51
|
Sappington RM, Sidorova T, Ward NJ, Chakravarthy R, Ho KW, Calkins DJ. Activation of transient receptor potential vanilloid-1 (TRPV1) influences how retinal ganglion cell neurons respond to pressure-related stress. Channels (Austin) 2016; 9:102-13. [PMID: 25713995 DOI: 10.1080/19336950.2015.1009272] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our recent studies implicate the transient receptor potential vanilloid-1 (TRPV1) channel as a mediator of retinal ganglion cell (RGC) function and survival. With elevated pressure in the eye, TRPV1 increases in RGCs, supporting enhanced excitability, while Trpv1 -/- accelerates RGC degeneration in mice. Here we find TRPV1 localized in monkey and human RGCs, similar to rodents. Expression increases in RGCs exposed to acute changes in pressure. In retinal explants, contrary to our animal studies, both Trpv1 -/- and pharmacological antagonism of the channel prevented pressure-induced RGC apoptosis, as did chelation of extracellular Ca(2+). Finally, while TRPV1 and TRPV4 co-localize in some RGC bodies and form a protein complex in the retina, expression of their mRNA is inversely related with increasing ocular pressure. We propose that TRPV1 activation by pressure-related insult in the eye initiates changes in expression that contribute to a Ca(2+)-dependent adaptive response to maintain excitatory signaling in RGCs.
Collapse
Affiliation(s)
- Rebecca M Sappington
- a The Vanderbilt Eye Institute and Vanderbilt Brain Institute ; Vanderbilt University School of Medicine ; Nashville , TN USA
| | | | | | | | | | | |
Collapse
|
52
|
Stull C, Lavery MJ, Yosipovitch G. Advances in therapeutic strategies for the treatment of pruritus. Expert Opin Pharmacother 2015; 17:671-87. [DOI: 10.1517/14656566.2016.1127355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
53
|
Carnovali M, Ottria R, Pasqualetti S, Banfi G, Ciuffreda P, Mariotti M. Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease. Pharmacol Res 2015; 104:1-8. [PMID: 26707833 DOI: 10.1016/j.phrs.2015.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/26/2022]
Abstract
The endocannabinoid system (which includes fatty acid derivatives, receptors, and metabolizing enzymes) is involved in a variety of physiological processes, including bone metabolism in which it regulates the function of osteoblasts and osteoclasts, as well as differentiation of their precursors. The zebrafish (Danio rerio) provides a useful animal model for bone research since zebrafish bones develop rapidly and are anatomically similar to mammalian bones. Putative orthologues and paralogs of endocannabinoid genes have recently been identified in zebrafish, demonstrating the presence of cannabinoid type 1 (CB1) and type 2 (CB2) receptors with affinity to endocannabinoid ligands. To identify therapeutic molecules potentially useful in bone-related diseases, we evaluated the in vivo effects of exposure to long-chain fatty acid amides in adult zebrafish. Using a well-established zebrafish scale model, we found that anandamide and N-linoleoylethanolamine are able to stimulate bone formation by increasing alkaline phosphatase activity in physiological conditions. In addition, they prevent the alteration of bone markers in a prednisolone-induced osteoporosis model in adult zebrafish scales, whereas their esterified forms do not. These data suggest that long-chain fatty acid amides are involved in regulating bone metabolism in zebrafish scales and that the CB2 receptor is a key mediator in this process.
Collapse
Affiliation(s)
- M Carnovali
- Gruppo Ospedaliero San Donato Foundation, Milan, Italy
| | - R Ottria
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - S Pasqualetti
- Gruppo Ospedaliero San Donato Foundation, Milan, Italy
| | - G Banfi
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - P Ciuffreda
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - M Mariotti
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
54
|
Martin HGS, Bernabeu A, Lassalle O, Bouille C, Beurrier C, Pelissier-Alicot AL, Manzoni OJ. Endocannabinoids Mediate Muscarinic Acetylcholine Receptor-Dependent Long-Term Depression in the Adult Medial Prefrontal Cortex. Front Cell Neurosci 2015; 9:457. [PMID: 26648844 PMCID: PMC4664641 DOI: 10.3389/fncel.2015.00457] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Cholinergic inputs into the prefrontal cortex (PFC) are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR) in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD) at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB) signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG) mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light—electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling.
Collapse
Affiliation(s)
- Henry G S Martin
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Axel Bernabeu
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France ; APHM, CHU Conception, Service de Psychiatrie Marseille, France
| | - Olivier Lassalle
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Clément Bouille
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Corinne Beurrier
- Aix-Marseille Université Marseille, France ; Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille UMR 7288 Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France ; APHM, CHU Timone Adultes, Service de Médecine Légale Marseille, France
| | - Olivier J Manzoni
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| |
Collapse
|
55
|
Abstract
UNLABELLED The possibility that mechanisms of synaptic modulation differ between males and females has far-reaching implications for understanding brain disorders that vary between the sexes. We found recently that 17β-estradiol (E2) acutely suppresses GABAergic inhibition in the hippocampus of female rats through a sex-specific estrogen receptor α (ERα), mGluR, and endocannabinoid-dependent mechanism. Here, we define the intracellular signaling that links ERα, mGluRs, and endocannabinoids in females and identify where in this pathway males and females differ. Using a combination of whole-cell patch-clamp recording and biochemical analyses in hippocampal slices from young adult rats, we show that E2 acutely suppresses inhibition in females through mGluR1 stimulation of phospholipase C, leading to inositol triphosphate (IP3) generation, activation of the IP3 receptor (IP3R), and postsynaptic endocannabinoid release, likely of anandamide. Analysis of sex differences in this pathway showed that E2 stimulates a much greater increase in IP3 levels in females than males, whereas the group I mGluR agonist DHPG increases IP3 levels equivalently in each sex. Coimmunoprecipitation showed that ERα-mGluR1 and mGluR1-IP3R complexes exist in both sexes but are regulated by E2 only in females. Independently of E2, a fatty acid amide hydrolase inhibitor, which blocks breakdown of anandamide, suppressed >50% of inhibitory synapses in females with no effect in males, indicating tonic endocannabinoid release in females that is absent in males. Together, these studies demonstrate sex differences in both E2-dependent and E2-independent regulation of the endocannabinoid system and suggest that manipulation of endocannabinoids in vivo could affect physiological and behavioral responses differently in each sex. SIGNIFICANCE STATEMENT Many brain disorders vary between the sexes, yet the degree to which this variation arises from differential experience versus intrinsic biological sex differences is unclear. In this study, we demonstrate intrinsic sex differences in molecular regulation of a key neuromodulatory system, the endocannabinoid system, in the hippocampus. Endocannabinoids are involved in diverse aspects of physiology and behavior that involve the hippocampus, including cognitive and motivational state, responses to stress, and neurological disorders such as epilepsy. Our finding that molecular regulation of the endocannabinoid system differs between the sexes suggests mechanisms through which experiences or therapeutics that engage endocannabinoids could affect males and females differently.
Collapse
|
56
|
Hojnik M, Dobovišek L, Knez Ž, Ferk P. A synergistic interaction of 17-β-estradiol with specific cannabinoid receptor type 2 antagonist/inverse agonist on proliferation activity in primary human osteoblasts. Biomed Rep 2015; 3:554-558. [PMID: 26171165 DOI: 10.3892/br.2015.469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
The bone remodeling process is influenced by various factors, including estrogens and transmitters of the endocannabinoid system. In osteoblasts, cannabinoid receptors 2 (CB-2) are expressed at a much higher level compared to CB-1 receptors. Previous studies have shown that estrogens could influence CB-2 receptor expression. In the present study, the possible interactions of a specific CB-2 agonist and a specific CB-2 antagonist/inverse agonist with 17-β-estradiol were investigated in primary human osteoblasts (HOB). HOB cells were cultured in phenol red-free osteoblast growth medium (37°C, 5% CO2). In their 5th passage, HOB were exposed to different concentrations of i) 17-β-estradiol (1, 10 and 100 nM); ii) a specific CB-2 agonist (R,S)-AM1241 (1 and 7.5 µM); and iii) a specific CB-2 antagonist/inverse agonist AM630 (10 µM) and to selected combinations of the substances. After 24 and 48 h of incubation, HOB proliferation activity was measured using a WST-8 assay. Alkaline phosphatase activity was also evaluated using spectrophotometry. Concomitant exposure of HOB to 17-β-estradiol (10 nM) and to specific CB-2 antagonist/inverse agonist (10 µM) showed similar HOB proliferation activity to HOB incubated with 17-β-estradiol only at a 100 nM concentration. By contrast, concomitant incubation of HOB with 17-β-estradiol (10 nM) and specific CB-2 agonist (7.5 µM) resulted in decreased HOB proliferation activity as compared to HOB incubated with 17-β-estradiol only (10 nM). Similar findings were observed after 24 and 48 h of incubation. In all the experiments, HOB successfully passed the alkaline phosphatase differentiation test. In conclusion, for the first time a synergistic interaction between 17-β-estradiol and specific CB-2 antagonist/inverse agonist was observed in HOB. Understanding the molecular pathways of this interaction would be of great importance in developing more efficient and safer drugs for treating or preventing bone diseases.
