51
|
Hatfield MD, Reis AMC, Obeso D, Cook JR, Thompson DM, Rao M, Friedberg EC, Queimado L. Identification of MMS19 domains with distinct functions in NER and transcription. DNA Repair (Amst) 2006; 5:914-24. [PMID: 16797255 DOI: 10.1016/j.dnarep.2006.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/08/2006] [Accepted: 05/11/2006] [Indexed: 12/14/2022]
Abstract
Nucleotide excision repair (NER) and RNA polymerase II (Pol II) transcription are essential cellular processes which are intimately intertwined. They share an indispensable multiprotein complex, TFIIH, and impairments in either process can impact the efficiency of the other. Like TFIIH, MMS19 is required for NER and Pol II transcription, but its precise role in each process is unknown. We showed previously that the human MMS19 gene originates multiple splice variants, some of which may encode distinct MMS19 protein isoforms. Here we characterize a novel MMS19 transcript and demonstrate for the first time that MMS19 splice variants are conserved across species and are functionally distinct. Expression of human MMS19 splice variants in mms19-deleted yeast cells produced unique patterns of thermosensitivity and ultraviolet radiation-sensitivity that point to three MMS19 structural domains with distinct in vivo functions. MMS19 polypeptides lacking domain A are able to fulfill the role of full-length MMS19 in NER but not in transcription. MMS19 polypeptides lacking part of domain B are efficient in transcription but not in NER. MMS19 polypeptides lacking domain C (HEAT repeats) are unable to fulfill either function. Our data suggest that the MMS19 HEAT repeat domain is essential for MMS19 function in NER and transcription, while domains A and B, within MMS19 N-terminus, modulate the balance between DNA repair and transcription. Our results highlight the functional significance of MMS19 transcripts and the possible contribution of MMS19 isoforms to regulate the switch between NER and transcription. Furthermore, our work associates for the first time specific protein domains with MMS19's role in NER and transcription.
Collapse
Affiliation(s)
- Melissa D Hatfield
- Department of Otorhinolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Fan L, Arvai AS, Cooper PK, Iwai S, Hanaoka F, Tainer JA. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell 2006; 22:27-37. [PMID: 16600867 DOI: 10.1016/j.molcel.2006.02.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 12/21/2005] [Accepted: 02/14/2006] [Indexed: 11/18/2022]
Abstract
The human xeroderma pigmentosum group B (XPB) helicase is essential for transcription, nucleotide excision repair, and TFIIH functional assembly. Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characterize two RecA-like XPB helicase domains and discover a DNA damage recognition domain (DRD), a unique RED motif, a flexible thumb motif (ThM), and implied conformational changes within a conserved functional core. RED motif mutations dramatically reduce helicase activity, and the DRD and ThM, which flank the RED motif, appear structurally as well as functionally analogous to the MutS mismatch recognition and DNA polymerase thumb domains. Substrate specificity is altered by DNA damage, such that AfXPB unwinds dsDNA with 3' extensions, but not blunt-ended dsDNA, unless it contains a lesion, as shown for CPD or (6-4) photoproducts. Together, these results provide an unexpected mechanism of DNA unwinding with implications for XPB damage verification in nucleotide excision repair.
