/cancers12071956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment using light-activated photosensitizers (photodynamic therapy, PDT) has shown limited efficacy in pigmented melanoma, mainly due to the poor penetration of light in this tissue. Here, an optical clearing agent (OCA) was applied topically to a cutaneous melanoma model in mice shortly before PDT to increase the effective treatment depth by reducing the light scattering. This was used together with cellular and vascular-PDT, or a combination of both. The effect on tumor growth was measured by longitudinal ultrasound/photoacoustic imaging in vivo and by immunohistology after sacrifice. In a separate dorsal window chamber tumor model, angiographic optical coherence tomography (OCT) generated 3D tissue microvascular images, enabling direct in vivo assessment of treatment response. The optical clearing had minimal therapeutic effect on the in control, non-pigmented cutaneous melanomas but a statistically significant effect (p < 0.05) in pigmented lesions for both single- and dual-photosensitizer treatment regimes. The latter enabled full-depth eradication of tumor tissue, demonstrated by the absence of S100 and Ki67 immunostaining. These studies are the first to demonstrate complete melanoma response to PDT in an immunocompromised model in vivo, with quantitative assessment of tumor volume and thickness, confirmed by (immuno) histological analyses, and with non-pigmented melanomas used as controls to clarify the critical role of melanin in the PDT response. The results indicate the potential of OCA-enhanced PDT for the treatment of pigmented lesions, including melanoma.
Collapse
Affiliation(s)
- Layla Pires
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Valentin Demidov
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Correspondence: ; Tel.: +1-416-634-8778
| | | | - Lilian Moriyama
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| | - I. Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| |
Collapse
|
69
|
Abdel Fadeel DA, Kamel R, Fadel M. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: in-vitro/in-vivo studies and histopathological examination. Sci Rep 2020; 10:10435. [PMID: 32591621 PMCID: PMC7320133 DOI: 10.1038/s41598-020-67349-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Abstract
The use of (PEG)-grafted materials has a positive impact on drug delivery. In this study we designed PEGylated lipid nanocarriers (PLN) loaded with curcumin (Cur) to target skin cancer by photodynamic therapy. Cur is a polyphenolic compound having vast biological effects masked due to its low aqueous solubility. PLN were prepared using Tefose 1500 with different surfactants. PLN3, containing Tween 80, had the smallest particle size (167.60 ± 15.12 nm), Z = − 26.91 mV and, attained the highest drug release (Q24 = 75.02 ± 4.61% and Q48 = 98.25 ± 6.89%). TEM showed spherical, well-separated nanoparticles. The dark and photo-cytotoxicity study on a human skin cancer cell line (A431) revealed that, at all tested concentrations, the viability of cells treated with PLN3 was significantly lower than those treated by Cur suspension and, it decreased upon irradiation by blue light (410 nm). The amount of Cur extracted from the skin of mice treated by PLN3 was twice that of mice treated by aqueous drug suspension, this was confirmed by the increase in fluorescence intensity measured by confocal laser microscopy. Histopathological studies showed that PLN3 could extend Cur effect to deeper skin layers, especially after irradiation. This study highlights the possible efficacy of curcumin-loaded PEGylated lipidic nanoparticles to combat skin cancer by photodynamic therapy.
Collapse
Affiliation(s)
- Doaa A Abdel Fadeel
- Pharmaceutical Technology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt.
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | - Maha Fadel
- Pharmaceutical Technology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
70
|
Vaneev AN, Gorelkin PV, Garanina AS, Lopatukhina HV, Vodopyanov SS, Alova AV, Ryabaya OO, Akasov RA, Zhang Y, Novak P, Salikhov SV, Abakumov MA, Takahashi Y, Edwards CRW, Klyachko NL, Majouga AG, Korchev YE, Erofeev AS. In Vitro and In Vivo Electrochemical Measurement of Reactive Oxygen Species After Treatment with Anticancer Drugs. Anal Chem 2020; 92:8010-8014. [PMID: 32441506 DOI: 10.1021/acs.analchem.0c01256] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vivo monitoring of reactive oxygen species (ROS) in tumors during treatment with anticancer therapy is important for understanding the mechanism of action and in the design of new anticancer drugs. In this work, a platinized nanoelectrode is placed into a single cell for detection of the ROS signal, and drug-induced ROS production is then recorded. The main advantages of this method are the short incubation time with the drug and its high sensitivity which allows the detection of low intracellular ROS concentrations. We have shown that our new method can measure the ROS response to chemotherapy in tumor-bearing mice in real-time. ROS levels were measured in vivo inside the tumor at different depths in response to doxorubicin. This work provides an effective new approach for the measurement of intracellular ROS by platinized nanoelectrodes.