Collapse
Affiliation(s)
- Marko Hojnik
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| | - Luka Dobovišek
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor SI-2000, Slovenia
| | - Polonca Ferk
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| |
Collapse
|
57
|
Viana TG, Hott SC, Resstel LB, Aguiar DC, Moreira FA. Anti-aversive role of the endocannabinoid system in the periaqueductal gray stimulation model of panic attacks in rats. Psychopharmacology (Berl) 2015; 232:1545-53. [PMID: 25388290 DOI: 10.1007/s00213-014-3793-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022]
Abstract
RATIONALE Direct activation of the cannabinoid CB1 receptor in the dorsolateral periaqueductal gray (dlPAG) inhibits anxiety- and panic-related behaviours in experimental animals. It has remained unclear, however, whether the local endocannabinoid signalling is recruited as a protective mechanism against aversive stimuli. OBJECTIVES The present study tested the hypothesis that the endocannabinoid system counteracts aversive responses in the dlPAG-stimulation model of panic attacks. METHODS All drugs were infused into the dlPAG of rats. Local chemical stimulation with N-methyl-D-aspartate (NMDA, 1 nmol) was employed to induce panic-like behavioural and cardiovascular responses in freely moving and anaesthetized animals, respectively. The neuronal activity in the dlPAG was investigated by c-Fos immunohistochemistry. RESULTS The selective CB1 receptor agonist, ACEA (0.005-0.5 pmol), prevented the NMDA-induced panic-like escape responses. More interestingly, increasing the local levels of endogenous anandamide with a fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3-3 nmol), prevented both the behavioural response and the increase in blood pressure induced by NMDA. The effect of URB597 (3 nmol) was reversed by the CB1 receptor antagonist, AM251 (0.1 nmol). Moreover, an otherwise ineffective and sub-threshold dose of NMDA (0.5 nmol) was able to induce a panic-like response if local CB1 receptors were previously blocked by AM251 (0.1 nmol). Finally, URB597 prevented the NMDA-induced neuronal activation of the dlPAG. CONCLUSIONS The endocannabinoid system in the dlPAG attenuates the behavioural, cellular and cardiovascular consequences of aversive stimuli. This process may be considered for the development of additional treatments against panic and other anxiety-related disorders.
Collapse
Affiliation(s)
- Thércia G Viana
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
58
|
Yee JR, Kenkel W, Caccaviello JC, Gamber K, Simmons P, Nedelman M, Kulkarni P, Ferris CF. Identifying the integrated neural networks involved in capsaicin-induced pain using fMRI in awake TRPV1 knockout and wild-type rats. Front Syst Neurosci 2015; 9:15. [PMID: 25745388 PMCID: PMC4333803 DOI: 10.3389/fnsys.2015.00015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/31/2015] [Indexed: 12/18/2022] Open
Abstract
In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1). Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the Papez circuit and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type vs. knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain.
Collapse
Affiliation(s)
- Jason R Yee
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| | - William Kenkel
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| | - John C Caccaviello
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| | | | | | | | - Praveen Kulkarni
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University Boston, MA, USA
| |
Collapse
|
59
|
Rohm B, Riedel A, Ley JP, Widder S, Krammer GE, Somoza V. Capsaicin, nonivamide and trans-pellitorine decrease free fatty acid uptake without TRPV1 activation and increase acetyl-coenzyme A synthetase activity in Caco-2 cells. Food Funct 2014; 6:173-85. [PMID: 25422952 DOI: 10.1039/c4fo00435c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Red pepper and its major pungent component, capsaicin, have been associated with hypolipidemic effects in rats, although mechanistic studies on the effects of capsaicin and/or structurally related compounds on lipid metabolism are scarce. In this work, the effects of capsaicin and its structural analog nonivamide, the aliphatic alkamide trans-pellitorine and vanillin as the basic structural element of all vanilloids on the mechanisms of intestinal fatty acid uptake in differentiated intestinal Caco-2 cells were studied. Capsaicin and nonivamide were found to reduce fatty acid uptake, with IC₅₀ values of 0.49 μM and 1.08 μM, respectively. trans-Pellitorine was shown to reduce fatty acid uptake by 14.0±2.14% at 100 μM, whereas vanillin was not effective, indicating a pivotal role of the alkyl chain with the acid amide group in fatty acid uptake by Caco-2 cells. This effect was associated neither with the activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1) or the epithelial sodium channel (ENaC) nor with effects on paracellular transport or glucose uptake. However, acetyl-coenzyme A synthetase activity increased (p<0.05) in the presence of 10 μM capsaicin, nonivamide or trans-pellitorine, pointing to an increased fatty acid biosynthesis that might counteract the decreased fatty acid uptake.
Collapse
Affiliation(s)
- Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
60
|
Hofmann NA, Barth S, Waldeck-Weiermair M, Klec C, Strunk D, Malli R, Graier WF. TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation. Biol Open 2014; 3:1164-72. [PMID: 25395667 PMCID: PMC4265754 DOI: 10.1242/bio.20149571] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anandamide (N-arachidonyl ethanolamide, AEA) is an endogenous cannabinoid that is involved in various pathological conditions, including cardiovascular diseases and tumor-angiogenesis. Herein, we tested the involvement of classical cannabinoid receptors (CBRs) and the Ca(2+)-channel transient receptor potential vanilloid 1 (TRPV1) on cellular AEA uptake and its effect on endothelial cell proliferation and network-formation. Uptake of the fluorescence-labeled anandamide (SKM4-45-1) was monitored in human endothelial colony-forming cells (ECFCs) and a human endothelial-vein cell line (EA.hy926). Involvement of the receptors during AEA translocation was determined by selective pharmacological inhibition (AM251, SR144528, CID16020046, SB366791) and molecular interference by TRPV1-selective siRNA-mediated knock-down and TRPV1 overexpression. We show that exclusively TRPV1 contributes essentially to AEA transport into endothelial cells in a Ca(2+)-independent manner. This TRPV1 function is a prerequisite for AEA-induced endothelial cell proliferation and network-formation. Our findings point to a so far unknown moonlighting function of TRPV1 as Ca(2+)-independent contributor/regulator of AEA uptake. We propose TRPV1 as representing a promising target for development of pharmacological therapies against AEA-triggered endothelial cell functions, including their stimulatory effect on tumor-angiogenesis.
Collapse
Affiliation(s)
- Nicole A Hofmann
- Institute for Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| | - Sonja Barth
- Institute for Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute for Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| | - Christiane Klec
- Institute for Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| | - Dirk Strunk
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Roland Malli
- Institute for Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| | - Wolfgang F Graier
- Institute for Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| |
Collapse
|
61
|
Spicarova D, Nerandzic V, Palecek J. Update on the role of spinal cord TRPV1 receptors in pain modulation. Physiol Res 2014; 63:S225-36. [PMID: 24564662 DOI: 10.33549/physiolres.932713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The structure, expression and function of the transient receptor potential vanilloid 1 (TRPV1) receptor were intensively studied since the cloning in 1997 and TRPV1 receptors are now considered to act as transducers and molecular integrators of nociceptive stimuli in the periphery. In contrast, spinal TRPV1 receptors were studied less extensively and their role in pain modulation is still not fully understood. This short review is a follow up on our previous summary in this area (Spicarova and Palecek 2008). The aim was to review preferentially the most recent findings concerning the role of the spinal TRPV1 receptors, published within the last five years. The update is given on the expression and function of the spinal TRPV1 receptors, their activation by endogenous agonists, interaction between the endocannabinoid and endovanillod system and possible role of the spinal TRPV1 receptors in pathological pain states. There is now mounting evidence that TRPV1 receptors may be an important element in modulation of nociceptive information at the spinal cord level and represent an interesting target for analgesic therapy.