Collapse
Affiliation(s)
- Li Fan
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
53
|
Wu X, Shell SM, Yang Z, Zou Y. Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 2006; 66:2997-3005. [PMID: 16540648 PMCID: PMC1450106 DOI: 10.1158/0008-5472.can-05-3403] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA damage triggers complex cellular responses in eukaryotic cells, including initiation of DNA repair and activation of cell cycle checkpoints. In addition to inducing cell cycle arrest, checkpoint also has been suggested to modulate a variety of other cellular processes in response to DNA damage. In this study, we present evidence showing that the cellular function of xeroderma pigmentosum group A (XPA), a major nucleotide excision repair (NER) factor, could be modulated by checkpoint kinase ataxia-telangiectasia mutated and Rad3-related (ATR) in response to UV irradiation. We observed the apparent interaction and colocalization of XPA with ATR in response to UV irradiation. We showed that XPA was a substrate for in vitro phosphorylation by phosphatidylinositol-3-kinase-related kinase family kinases whereas in cells XPA was phosphorylated in an ATR-dependent manner and stimulated by UV irradiation. The Ser196 of XPA was identified as a biologically significant residue to be phosphorylated in vivo. The XPA-deficient cells complemented with XPA-S196A mutant, in which Ser196 was substituted with an alanine, displayed significantly higher UV sensitivity compared with the XPA cells complemented with wild-type XPA. Moreover, substitution of Ser196 with aspartic acid for mimicking the phosphorylation of XPA increased the cell survival to UV irradiation. Taken together, our results revealed a potential physical and functional link between NER and the ATR-dependent checkpoint pathway in human cells and suggested that the ATR checkpoint pathway could modulate the cellular activity of NER through phosphorylation of XPA at Ser196 on UV irradiation.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | |
Collapse
|
54
|
Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253-76. [PMID: 16464005 DOI: 10.1021/cr040483f] [Citation(s) in RCA: 477] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludovic C J Gillet
- Institute for Molecular Cancer Research, University of Zürich, Switzerland
| | | |
Collapse
|
55
|
Coin F, Proietti De Santis L, Nardo T, Zlobinskaya O, Stefanini M, Egly JM. p8/TTD-A as a repair-specific TFIIH subunit. Mol Cell 2006; 21:215-26. [PMID: 16427011 DOI: 10.1016/j.molcel.2005.10.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/12/2005] [Accepted: 10/25/2005] [Indexed: 11/16/2022]
Abstract
How subunits of the transcription/repair factor TFIIH cooperate to allow for the removal of DNA lesions or for the transcription of genes is crucial to understand the functioning of this complex. Here, we reveal that p8/TTD-A, the tenth subunit of TFIIH, has a critical role in DNA repair where it triggers DNA opening by stimulating XPB ATPase activity together with the damage recognition factor XPC-hHR23B. Fluorescent antibody labeling shows that such opening is needed for the recruitment of XPA to the site of the damage. By contrast, p8 is dispensable for RNA synthesis and doesn't interfere with the transcriptional function of CAK, although both interact with the XPD subunit. Interestingly, p8 overexpression in TTD-XPD cells counteracts the detrimental effect of XPD mutations by restoring the cellular TFIIH concentration. These findings resolve the primary functions of p8 and unveil how TFIIH components specifically direct the complex toward repair or transcription.
Collapse
Affiliation(s)
- Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Louis Pasteur, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
56
|
Hall H, Gurský J, Nicodemou A, Rybanská I, Kimlícková E, Pirsel M. Characterization of ERCC3 mutations in the Chinese hamster ovary 27-1, UV24 and MMC-2 cell lines. Mutat Res 2005; 593:177-86. [PMID: 16143348 DOI: 10.1016/j.mrfmmm.2005.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 06/02/2005] [Accepted: 07/13/2005] [Indexed: 11/27/2022]
Abstract
Mutation of the XPB gene in humans gives rise to the distinct, autosomal recessive disorder, with a striking clinical heterogeneity: xeroderma pigmentosum associated with Cockayne's syndrome and trichothiodystrophy. XPB is a subunit of a multifunctional RNA polymerase II general initiation factor TFIIH and codes for 3'-->5' DNA helicase essential for both nucleotide excision repair (NER) and transcription. Since XPB defective human disease is extremely rare, Chinese hamster ovary (CHO) mutant cell lines belonging to the 3rd rodent complementation group (the hamster ERCC3 gene is the homologue of the human XPB gene) are a unique resource for analyzing structure-function relationships in the ERCC3/XPB protein. We have amplified, cloned and sequenced the ERCC3 genes from wild type and 27-1, UV24 and MMC-2 CHO mutant cell lines and identified the sites of the respective mutations. 27-1 mutant has an A1075G transition (K359E) located at the very beginning of the Ia helicase domain which causes deficiency in open complex formation and in 3', 5' and dual incisions during NER. UV24 cell line has two mutations. First, it is a T1144C transition (S382P) located behind the Ia helicase domain in a region responsible for ERCC3 binding to XPG, p62 and p44. Second mutation is identical with a mutation in MMC-2 mutant. It is a C2215T transition (Q739STOP) causing the truncation of the C-terminus of the protein, responsible for the 5' incision, by 44 amino acids. All mutant cell lines are unable to recover RNA synthesis after 10Jm(-2) UV, suggesting a defect in transcription-coupled repair. Their limited global NER capacity measured by a single-cell gel electrophoresis assay (0.25Jm(-2)) varies from 6% to 11%.
