51
|
Zhao Z, Yin L, Wu F, Tong X. Hepatic metabolic regulation by nuclear factor E4BP4. J Mol Endocrinol 2021; 66:R15-R21. [PMID: 33434146 PMCID: PMC7808567 DOI: 10.1530/jme-20-0239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Discovered as a b-ZIP transcription repressor 30 years ago, E4 promoter-binding protein 4 (E4BP4) has been shown to play critical roles in immunity, circadian rhythms, and cancer progression. Recent research has highlighted E4BP4 as a novel regulator of metabolisms in various tissues. In this review, we focus on the function and mechanisms of hepatic E4BP4 in regulating lipid and glucose homeostasis, bile metabolism, as well as xenobiotic metabolism. Finally, E4BP4-specific targets will be discussed for the prevention and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zifeng Zhao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, P. R. China 211198
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Feihua Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, P. R. China 211198
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
52
|
Abstract
The identification and characterization of rhythmically expressed mRNAs have been an active area of research over the past 20 years, as these mRNAs are believed to produce the daily rhythms in a wide range of biological processes. Circadian transcriptome studies have used mature mRNA as a primary readout and focused largely on rhythmic RNA synthesis as a regulatory mechanism underlying rhythmic mRNA expression. However, RNA synthesis, RNA degradation, or a combination of both must be rhythmic to drive rhythmic RNA profiles, and it is still unclear to what extent rhythmic synthesis leads to rhythmic RNA profiles. In addition, circadian RNA expression is also often tissue specific. Although a handful of genes cycle in all or most tissues, others are rhythmic only in certain tissues, even though the same core clock mechanism is believed to control the rhythmic RNA profiles in all tissues. This review focuses on the dynamics of rhythmic RNA synthesis and degradation and discusses how these steps collectively determine the rhythmicity, phase, and amplitude of RNA accumulation. In particular, we highlight a possible role of RNA degradation in driving tissue-specific RNA rhythms. By unifying findings from experimental and theoretical studies, we will provide a comprehensive overview of how rhythmic gene expression can be achieved and how each regulatory step contributes to tissue-specific circadian transcriptome output in mammals.
Collapse
Affiliation(s)
| | - Shihoko Kojima
- To whom all correspondence should be addressed: Shihoko Kojima, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA; .
| |
Collapse
|
53
|
The circadian machinery links metabolic disorders and depression: A review of pathways, proteins and potential pharmacological interventions. Life Sci 2020; 265:118809. [PMID: 33249097 DOI: 10.1016/j.lfs.2020.118809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Circadian rhythms are responsible for regulating a number of physiological processes. The central oscillator is located within the suprachiasmatic nucleus (SCN) of the hypothalamus and the SCN synchronises the circadian clocks that are found in our peripheral organs through neural and humoral signalling. At the molecular level, biological clocks consist of transcription-translation feedback loops (TTFLs) and these pathways are influenced by transcription factors, post-translational modifications, signalling pathways and epigenetic modifiers. When disruptions occur in the circadian machinery, the activities of the proteins implicated in this network and the expression of core clock or clock-controlled genes (CCGs) can be altered. Circadian misalignment can also arise when there is desychronisation between our internal clocks and environmental stimuli. There is evidence in the literature demonstrating that disturbances in the circadian rhythm contribute to the pathophysiology of several diseases and disorders. This includes the metabolic syndrome and recently, it has been suggested that the 'circadian syndrome' may be a more appropriate term to use to not only describe the cardio-metabolic risk factors but also the associated comorbidities. Here we overview the molecular architecture of circadian clocks in mammals and provide insight into the effects of shift work, exposure to artificial light, food intake and stress on the circadian rhythm. The relationship between circadian rhythms, metabolic disorders and depression is reviewed and this is a topic that requires further investigation. We also describe how particular proteins involved in the TTFLs can be potentially modulated by small molecules, including pharmacological interventions and dietary compounds.
Collapse
|
54
|
Valcin JA, Udoh US, Swain TM, Andringa KK, Patel CR, Al Diffalha S, Baker PRS, Gamble KL, Bailey SM. Alcohol and Liver Clock Disruption Increase Small Droplet Macrosteatosis, Alter Lipid Metabolism and Clock Gene mRNA Rhythms, and Remodel the Triglyceride Lipidome in Mouse Liver. Front Physiol 2020; 11:1048. [PMID: 33013449 PMCID: PMC7504911 DOI: 10.3389/fphys.2020.01048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy alcohol drinking dysregulates lipid metabolism, promoting hepatic steatosis – the first stage of alcohol-related liver disease (ALD). The molecular circadian clock plays a major role in synchronizing daily rhythms in behavior and metabolism and clock disruption can cause pathology, including liver disease. Previous studies indicate that alcohol consumption alters liver clock function, but the impact alcohol or clock disruption, or both have on the temporal control of hepatic lipid metabolism and injury remains unclear. Here, we undertook studies to determine whether genetic disruption of the liver clock exacerbates alterations in lipid metabolism and worsens steatosis in alcohol-fed mice. To address this question, male liver-specific Bmal1 knockout (LKO) and flox/flox (Fl/Fl) control mice were fed a control or alcohol-containing diet for 5 weeks. Alcohol significantly dampened diurnal rhythms of mRNA levels in clock genes Bmal1 and Dbp, phase advanced Nr1d1/REV-ERBα, and induced arrhythmicity in Clock, Noct, and Nfil3/E4BP4, with further disruption in livers of LKO mice. Alcohol-fed LKO mice exhibited higher plasma triglyceride (TG) and different time-of-day patterns of hepatic TG and macrosteatosis, with elevated levels of small droplet macrosteatosis compared to alcohol-fed Fl/Fl mice. Diurnal rhythms in mRNA levels of lipid metabolism transcription factors (Srebf1, Nr1h2, and Ppara) were significantly altered by alcohol and clock disruption. Alcohol and/or clock disruption significantly altered diurnal rhythms in mRNA levels of fatty acid (FA) synthesis and oxidation (Acaca/b, Mlycd, Cpt1a, Fasn, Elovl5/6, and Fads1/2), TG turnover (Gpat1, Agpat1/2, Lpin1/2, Dgat2, and Pnpla2/3), and lipid droplet (Plin2/5, Lipe, Mgll, and Abdh5) genes, along with protein abundances of p-ACC, MCD, and FASN. Lipidomics analyses showed that alcohol, clock disruption, or both significantly altered FA saturation and remodeled the FA composition of the hepatic TG pool, with higher percentages of several long and very long chain FA in livers of alcohol-fed LKO mice. In conclusion, these results show that the liver clock is important for maintaining temporal control of hepatic lipid metabolism and that disrupting the liver clock exacerbates alcohol-related hepatic steatosis.