Collapse
Affiliation(s)
- D Spicarova
- Department of Functional Morphology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
62
|
Choi SI, Yoo S, Lim JY, Hwang SW. Are sensory TRP channels biological alarms for lipid peroxidation? Int J Mol Sci 2014; 15:16430-57. [PMID: 25233127 PMCID: PMC4200803 DOI: 10.3390/ijms150916430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/15/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress induces numerous biological problems. Lipid oxidation and peroxidation appear to be important steps by which exposure to oxidative stress leads the body to a disease state. For its protection, the body has evolved to respond to and eliminate peroxidation products through the acquisition of binding proteins, reducing and conjugating enzymes, and excretion systems. During the past decade, researchers have identified a group of ion channel molecules that are activated by oxidized lipids: transient receptor potential (TRP) channels expressed in sensory neurons. These ion channels are fundamentally detectors and signal converters for body-damaging environments such as heat and cold temperatures, mechanical attacks, and potentially toxic substances. When messages initiated by TRP activation arrive at the brain, we perceive pain, which results in our preparing defensive responses. Excessive activation of the sensory neuronal TRP channels upon prolonged stimulations sometimes deteriorates the inflammatory state of damaged tissues by promoting neuropeptide release from expresser neurons. These same paradigms may also work for pathologic changes in the internal lipid environment upon exposure to oxidative stress. Here, we provide an overview of the role of TRP channels and oxidized lipid connections during abnormally increased oxidative signaling, and consider the sensory mechanism of TRP detection as an alert system.
Collapse
Affiliation(s)
- Seung-In Choi
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Sungjae Yoo
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Ji Yeon Lim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Sun Wook Hwang
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 136-705, Korea.
| |
Collapse
|
63
|
Bujalska-Zadrożny M, de Cordé A, Pawlik K. Influence of nitric oxide synthase or cyclooxygenase inhibitors on cannabinoids activity in streptozotocin-induced neuropathy. Pharmacol Rep 2014; 67:209-16. [PMID: 25712641 DOI: 10.1016/j.pharep.2014.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Influence of a relatively specific inhibitor cyclooxygenase (COX)-2, celecoxib, a relatively specific inhibitor of neuronal nitric oxide synthase (NOS), 7-Ni, and a relatively selective inhibitor of inducible NOS, L-NIL, on the action of a preferentially selective CB1 cannabinoid receptor agonist, Met-F-AEA and a selective CB2 cannabinoid receptor agonist, AM 1241 was investigated, in a streptozotocin (STZ)-induced neuropathy. METHODS Studies were performed on male Wistar rats. Changes in nociceptive thresholds were determined using mechanical stimuli - the modification of the classic paw withdrawal test described by Randall-Selitto. Diabetes was induced by a single administration of STZ. RESULTS In a diabetic neuropathic pain model, pretreatment with celecoxib, L-NIL and 7-Ni, significantly increased the antihyperalgesic activity of both Met-F-AEA and AM 1241. CONCLUSIONS The results of this study seemed to indicate that the interaction between cannabinoid, COX-2 and NOS(s) systems might exist. Concomitant administration of small doses of CB1 and/or CB2 receptor agonists and COX-2 or NOS inhibitors can be effective in the alleviation of diabetic neuropathic pain.
Collapse
Affiliation(s)
| | - Anna de Cordé
- Department of Pharmacodynamics, Medical University of Warsaw, Warszawa, Poland
| | - Karolina Pawlik
- Department of Pharmacodynamics, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
64
|
Alterations in the anandamide metabolism in the development of neuropathic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:686908. [PMID: 25276812 PMCID: PMC4167645 DOI: 10.1155/2014/686908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 11/18/2022]
Abstract
Endocannabinoids (EC), particularly anandamide (AEA), released constitutively in pain pathways might be accountable for the inhibitory effect on nociceptors. Pathogenesis of neuropathic pain may reflect complex remodeling of the dorsal root ganglia (DRGs) and spinal cord EC system. Multiple pathways involved both in the biosynthesis and degradation of AEA have been suggested. We investigated the local synthesis and degradation features of AEA in DRGs and spinal cord during the development and maintenance of pain in a model of chronic constriction injury (CCI). All AEA synthesis and degradation enzymes are present on the mRNA level in DRGs and lumbar spinal cord of intact as well as CCI-treated animals. Deregulation of EC system components was consistent with development of pain phenotype at days 3, 7, and 14 after CCI. The expression levels of enzymes involved in AEA degradation was significantly upregulated ipsilateral in DRGs and spinal cord at different time points. Expression of enzymes of the alternative, sPLA2-dependent and PLC-dependent, AEA synthesis pathways was elevated in both of the analyzed structures at all time points. Our data have shown an alteration of alternative AEA synthesis and degradation pathways, which might contribute to the variation of AEA levels and neuropathic pain development.
Collapse
|
65
|
Ruginsk SG, Vechiato FMV, Elias LLK, Antunes-Rodrigues J. The endocannabinoid system and the neuroendocrine control of hydromineral balance. J Neuroendocrinol 2014; 26:370-6. [PMID: 24750469 DOI: 10.1111/jne.12158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 12/25/2022]
Abstract
Endocannabinoids (ECBs) are ubiquitous lipophilic agents, and this characteristic is consistent with the wide range of homeostatic functions attributed to the ECB system. There is an increasing number of studies showing that the ECB system affects neurotransmission within the hypothalamic neurohypophyseal system. We provide an overview of the primary roles of ECBs in the modulation of neuroendocrine function and, specifically, in the control of hydromineral homeostasis. Accordingly, the general aspects of ECB-mediated signalling, as well as the specific contributions of the central component of the ECB system to the integration of behavioural and endocrine responses that control body fluid homeostasis, are discussed.
Collapse
Affiliation(s)
- S G Ruginsk
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
66
|
Yoo S, Lim JY, Hwang SW. Sensory TRP channel interactions with endogenous lipids and their biological outcomes. Molecules 2014; 19:4708-44. [PMID: 24739932 PMCID: PMC6271031 DOI: 10.3390/molecules19044708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/30/2023] Open
Abstract
Lipids have long been studied as constituents of the cellular architecture and energy stores in the body. Evidence is now rapidly growing that particular lipid species are also important for molecular and cellular signaling. Here we review the current information on interactions between lipids and transient receptor potential (TRP) ion channels in nociceptive sensory afferents that mediate pain signaling. Sensory neuronal TRP channels play a crucial role in the detection of a variety of external and internal changes, particularly with damaging or pain-eliciting potentials that include noxiously high or low temperatures, stretching, and harmful substances. In addition, recent findings suggest that TRPs also contribute to altering synaptic plasticity that deteriorates chronic pain states. In both of these processes, specific lipids are often generated and have been found to strongly modulate TRP activities, resulting primarily in pain exacerbation. This review summarizes three standpoints viewing those lipid functions for TRP modulations as second messengers, intercellular transmitters, or bilayer building blocks. Based on these hypotheses, we discuss perspectives that account for how the TRP-lipid interaction contributes to the peripheral pain mechanism. Still a number of blurred aspects remain to be examined, which will be answered by future efforts and may help to better control pain states.