Collapse
Affiliation(s)
- Hana Hall
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | | | | | | | | | |
Collapse
|
57
|
Newman M, Murray-Rust J, Lally J, Rudolf J, Fadden A, Knowles PP, White MF, McDonald NQ. Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition. EMBO J 2005; 24:895-905. [PMID: 15719018 PMCID: PMC554130 DOI: 10.1038/sj.emboj.7600581] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 01/19/2005] [Indexed: 11/09/2022] Open
Abstract
The XPF/Mus81 structure-specific endonucleases cleave double-stranded DNA (dsDNA) within asymmetric branched DNA substrates and play an essential role in nucleotide excision repair, recombination and genome integrity. We report the structure of an archaeal XPF homodimer alone and bound to dsDNA. Superposition of these structures reveals a large domain movement upon binding DNA, indicating how the (HhH)(2) domain and the nuclease domain are coupled to allow the recognition of double-stranded/single-stranded DNA junctions. We identify two nonequivalent DNA-binding sites and propose a model in which XPF distorts the 3' flap substrate in order to engage both binding sites and promote strand cleavage. The model rationalises published biochemical data and implies a novel role for the ERCC1 subunit of eukaryotic XPF complexes.
Collapse
Affiliation(s)
- Matthew Newman
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Judith Murray-Rust
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - John Lally
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Jana Rudolf
- Centre for Biomolecular Sciences, University of St Andrews, Fife, UK
| | - Andrew Fadden
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Philip P Knowles
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Malcolm F White
- Centre for Biomolecular Sciences, University of St Andrews, Fife, UK
| | - Neil Q McDonald
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
- School of Crystallography, Birkbeck College, London, UK
| |
Collapse
|
58
|
Dunand-Sauthier I, Hohl M, Thorel F, Jaquier-Gubler P, Clarkson SG, Schärer OD. The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J Biol Chem 2004; 280:7030-7. [PMID: 15590680 DOI: 10.1074/jbc.m412228200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
XPG has structural and catalytic roles in nucleotide excision repair (NER) and belongs to the FEN-1 family of structure-specific nucleases. XPG contains a stretch of over 600 amino acids termed the "spacer region" between the conserved N- and I-nuclease regions. Its role is unknown, and it is not similar to any known protein. To investigate its possible functions, we generated and analyzed several deletion mutants of XPG. The spacer region is not required for endonuclease activity, but amino acids 111-550 contribute to the substrate specificity of XPG, and they are required for interaction with TFIIH and for NER activity in vitro and in vivo. Deletion of residues 184-210 and 554-730 leads only to a partial defect in NER activity and a weakened interaction with TFIIH. XPGDelta184-210 and XPGDelta554-730 are not observed at sites of local UV damage in living cells by immunofluorescence, suggesting that the weakened interaction between XPG and TFIIH results in an NER reaction with altered kinetics. This study demonstrates that the N-terminal portion of the spacer region is particularly important for NER progression by mediating the XPG-TFIIH interaction and XPG substrate specificity.
Collapse
Affiliation(s)
- Isabelle Dunand-Sauthier
- Department of Microbiology and Molecular Medicine, University Medical Centre, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|