Collapse
Affiliation(s)
- Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Uduak S Udoh
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Telisha M Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelly K Andringa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chirag R Patel
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
55
|
Saran AR, Dave S, Zarrinpar A. Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology 2020; 158:1948-1966.e1. [PMID: 32061597 PMCID: PMC7279714 DOI: 10.1053/j.gastro.2020.01.050] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Circadian clock proteins are endogenous timing mechanisms that control the transcription of hundreds of genes. Their integral role in coordinating metabolism has led to their scrutiny in a number of diseases, including nonalcoholic fatty liver disease (NAFLD). Discoordination between central and peripheral circadian rhythms is a core feature of nearly every genetic, dietary, or environmental model of metabolic syndrome and NAFLD. Restricting feeding to a defined daily interval (time-restricted feeding) can synchronize the central and peripheral circadian rhythms, which in turn can prevent or even treat the metabolic syndrome and hepatic steatosis. Importantly, a number of proteins currently under study as drug targets in NAFLD (sterol regulatory element-binding protein [SREBP], acetyl-CoA carboxylase [ACC], peroxisome proliferator-activator receptors [PPARs], and incretins) are modulated by circadian proteins. Thus, the clock can be used to maximize the benefits and minimize the adverse effects of pharmaceutical agents for NAFLD. The circadian clock itself has the potential for use as a target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Anand R. Saran
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Shravan Dave
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California; Veterans Affairs Health Sciences San Diego, La Jolla, California; Institute of Diabetes and Metabolic Health, University of California, San Diego, La Jolla, California; Center for Microbiome Innovation, University of California, San Diego, La Jolla, California.
| |
Collapse
|
56
|
Gonzalez R, Gonzalez SD, McCarthy MJ. Using Chronobiological Phenotypes to Address Heterogeneity in Bipolar Disorder. MOLECULAR NEUROPSYCHIATRY 2020; 5:72-84. [PMID: 32399471 DOI: 10.1159/000506636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder characterized by recurrent episodes of mania and depression in addition to disruptions in sleep, energy, appetite, and cognitive functions-rhythmic behaviors that typically change on daily cycles. BD symptoms can also be provoked by seasonal changes, sleep, and/or circadian disruption, indicating that chronobiological factors linked to the circadian clock may be a common feature in the disorder. Research indicates that BD exists on a clinical spectrum, with distinct subtypes often intersecting with other psychiatric disorders. This heterogeneity has been a major challenge to BD research and contributes to problems in diagnostic stability and treatment outcomes. To address this heterogeneity, we propose that chronobiologically related biomarkers could be useful in classifying BD into objectively measurable phenotypes to establish better diagnoses, inform treatments, and perhaps lead to better clinical outcomes. Presently, we review the biological basis of circadian time keeping in humans, discuss the links of BD to the circadian clock, and pre-sent recent studies that evaluated chronobiological measures as a basis for establishing BD phenotypes. We conclude that chronobiology may inform future research using other novel techniques such as genomics, cell biology, and advanced behavioral analyses to establish new and more biologically based BD phenotypes.
Collapse
Affiliation(s)
- Robert Gonzalez
- Department of Psychiatry and Behavioral Health, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Suzanne D Gonzalez
- Department of Psychiatry and Behavioral Health, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.,Department of Pharmacology, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Michael J McCarthy
- VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry and Center for Chronobiology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
57
|
Mauvoisin D, Gachon F. Proteomics in Circadian Biology. J Mol Biol 2019; 432:3565-3577. [PMID: 31843517 DOI: 10.1016/j.jmb.2019.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
The circadian clock is an endogenous molecular timekeeping system that allows organisms to adjust their physiology and behavior to the time of day in an anticipatory fashion. In different organisms, the circadian clock coordinates physiology and metabolism through regulation of gene expression at the transcriptional and post-transcriptional levels. Until now, circadian gene expression studies have mostly focused primarily on transcriptomics approaches. This type of analyses revealed that many protein-encoding genes show circadian expression in a tissue-specific manner. During the last three decades, a long way has been traveled since the pioneering work on dinoflagellates, and new advances in mass spectrometry offered new perspectives in the characterization of the circadian dynamics of the proteome. Altogether, these efforts highlighted that rhythmic protein oscillation is driven equally by gene transcription, post-transcriptional and post-translational regulations. The determination of the role of the circadian clock in these three levels of regulation appears to be the next major challenge in the field.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|