Collapse
Affiliation(s)
- Sungjae Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| |
Collapse
|
67
|
Sophocleous A, Idris AI, Ralston SH. Genetic background modifies the effects of type 2 cannabinoid receptor deficiency on bone mass and bone turnover. Calcif Tissue Int 2014; 94:259-68. [PMID: 24036631 DOI: 10.1007/s00223-013-9793-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022]
Abstract
Cannabinoid receptors and their ligands play significant roles in regulating bone metabolism. Previous studies of type 1 cannabinoid receptor-deficient mice have shown that genetic background influences the skeletal phenotype. Here, we investigated the effects of genetic background on the skeletal phenotype of mice with type 2 cannabinoid receptor deficiency (Cnr2 (-/-)). We studied Cnr2 (-/-) mice on a CD1 background and compared the findings with those previously reported in Cnr2 (-/-) C57BL/6 mice. Young female Cnr2 (-/-) CD1 mice had low bone turnover and high trabecular bone mass compared with wild-type (WT), contrasting with the situation in Cnr2 (-/-) C57BL/6 mice where trabecular bone mass has been reported to be similar to WT. The Cnr2 (-/-) CD1 mice lost more trabecular bone at the tibia with age than WT due to reduced bone formation, and at 12 months there was no difference in trabecular bone volume between genotypes. This differs from the phenotype previously reported in C57BL/6 Cnr2 (-/-) mice, where bone turnover is increased and bone mass reduced with age. There were no substantial differences in skeletal phenotype between Cnr2 (-/-) and WT in male mice. Cortical bone phenotype was similar in Cnr2 (-/-) and WT mice of both genders. Deficiency of Cnr2 has site- and gender-specific effects on the skeleton, mainly affecting trabecular bone, which are influenced by genetic differences between mouse strains. Further evaluation of the pathways responsible might yield new insights into the mechanisms by which cannabinoid receptors regulate bone metabolism.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Rheumatic Diseases Unit, Centre for Molecular Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | | | | |
Collapse
|
68
|
Chemin J, Cazade M, Lory P. Modulation of T-type calcium channels by bioactive lipids. Pflugers Arch 2014; 466:689-700. [PMID: 24531745 DOI: 10.1007/s00424-014-1467-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/10/2023]
Abstract
T-type calcium channels (T-channels/CaV3) have unique biophysical properties allowing a calcium influx at resting membrane potential of most cells. T-channels are ubiquitously expressed in many tissues and contribute to low-threshold spikes and burst firing in central neurons as well as to pacemaker activities in cardiac cells. They also emerged as potential targets to treat cancer and hypertension. Regulation of these channels appears complex, and several studies have indicated that CaV3.1, CaV3.2, and CaV3.3 currents are directly inhibited by multiple endogenous lipids independently of membrane receptors or intracellular pathways. These bioactive lipids include arachidonic acid and ω3 poly-unsaturated fatty acids; the endocannabinoid anandamide and other N-acylethanolamides; the lipoamino-acids and lipo-neurotransmitters; the P450 epoxygenase metabolite 5,6-epoxyeicosatrienoic acid; as well as similar molecules with 18-22 carbons in the alkyl chain. In this review, we summarize evidence for direct effects of these signaling molecules, the molecular mechanisms underlying the current inhibition, and the involved chemical features. The impact of this modulation in physiology and pathophysiology is discussed with a special emphasis on pain aspects and vasodilation. Overall, these data clearly indicate that T-current inhibition is an important mechanism by which bioactive lipids mediate their physiological functions.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Génomique Fonctionnelle, Universités Montpellier 1 & 2, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, 141, rue de la Cardonille, 34094, Montpellier cedex 05, France,
| | | | | |
Collapse
|
69
|
Sousa-Valente J, Varga A, Ananthan K, Khajuria A, Nagy I. Anandamide in primary sensory neurons: too much of a good thing? Eur J Neurosci 2014; 39:409-18. [DOI: 10.1111/ejn.12467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
Affiliation(s)
- João Sousa-Valente
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Angelika Varga
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Kajaluxy Ananthan
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Ankur Khajuria
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| |
Collapse
|
70
|
Nagy I, Friston D, Valente JS, Torres Perez JV, Andreou AP. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:39-76. [PMID: 24941664 DOI: 10.1007/978-3-0348-0828-6_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (> -42 degrees C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure-function relationship of TRPV1.
Collapse
|
71
|
Varga A, Jenes A, Marczylo TH, Sousa-Valente J, Chen J, Austin J, Selvarajah S, Piscitelli F, Andreou AP, Taylor AH, Kyle F, Yaqoob M, Brain S, White JPM, Csernoch L, Di Marzo V, Buluwela L, Nagy I. Anandamide produced by Ca(2+)-insensitive enzymes induces excitation in primary sensory neurons. Pflugers Arch 2013; 466:1421-35. [PMID: 24114173 DOI: 10.1007/s00424-013-1360-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/11/2013] [Indexed: 11/29/2022]
Abstract
The endogenous lipid agent N-arachidonoylethanolamine (anandamide), among other effects, has been shown to be involved in nociceptive processing both in the central and peripheral nervous systems. Anandamide is thought to be synthesised by several enzymatic pathways both in a Ca(2+)-sensitive and Ca(2+)-insensitive manner, and rat primary sensory neurons produce anandamide. Here, we show for the first time, that cultured rat primary sensory neurons express at least four of the five known Ca(2+)-insensitive enzymes implicated in the synthesis of anandamide, and that application of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-arachidonoyl, the common substrate of the anandamide-synthesising pathways, results in anandamide production which is not changed by the removal of extracellular Ca(2+). We also show that anandamide, which has been synthesised in primary sensory neurons following the application of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-arachidonoyl induces a transient receptor potential vanilloid type 1 ion channel-mediated excitatory effect that is not inhibited by concomitant activation of the cannabinoid type 1 receptor. Finally, we show that sub-populations of transient receptor potential vanilloid type 1 ion channel-expressing primary sensory neurons also express some of the putative Ca(2+)-insensitive anandamide-synthesising enzymes. Together, these findings indicate that anandamide synthesised by primary sensory neuron via a Ca(2+)-insensitive manner has an excitatory rather than an inhibitory role in primary sensory neurons and that excitation is mediated predominantly through autocrine signalling. Regulation of the activity of the Ca(2+)-insensitive anandamide-synthesising enzymes in these neurons may be capable of regulating the activity of these cells, with potential relevance to controlling nociceptive processing.
Collapse
Affiliation(s)
- Angelika Varga
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ambrosino P, Soldovieri MV, Russo C, Taglialatela M. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARα agonist palmitoylethanolamide. Br J Pharmacol 2013; 168:1430-44. [PMID: 23083124 DOI: 10.1111/bph.12029] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/03/2012] [Accepted: 10/10/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Palmitoylethanolamide (PEA) is an endogenous fatty acid amide displaying anti-inflammatory and analgesic actions. To investigate the molecular mechanism responsible for these effects, the ability of PEA and of pain-inducing stimuli such as capsaicin (CAP) or bradykinin (BK) to influence intracellular calcium concentrations ([Ca²⁺](i)) in peripheral sensory neurons, has been assessed in the present study. The potential involvement of the transcription factor PPARα and of TRPV1 channels in PEA-induced effects was also studied. EXPERIMENTAL APPROACH [Ca²⁺](i) was evaluated by single-cell microfluorimetry in differentiated F11 cells. Activation of TRPV1 channels was assessed by imaging and patch-clamp techniques in CHO cells transiently-transfected with rat TRPV1 cDNA. KEY RESULTS In F11 cells, PEA (1-30 μM) dose-dependently increased [Ca²⁺](i). The TRPV1 antagonists capsazepine (1 μM) and SB-366791 (1 μM), as well as the PPARα antagonist GW-6471 (10 μM), inhibited PEA-induced [Ca²⁺](i) increase; blockers of cannabinoid receptors were ineffective. PEA activated TRPV1 channels heterologously expressed in CHO cells; this effect appeared to be mediated at least in part by PPARα. When compared with CAP, PEA showed similar potency and lower efficacy, and caused stronger TRPV1 currents desensitization. Sub-effective PEA concentrations, closer to those found in vivo, counteracted CAP- and BK-induced [Ca²⁺](i) transients, as well as CAP-induced TRPV1 activation. CONCLUSIONS AND IMPLICATIONS Activation of PPARα and TRPV1 channels, rather than of cannabinoid receptors, largely mediate PEA-induced [Ca²⁺](i) transients in sensory neurons. Differential TRPV1 activation and desensitization by CAP and PEA might contribute to their distinct pharmacological profile, possibly translating into potentially relevant clinical differences.