Collapse
Affiliation(s)
- Alexander N Vaneev
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1, 3, Moscow 119991, Russia
| | - Petr V Gorelkin
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia
| | - Anastasiia S Garanina
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia
| | - Helena V Lopatukhina
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1, 3, Moscow 119991, Russia
| | - Stepan S Vodopyanov
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1, 3, Moscow 119991, Russia
| | - Anna V Alova
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1, 3, Moscow 119991, Russia
| | - Oxana O Ryabaya
- N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, Moscow 115478, Russia
| | - Roman A Akasov
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia.,I. M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
| | - Yanjun Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Imperial College London, Department of Medicine, London W12 0NN, United Kingdom
| | - Pavel Novak
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia.,Imperial College London, Department of Medicine, London W12 0NN, United Kingdom
| | - Sergey V Salikhov
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia
| | - Maxim A Abakumov
- N. I. Pirogov Russian National Research Medical University, Ostrovityanova Street 1/7, Moscow 117997, Russia
| | - Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | - Natalia L Klyachko
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1, 3, Moscow 119991, Russia
| | - Alexander G Majouga
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1, 3, Moscow 119991, Russia.,D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, Moscow 125047, Russia
| | - Yuri E Korchev
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia.,Imperial College London, Department of Medicine, London W12 0NN, United Kingdom
| | - Alexander S Erofeev
- National University of Science and Technology "MISiS", Leninskiy Avenue, 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1, 3, Moscow 119991, Russia
| |
Collapse
|
71
|
Bazylińska U, Wawrzyńczyk D, Szewczyk A, Kulbacka J. Engineering and biological assessment of double core nanoplatform for co-delivery of hybrid fluorophores to human melanoma. J Inorg Biochem 2020; 208:111088. [PMID: 32446020 DOI: 10.1016/j.jinorgbio.2020.111088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023]
Abstract
We investigated new development in photodynamic therapy (PDT), aiming at enhanced tumor selectivity and biocompatibility, which included application of a third-generation photosensitizing agent, i.e. xanthene-origin Rose Bengal (RB) co-encapsulated with up-converting NaYF4 nanoparticles (NPs) co-doped with lanthanide ions: Er3+ (2%) and Yb3+ (20%). The hybrid fluorophores were applied as components of double core nanocarriers (NCs) obtained by double (multiple) emulsion solvent evaporation process. Next, to improve the biocompatibility and photodynamic activity, biodegradable polymer: poly(lactide-co-glycolide) - PLGA and non-ionic surfactants with different hydrophobicity: Span 80 and Cremophor A25, were used. After the engineering process, controlled by dynamic light scattering (DLS) measurements, ζ-potential evaluation, transmission electron and atomic force microscopy (TEM and AFM) imaging, as well as optical analysis provided by measurements of the up-conversion emission spectra and luminescence kinetics for encapsulated only NaYF4:Er3+,Yb3+ NPs and co-encapsulated RB + NaYF4:Er3+,Yb3+ molecules, spherical polyester NCs with average size <200 nm, were tested on human melanoma (Me-45 and MeWo) cells and a control human keratinocyte (HaCaT) cell line. The photodynamic action of the investigated NCs was assessed by oxidoreductive potential measurements with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, that corresponds to percentage of the viable cells. Immunofluorescence and the NCs internalization studies were visualized by confocal laser scanning microscopy (CLSM studies). Our results indicated effective photosensitizer delivery into the cancer cells and significant photodynamic efficiency enhanced by the near infrared (NIR)-activation of the encapsulated hybrid cargo in the skin melanoma cells.