Collapse
Affiliation(s)
- Paolo Ambrosino
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | | | | |
Collapse
|
73
|
Liu J, Parsons L, Pope C. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: influence on cholinergic toxicity. Toxicol Appl Pharmacol 2013; 272:608-15. [PMID: 23933531 DOI: 10.1016/j.taap.2013.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/01/2022]
Abstract
Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6-7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89-90%) and CPF (78-83%) exposure. FAAH activity was also markedly reduced (88-91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35-50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | | |
Collapse
|
74
|
The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole and maximal electroshock models of seizure in mice. Epilepsy Behav 2013; 28:1-7. [PMID: 23644464 DOI: 10.1016/j.yebeh.2013.03.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/02/2013] [Accepted: 03/08/2013] [Indexed: 11/22/2022]
Abstract
Cannabidiol is a nonpsychoactive member of phytocannabinoids that produces various pharmacological effects that are not mediated through putative CB1/CB2 cannabinoid receptors and their related effectors. In this study, we examined the effect of the i.c.v. administration of potassium BK channel blocker paxilline alone and in combination with cannabidiol in protection against pentylenetetrazol (PTZ)- and maximal electroshock (MES)-induced seizure in mice. In the PTZ-induced seizure model, i.c.v. administration of cannabidiol caused a significant increase in seizure threshold compared with the control group. Moreover, while i.c.v. administration of various doses of paxilline did not produce significant change in the PTZ-induced seizure threshold in mice, coadministration of cannabidiol and paxilline attenuated the antiseizure effect of cannabidiol in PTZ-induced tonic seizures. In the MES model of seizure, both cannabidiol and paxilline per se produced significant increase in percent protection against electroshock-induced seizure. However, coadministration of cannabidiol and paxilline did not produce significant interaction in their antiseizure effect in the MES test. The results of the present study showed a protective effect of cannabidiol in both PTZ and MES models of seizure. These results suggested a BK channel-mediated antiseizure action of cannabidiol in PTZ model of seizure. However, such an interaction might not exist in MES-induced convulsion.
Collapse
|
75
|
Ghafouri N, Ghafouri B, Larsson B, Stensson N, Fowler CJ, Gerdle B. Palmitoylethanolamide and stearoylethanolamide levels in the interstitium of the trapezius muscle of women with chronic widespread pain and chronic neck-shoulder pain correlate with pain intensity and sensitivity. Pain 2013; 154:1649-1658. [PMID: 23707281 DOI: 10.1016/j.pain.2013.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/01/2013] [Indexed: 12/25/2022]
Abstract
Chronic widespread pain (CWP) is a complex condition characterized by central hyperexcitability and altered descending control of nociception. However, nociceptive input from deep tissues is suggested to be an important drive. N-Acylethanolamines (NAEs) are endogenous lipid mediators involved in regulation of inflammation and pain. Previously we have reported elevated levels of the 2 NAEs, the peroxisome proliferator-activated receptor type-α ligand N-palmitoylethanolamine (PEA) and N-stearoylethanolamine (SEA) in chronic neck/shoulder pain (CNSP). In the present study, the levels of PEA and SEA in women with CWP (n=18), CNSP (n=34) and healthy controls (CON, n=24) were investigated. All subjects went through clinical examination, pressure pain threshold measurements and induction of experimental pain in the tibialis anterior muscle. Microdialysis dialysate of the trapezius was collected before and after subjects performed a repetitive low-force exercise and analyzed by mass spectrometry. The levels of PEA and SEA in CNSP were significantly higher post exercise compared with CWP, and both pre and post exercise compared with CON. Levels of both NAEs decreased significantly pre to post exercise in CWP. Intercorrelations existed between aspects of pain intensity and sensitivity and the level of the 2 NAEs in CWP and CNSP. This is the first study demonstrating that CNSP and CWP differ in levels of NAEs in response to a low-force exercise which induces pain. Increases in pain intensity as a consequence of low-force exercise were associated with low levels of PEA and SEA in CNSP and CWP. These results indicate that PEA and SEA have antinociceptive roles in humans.
Collapse
Affiliation(s)
- Nazdar Ghafouri
- Rehabilitation Medicine, Department of Medicine and Health Sciences, Linköping University, SE 581 85 Linköping, Sweden Pain and Rehabilitation Centre, UHL, County Council of Östergötland, SE 581 85 Linköping, Sweden Department of Pharmacology and Clinical Neuroscience, Umeå University, SE 901 87 Umeå, Sweden Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE 581 85 Linköping, Sweden Centre of Occupational and Environmental Medicine, County Council of Östergötland, SE 581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
76
|
Starowicz K, Przewlocka B. Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system. Philos Trans R Soc Lond B Biol Sci 2013; 367:3286-99. [PMID: 23108547 DOI: 10.1098/rstb.2011.0392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain refers to chronic pain that results from injury to the nervous system. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central phenomena. Although numerous pharmacological agents are available for the treatment of neuropathic pain, definitive drug therapy has remained elusive. Recent drug discovery efforts have identified an original neurobiological approach to the pathophysiology of neuropathic pain. The development of innovative pharmacological strategies has led to the identification of new promising pharmacological targets, including glutamate antagonists, microglia inhibitors and, interestingly, endogenous ligands of cannabinoids and the transient receptor potential vanilloid type 1 (TRPV1). Endocannabinoids (ECs), endovanilloids and the enzymes that regulate their metabolism represent promising pharmacological targets for the development of a successful pain treatment. This review is an update of the relationship between cannabinoid receptors (CB1) and TRPV1 channels and their possible implications for neuropathic pain. The data are focused on endogenous spinal mechanisms of pain control by anandamide, and the current and emerging pharmacotherapeutic approaches that benefit from the pharmacological modulation of spinal EC and/or endovanilloid systems under chronic pain conditions will be discussed.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, ul. Smetna 12, 31-343 Krakow, Poland.
| | | |
Collapse
|
77
|
Lowin T, Zhu W, Dettmer-Wilde K, Straub RH. Cortisol-mediated adhesion of synovial fibroblasts is dependent on the degradation of anandamide and activation of the endocannabinoid system. ACTA ACUST UNITED AC 2013; 64:3867-76. [PMID: 22933357 DOI: 10.1002/art.37684] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVE In rheumatoid arthritis (RA) synovial fluid, levels of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol are elevated. Since synovial fibroblasts (SFs) possess all of the enzymes necessary for endocannabinoid synthesis, it is likely that these cells contribute significantly to elevated endocannabinoid levels. While glucocorticoids initiate endocannabinoid synthesis in neurons, this study was undertaken to test whether cortisol also regulates endocannabinoid levels in mesenchymal cells such as SFs, and whether this interferes with integrin-mediated adhesion. METHODS Adhesion was determined in 1-minute intervals over 60 minutes using an xCELLigence system. Slopes from individual treatment groups were averaged and compared to the control. Fatty acid amide hydrolase (FAAH) and cyclooxygenase 2 (COX-2) were detected by immunocytochemistry, and AEA was detected by mass spectrometry. RESULTS Cortisol increased the adhesion of RASFs and osteoarthritis SFs with a maximum of 200% at both 10(-7) M and 10(-8) M. When cortisol was administered together with either cannabinoid receptor 1 (CB(1) ) antagonist (rimonabant; 100 nM), CB(2) antagonist (JTE907; 100 nM), transient receptor potential vanilloid channel 1 (TRPV-1) antagonist (capsazepine; 1 μM), FAAH inhibitor, or COX-2 inhibitor, adhesion was reduced below the level in controls. Concomitant inhibition of FAAH and COX-2 reversed these effects. Mass spectrometry revealed the presence of AEA in SFs. CONCLUSION Our findings indicate that glucocorticoid-induced adhesion is dependent on CB(1) /CB(2) /TRPV-1 activation. Since AEA is produced in SFs, this endocannabinoid is the most likely candidate to mediate these effects. Since AEA levels are regulated by COX-2 and FAAH, inhibition of both enzymes along with low-dose glucocorticoids may provide a therapeutic option to maximally boost the endocannabinoid system in RA, with possible beneficial effects.
Collapse
Affiliation(s)
- Torsten Lowin
- University Hospital Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
78
|
Starowicz K, Di Marzo V. Non-psychotropic analgesic drugs from the endocannabinoid system: "magic bullet" or "multiple-target" strategies? Eur J Pharmacol 2013; 716:41-53. [PMID: 23500197 DOI: 10.1016/j.ejphar.2013.01.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Abstract
The exploitation of preparations of Cannabis sativa to combat pain seems to date back to time immemorial, although their psychotropic effects, which are at the bases of their recreational use and limit their therapeutic use, are at least as ancient. Indeed, it has always been different to tease apart the unwanted central effects from the therapeutic benefits of Δ⁹-tetrahydrocannabinol (THC), the main psychotropic component of cannabis. The discovery of the cannabinoid receptors and of their endogenous ligands, the endocannabinoids, which, unlike THC, play a pro-homeostatic function in a tissue- and time-selective manner, offered the opportunity to develop new analgesics from synthetic inhibitors of endocannabinoid inactivation. The advantages of this approach over direct activation of cannabinoid receptors as a therapeutic strategy against neuropathic and inflammatory pain are discussed here along with its potential complications. These latter have been such that clinical success has been achieved so far more rapidly with naturally occurring THC or endocannabinoid structural analogues acting at a plethora of cannabinoid-related and -unrelated molecular targets, than with selective inhibitors of endocannabinoid enzymatic hydrolysis, thus leading to revisit the potential usefulness of "multi-target" versus "magic bullet" compounds as new analgesics.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Department of Pain Pharmacolgy, Institute of Pharmacology Polish Academy of Sciences, 12 Smetna str, 31-343 Krakow, Poland.
| | | |
Collapse
|
79
|
Masumoto K, Tsukimoto M, Kojima S. Role of TRPM2 and TRPV1 cation channels in cellular responses to radiation-induced DNA damage. Biochim Biophys Acta Gen Subj 2013; 1830:3382-90. [PMID: 23458684 DOI: 10.1016/j.bbagen.2013.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/12/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Radiation exposure causes DNA damage, and DNA repair systems are essential to rescue damaged cells. Although DNA damage or oxidative stress activates transient receptor potential melastatin 2 (TRPM2) and vanilloid 1 (TRPV1) cation channels, it has not been established whether these TRP channels are involved in cellular responses to radiation-induced DNA damage. Here, we investigated the contribution of TRPM2 and TRPV1 channels to γ-irradiation- and UVB-induced DNA damage responses in human lung cancer A549 cells. METHODS A549 cells were irradiated with γ-rays (2.0Gy) or UVB (5-10mJ/cm(2)). γH2AX foci, ATM activation, 53BP1 accumulation and EGFR expression were evaluated by immunofluorescence staining. Extracellular ATP concentration was measured by luciferin-luciferase assay. Knockdown of TRPM2 and TRPV1 expression was done by siRNA transfection. RESULTS γ-Irradiation-induced γH2AX focus formation, ATM activation, 53BP1 accumulation and EGFR nuclear translocation, which are all associated with DNA repair, were suppressed by knockdown of TRPM2 and TRPV1 channels in A549 cells. Release of ATP, which mediates DNA damage response-associated activation of P2Y receptors, was suppressed by pre-treatment with catalase or knockdown of TRPM2 channel, but not TRPV1 channel. Similarly, UVB-induced γH2AX focus formation was suppressed in TRPM2- and TRPV1-knockdown cells, while UVB-induced ATP release was blocked in TRPM2- but not TRPV1-knockdown cells. CONCLUSION Our results suggest that the activation of TRPM2 channel, which mediates ATP release, and TRPV1 channel plays significant roles in the cellular responses to DNA damage induced by γ-irradiation and UVB irradiation. GENERAL SIGNIFICANCE Our results provide a new insight into the function of TRP channels from the viewpoint of radiation biology.
Collapse
Affiliation(s)
- Kanako Masumoto
- Department of Radiation Biosciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | | | |
Collapse
|
80
|
Boychuk CR, Zsombok A, Tasker JG, Smith BN. Rapid Glucocorticoid-Induced Activation of TRP and CB1 Receptors Causes Biphasic Modulation of Glutamate Release in Gastric-Related Hypothalamic Preautonomic Neurons. Front Neurosci 2013; 7:3. [PMID: 23386808 PMCID: PMC3560102 DOI: 10.3389/fnins.2013.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/07/2013] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids rapidly regulate synaptic input to neuroendocrine cells in the hypothalamic paraventricular nucleus (PVN) by inducing the retrograde release of endogenous messengers. Here we investigated the rapid effects of dexamethasone (DEX) on excitatory synaptic input to feeding-related, preautonomic PVN neurons using whole-cell patch-clamp recordings. In ∼50% of identified gastric-related preautonomic PVN neurons, DEX elicited a biphasic synaptic response characterized by an initial rapid and transient increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs), followed by a decrease in mEPSC frequency within 9 min; remaining cells displayed only a decrease in mEPSC frequency. The late-phase decrease in mEPSC frequency was mimicked by the cannabinoid receptor agonists anandamide (AEA) and WIN 55,212-2, and it was blocked by the CB1 receptor antagonist AM251. The biphasic DEX effect was mimicked by AEA. The early increase in mEPSCs was mimicked by activation of transient receptor potential vanilloid type 1 (TRPV1) receptors with capsaicin and by activation of TRPV4 receptors with 4-α-PDD. The increase was reduced, but not blocked, by selective TRPV1 antagonists and in TRPV1 knockout mice; it was blocked completely by the broad-spectrum TRPV antagonist ruthenium red and by combined application of selective TRPV1 and TRPV4 antagonists. The DEX effects were prevented entirely by intracellular infusion of the G-protein inhibitor, GDPβS. Thus, DEX biphasically modulates synaptic glutamate onto a subset of gastric-related PVN neurons, which is likely mediated by induction of a retrograde messenger. The effect includes a TRPV1/4 receptor-mediated transient increase and subsequent CB1 receptor-mediated suppression of glutamate release. Multiphasic modulation of glutamate input to PVN neurons represents a previously unappreciated complexity of control of autonomic output by glucocorticoids and endogenous cannabinoids.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine Lexington, KY, USA
| | | | | | | |
Collapse
|
81
|
Idris AI, Ralston SH. Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol (Lausanne) 2012; 3:136. [PMID: 23181053 PMCID: PMC3499879 DOI: 10.3389/fendo.2012.00136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/25/2012] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system plays a key role in regulating a variety of physiological processes such as appetite control and energy balance, pain perception, and immune responses. Recent studies have implicated the endocannabinoid system in the regulation of bone cell activity and bone remodeling. These studies showed that endogenous cannabinoid ligands, cannabinoid receptors, and the enzymes responsible for ligand synthesis and breakdown all play important roles in bone mass and in the regulation of bone disease. These findings suggest that the endocannabinoid pathway could be of value as a therapeutic target for the prevention and treatment of bone diseases. Here, we review the role of the skeletal endocannabinoid system in the regulation of bone remodeling in health and disease.