Collapse
Affiliation(s)
- Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Dominika Wawrzyńczyk
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; Department of General Zoology, Zoological Institute, University of Wroclaw, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
72
|
Lee JW, Ratnakumar K, Hung KF, Rokunohe D, Kawasumi M. Deciphering UV-induced DNA Damage Responses to Prevent and Treat Skin Cancer. Photochem Photobiol 2020; 96:478-499. [PMID: 32119110 DOI: 10.1111/php.13245] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.
Collapse
Affiliation(s)
- Jihoon W Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kajan Ratnakumar
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kai-Feng Hung
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Daiki Rokunohe
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
73
|
Analysis of photoreactivity and phototoxicity of riboflavin's analogue 3MeTARF. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111820. [DOI: 10.1016/j.jphotobiol.2020.111820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 01/26/2023]
|
74
|
Tang Q, Hu P, Peng H, Zhang N, Zheng Q, He Y. Near-Infrared Laser-Triggered, Self-Immolative Smart Polymersomes for in vivo Cancer Therapy. Int J Nanomedicine 2020; 15:137-149. [PMID: 32021170 PMCID: PMC6964533 DOI: 10.2147/ijn.s224502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Traditional chemotherapy is accompanied by significant side effects, which, in many aspects, limits its treatment efficacy and clinical applications. Herein, we report an oxidative responsive polymersome nanosystem mediated by near infrared (NIR) light which exhibited the combination effect of photodynamic therapy (PDT) and chemotherapy. Methods In our study, poly (propylene sulfide)20-bl-poly (ethylene glycol)12 (PPS20-b-PEG12) block copolymer was synthesized and employed to prepare the polymersome. The hydrophobic photosensitizer zinc phthalocyanine (ZnPc) was loaded in the shell and the hydrophilic doxorubicin hydrochloride (DOX·HCl) in the inner aqueous space of the polymersome. Results Under the irradiation of 660 nm NIR light, singlet oxygen 1O2 molecules were generated from ZnPc to oxidize the neighbouring sulfur atoms on the PPS block which eventually ruptured the intact structure of polymersomes, leading to the release of encapsulated DOX·HCl. The released DOX and the 1O2 could achieve a combination effect for cancer therapy if the laser activation and drug release occur at the tumoral sites. In vitro studies confirmed the generation of singlet oxygen and DOX release by NIR irradiation. In vivo studies showed that such a combined PDT-chemotherapy nanosystem could accumulate in A375 tumors efficiently, thus leading to significant inhibition on tumor growth as compared to PDT (PZ group) or chemotherapy alone (DOX group). Conclusion In summary, this oxidation-sensitive nanosystem showed excellent anti-tumor effects by synergistic chemophotodynamic therapy, indicating that this novel drug delivery strategy could potentially provide a new means for cancer treatments in clinic.
Collapse
Affiliation(s)
- Qing Tang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Ping Hu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China.,School of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Haibo Peng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Ning Zhang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Qiang Zheng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yun He
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
75
|
Photo-induced protein oxidation: mechanisms, consequences and medical applications. Essays Biochem 2019; 64:33-44. [DOI: 10.1042/ebc20190044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
Abstract
Abstract
Irradiation from the sun has played a crucial role in the origin and evolution of life on the earth. Due to the presence of ozone in the stratosphere most of the hazardous irradiation is absorbed, nonetheless UVB, UVA, and visible light reach the earth’s surface. The high abundance of proteins in most living organisms, and the presence of chromophores in the side chains of certain amino acids, explain why these macromolecules are principal targets when biological systems are illuminated. Light absorption triggers the formation of excited species that can initiate photo-modification of proteins. The major pathways involve modifications derived from direct irradiation and photo-sensitized reactions. In this review we explored the basic concepts behind these photochemical pathways, with special emphasis on the photosensitized mechanisms (type 1 and type 2) leading to protein oxidation, and how this affects protein structure and functions. Finally, a description of the photochemical reactions involved in some human diseases, and medical applications of protein oxidation are presented.
Collapse
|