Collapse
Affiliation(s)
- Aymen I. Idris
- Bone and Cancer Group, Edinburgh Cancer Research Centre, The University of EdinburghEdinburgh, UK
| | - Stuart H. Ralston
- Rheumatic Disease Unit, The Centre for Molecular Medicine, The University of EdinburghEdinburgh, UK
| |
Collapse
|
82
|
Oleson EB, Cheer JF. Paradoxical effects of the endocannabinoid uptake inhibitor VDM11 on accumbal neural encoding of reward predictive cues. Synapse 2012; 66:984-8. [PMID: 22807176 PMCID: PMC3440520 DOI: 10.1002/syn.21587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/13/2012] [Accepted: 07/12/2012] [Indexed: 11/08/2022]
Abstract
A growing body of evidence implicates the endocannabinoid (eCB) system in brain reward function. Previous studies show that antagonizing eCB transmission decreases reward-directed behavior and nucleus accumbens (NAc) encoding of reward predictive cues. We, therefore, hypothesized that elevating eCB levels would uniformly facilitate NAc neural encoding of reward predictive cues and reward-directed behavior. Contrary to our expectations, the eCB transport uptake inhibitor, VDM11, dose dependently decreased both measures.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
83
|
Mechanism of capsaicin receptor TRPV1-mediated toxicity in pain-sensing neurons focusing on the effects of Na(+)/Ca(2+) fluxes and the Ca(2+)-binding protein calretinin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1680-91. [PMID: 22982061 DOI: 10.1016/j.bbamcr.2012.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 11/23/2022]
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) receptor is a pain-sensing, ligand-gated, non-selective cation channel expressed in peripheral sensory neurons. Prolonged activation of TRPV1 by capsaicin leads to cell swelling and formation of membrane blebs in rat dorsal root ganglion (DRG) neurons. Similar results were obtained in NIH3T3 fibroblast cells stably expressing TRPV1. Here, we assessed the contribution of Ca(2+) and Na(+) ions to TRPV1-mediated changes. Cell swelling was caused by a substantial influx of extracellular Na(+) via TRPV1 channels, causing concomitant transport of water. In the absence of extracellular Na(+), the membrane blebbing was completely inhibited, but Ca(2+) influx did not change under these conditions. Na(+) influx was modulated by the intracellular Ca(2+) concentration ([Ca(2+)]i). Elevation of [Ca(2+)]i by ionomycin sensitized/activated TRPV1 channels causing cell swelling in TRPV1-positive cells. In the absence of extracellular Ca(2+), capsaicin caused only little increase in [Ca(2+)]i indicating that the increase in [Ca(2+)]i observed after capsaicin application is derived essentially from extracellular Ca(2+) and not from internal Ca(2+) stores. In the absence of extracellular Ca(2+) also the process of cell swelling was considerably slower. Calretinin is a Ca(2+) buffer protein, which is expressed in a subset of TRPV1-positive neurons. Calretinin decreased the amplitude, but slowed down the decay of Ca(2+) signals evoked by ionomycin. Cells co-expressing TRPV1 and calretinin were less sensitive to TRPV1-mediated, capsaicin-induced volume increases. In TRPV1-expressing NIH3T3 cells, calretinin decreased the capsaicin-induced Ca(2+) and Na(+) influx. Swelling and formation of membrane blebs resulted in impaired plasma membrane integrity finally leading to cell death. Our results hint towards a mechanistic explanation for the apoptosis-independent capsaicin-evoked neuronal loss and additionally reveal a protective effect of calretinin; we propose that the Ca(2+)-buffering capacity of calretinin reduces the susceptibility of calretinin-expressing DRG neurons against cell swelling/death caused by overstimulation of TRPV1 channels. This article is part of a Special Issue entitled:12th European Symposium on Calcium.
Collapse
|
84
|
Hegyi Z, Holló K, Kis G, Mackie K, Antal M. Differential distribution of diacylglycerol lipase-alpha and N-acylphosphatidylethanolamine-specific phospholipase d immunoreactivity in the superficial spinal dorsal horn of rats. Glia 2012; 60:1316-29. [PMID: 22573306 DOI: 10.1002/glia.22351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/20/2012] [Indexed: 11/05/2022]
Abstract
It is generally accepted that the endocannabinoid system plays important roles in spinal pain processing. Although it is documented that cannabinoid-1 receptors are strongly expressed in the superficial spinal dorsal horn, the cellular distribution of enzymes that can synthesize endocannabinoid ligands is less well studied. Thus, using immunocytochemical methods at the light and electron microscopic levels, we investigated the distribution of diacylglycerol lipase-alpha (DGL-α) and N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), enzymes synthesizing the endocannabinoid ligands, 2-arachidonoylglycerol (2-AG) and anandamide, respectively. Positive labeling was revealed only occasionally in axon terminals, but dendrites displayed strong immunoreactivity for both enzymes. However, the dendritic localization of DGL-α and NAPE-PLD showed a remarkably different distribution. DGL-α immunolabeling in dentrites was always revealed at membrane compartments in close vicinity to synapses. In contrast to this, dendritic NAPE-PLD labeling was never observed in association with synaptic contacts. In addition to dendrites, a substantial proportion of astrocytic (immunoreactive for GFAP) and microglial (immunoreactive for CD11b) profiles were also immunolabeled for both DGL-α and NAPE-PLD. Glial processes immunostained for DGL-α were frequently found near to synapses in which the postsynaptic dendrite was immunoreactive for DGL-α, whereas NAPE-PLD immunoreactivity on glial profiles at the vicinity of synapses was only occasionally observed. Our results suggest that both neurons and glial cells can synthesize and release 2-AG and anandamide in the superficial spinal dorsal horn. The 2-AG can primarily be released by postsynaptic dendrites and glial processes adjacent to synapses, whereas anandamide can predominantly be released from nonsynaptic dendritic and glial compartments.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
85
|
Petrovszki Z, Kovacs G, Tömböly C, Benedek G, Horvath G. The effects of peptide and lipid endocannabinoids on arthritic pain at the spinal level. Anesth Analg 2012; 114:1346-52. [PMID: 22451592 DOI: 10.1213/ane.0b013e31824c4eeb] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hemopressin, a nonapeptide (PVNFKFLSH: HP) derived from the α chain of hemoglobin was shown to interact specifically with brain cannabinoid CB(1) receptors. Therefore, it seems to be the only peptide structure with cannabinoid activities. Our goal in this study was to further characterize this peptide and to clarify the antinociceptive potency of the polyunsaturated fatty acid derivates, 2-arachidonoyl-glycerol (2-AG) and anandamide, by investigating their effects on mechanical allodynia at the spinal level. METHODS HP was prepared on solid phase by in situ neutralization. After chronic intrathecal catheterization, mechanical hypersensitivity was produced in male Wistar rats by injection of carrageenan (300 μg/30 μL) into the tibiotarsal joint of one of the hind legs. Three hours after carrageenan administration, the ligands were administered intrathecally. The mechanical threshold was assessed using a dynamic aesthesiometer. RESULTS 2-AG (1-200 μg) and anandamide (10-200 μg) decreased carrageenan-induced mechanical allodynia in a dose-dependent manner, whereas HP had no antinociceptive effect in a wide dose range (0.3-30 μg). The effect of 2-AG was prevented by the CB(1) receptor antagonist AM 251, but not by the CB(2) antagonist SSR144528-2. HP (3 and 30 μg) also inhibited the effect of 2-AG. None of the ligands influenced the degree of edema. CONCLUSIONS HP posttreatment had no effect on mechanical allodynia, whereas spinally injected 2-AG and anandamide were potent drugs.
Collapse
Affiliation(s)
- Zita Petrovszki
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
86
|
Alterations in the emotional and memory behavioral phenotypes of transient receptor potential vanilloid type 1-deficient mice are mediated by changes in expression of 5-HT1A, GABAA, and NMDA receptors. Neuropharmacology 2012; 62:1034-43. [DOI: 10.1016/j.neuropharm.2011.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 12/21/2022]
|
87
|
Abstract
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.
Collapse
Affiliation(s)
- Saoirse E O'Sullivan
- School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
88
|
Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. Neuropharmacology 2011; 62:1746-55. [PMID: 22178705 DOI: 10.1016/j.neuropharm.2011.11.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022]
Abstract
The endocannabinoid anandamide (AEA) activates also transient receptor potential vanilloid-1 (TRPV1) channels. However, no data exist on the potential role of spinal TRPV1 activation by AEA in neuropathic pain. We tested the effect of: 1) AEA (5-100 μg), alone or in the presence of an inhibitor of its hydrolysis, and 2) elevated levels of endogenous AEA (following inhibition of AEA hydrolysis), in CCI rats, and the involvement of TRPV1 or cannabinoid CB(1) receptors in the observed effects. Levels of AEA in the spinal cord of CCI rats were measured following all treatments. AEA (50 μg) displayed anti-allodynic and anti-hyperalgesic effects which were abolished by previous antagonism of TRPV1, but not CB(1), receptors. Depending on the administered dose, the selective inhibitor of AEA enzymatic hydrolysis, URB597 (10-100 μg), reduced thermal and tactile nociception via CB(1) or CB(1)/TRPV1 receptors. The anti-nociceptive effects of co-administered per se ineffective doses of AEA (5 μg) and URB597 (5 μg) was abolished by antagonism of CB(1), but not TRPV1, receptors. Spinal AEA levels were increased after CCI, slightly increased further by URB597, 10 μg i.t., and strongly elevated by URB597, 100 μg. Injection of AEA (50 μg) into the lumbar spinal cord led to its dramatic elevation in this tissue, whereas, when a lower dose was used (5 μg) AEA endogenous levels were elevated only in the presence of URB597 (5 μg). We suggest that spinal AEA reduces neuropathic pain via CB(1) or TRPV1, depending on its local concentration.
Collapse
|
89
|
Weller K, Reeh PW, Sauer SK. TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release. Neuropeptides 2011; 45:391-400. [PMID: 21868092 DOI: 10.1016/j.npep.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/11/2011] [Accepted: 07/30/2011] [Indexed: 01/01/2023]
Abstract
Vagal sensory afferents innervating airways and abdominal tissues express TRPV1 and TRPA1, two depolarizing calcium permeable ion channels playing a major role in sensing environmental irritants and endogenous metabolites which cause neuropeptide release and neurogenic inflammation. Here we have studied axonal chemosensitivity and control of neuropeptide release from the isolated rat and mouse vagus nerve by using prototypical agonists of these transduction channels - capsaicin, mustard oil and the specific endogenous activators, anandamide (methyl arachidonyl ethanolamide, mAEA), and acrolein, respectively. Capsaicin evoked iCGRP release from the rat vagus nerve with an EC₅₀ of 0.12 μM. Co-application of mAEA had a dual effect: nanomolar concentrations of mAEA (0.01 μM) significantly reduced capsaicin-evoked iCGRP release while concentrations ≥ 1 μM mAEA had sensitizing effects. Only 100 μM mAEA directly augmented iCGRP release by itself. In the mouse, 310 μM mAEA increased release in wildtype and TRPA1-/- mice which could be inhibited by capsazepine (10 μM) and was completely absent in TRPV1-/- mice. CB1-/- and CB1/CB2 double -/- mice equally displayed increased sensitivity to mAEA (100 μM) and a sensitizing effect to capsaicin, in contrast to wildtypes. Acrolein and mustard oil (MO)--at μM concentrations--induced a TRPA1-dependent iCGRP release; however, millimolar concentrations of mustard oil (>1mM) evoked iCGRP release by activating TRPV1, confirming recent evidence for TRPV1 agonism of high mustard oil concentrations. Taken together, we present evidence for functional expression of excitatory TRPV1, TRPA1, and inhibitory CB1 receptors along the sensory fibers of the vagus nerve which lend pathophysiological relevance to the axonal membrane and the control of neuropeptide release that may become important in cases of inflammation or neuropathy. Sensitization and possible ectopic discharge may contribute to the development of autonomic dysregulation in visceral tissues that are innervated by the vagus nerve.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Axons/drug effects
- Axons/metabolism
- Calcitonin Gene-Related Peptide/metabolism
- Cannabinoid Receptor Modulators/pharmacology
- Capsaicin/pharmacology
- Endocannabinoids
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mustard Plant
- Neuropeptides/metabolism
- Plant Oils/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Sensory System Agents/pharmacology
- TRPA1 Cation Channel
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Transient Receptor Potential Channels/genetics
- Transient Receptor Potential Channels/metabolism
- Vagus Nerve/cytology
- Vagus Nerve/drug effects
- Vagus Nerve/metabolism
Collapse
Affiliation(s)
- K Weller
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | |
Collapse
|
90
|
Kopczyńska B, Sulejczak D, Wełniak-Kamińska M, Gietka A, Grieb P. Anandamide enhances expression of heat shock proteins Hsp70 and Hsp25 in rat lungs. Eur J Pharmacol 2011; 668:257-63. [DOI: 10.1016/j.ejphar.2011.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/09/2011] [Accepted: 06/23/2011] [Indexed: 01/09/2023]
|
91
|
Moreira FA, Aguiar DC, Terzian ALB, Guimarães FS, Wotjak CT. Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety-two sides of one coin? Neuroscience 2011; 204:186-92. [PMID: 21906661 DOI: 10.1016/j.neuroscience.2011.08.046] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 02/02/2023]
Abstract
The transient receptor potential vanilloid type 1 channel (TRPV1; originally vanilloid receptor VR1) is activated in peripheral terminals of nociceptive fibers by noxious heat, low pH, and natural products such as capsaicin, the pungent ingredient of red-hot chilli peppers. Evidence has been accumulating that TRPV1 is expressed also in the brain, where it seems to be involved in antinociception, locomotor control, and regulation of affective behaviors. This ion channel might be activated by arachidonoyl ethanolamide (anandamide), the endogenous agonist of the cannabinoid type 1 (CB(1)) receptor. However, while CB(1) activation leads to a decrease in intracellular calcium and attenuation of synaptic transmission, anandamide binding to TRPV1 results in elevated calcium levels and potentiated synaptic transmission. This suggests a tripartite regulatory system with antagonistic effects of CB(1) and TRPV1, which are tied together by the same endogenous ligand. Such a system may have important implication for the modulation of behavioral responses. The present commentary elaborates on this interplay between CB(1) receptors and TRPV1 channels in the context of fear- and anxiety-related behaviors.
Collapse
Affiliation(s)
- F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
92
|
Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids-Cannabinoids and Acute Stress Modulate GABA Release. Int J Cell Biol 2011; 2011:529851. [PMID: 21785597 PMCID: PMC3139122 DOI: 10.1155/2011/529851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/08/2011] [Accepted: 05/17/2011] [Indexed: 01/17/2023] Open
Abstract
We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ.
Collapse
|
93
|
Asfaw TS, Hypolite J, Northington GM, Arya LA, Wein AJ, Malykhina AP. Acute colonic inflammation triggers detrusor instability via activation of TRPV1 receptors in a rat model of pelvic organ cross-sensitization. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1392-400. [PMID: 21474425 PMCID: PMC3119151 DOI: 10.1152/ajpregu.00804.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/03/2011] [Indexed: 12/30/2022]
Abstract
Chronic pelvic pain of unknown etiology is a common clinical condition and may develop as a result of cross-sensitization in the pelvis when pathological changes in one of the pelvic organs result in functional alterations in an adjacent structure. The aim of the current study was to compare transient receptor potential vanilloid 1 (TRPV1) activated pathways on detrusor contractility in vivo and in vitro using a rat model of pelvic organ cross-sensitization. Four groups of male Sprague-Dawley rats (N = 56) were included in the study. Animals received intracolonic saline (control), resiniferatoxin (RTX, TRPV1 agonist, 10(-7) M), 2,4,6-trinitrobenzene sulfonic acid (TNBS, colonic irritant), or double treatment (RTX followed by TNBS). Detrusor muscle contractility was assessed under in vitro and in vivo conditions. Intracolonic RTX increased the contractility of the isolated detrusor in response to electric field stimulation (EFS) by twofold (P ≤ 0.001) and enhanced the contractile response of the bladder smooth muscle to carbachol (CCh). Acute colonic inflammation reduced detrusor contractility upon application of CCh in vitro, decreased bladder capacity by 28.1% (P ≤ 0.001), and reduced micturition volume by 60% (P ≤ 0.001). These changes were accompanied by an increased number of nonmicturition contractions from 3.7 ± 0.7 to 15 ± 2.7 (N = 6 in both groups, P ≤ 0.001 vs. control). Desensitization of intracolonic TRPV1 receptors before the induction of acute colitis restored the response of isolated detrusor strips to CCh but not to EFS stimulation. Cystometric parameters were significantly improved in animals with double treatment and approximated the control values. Our data suggest that acute colonic inflammation triggers the occurrence of detrusor instability via activation of TRPV1-related pathways. Comparison of the results obtained under in vitro vs. in vivo conditions provides evidence that intact neural pathways are critical for the development of an overactive bladder resulting from pelvic organ cross talk.
Collapse
Affiliation(s)
- Tirsit S Asfaw
- Division of Urogynecology and Pelvic Reconstructive Surgery, Department of Obstetrics and Gynecology, University of Pennsylvania, Glenolden, Pennsylvania 19036-2307, USA
| | | | | | | | | | | |
Collapse
|
94
|
van Diest SA, Stanisor OI, Boeckxstaens GE, de Jonge WJ, van den Wijngaard RM. Relevance of mast cell-nerve interactions in intestinal nociception. Biochim Biophys Acta Mol Basis Dis 2011; 1822:74-84. [PMID: 21496484 DOI: 10.1016/j.bbadis.2011.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/11/2011] [Accepted: 03/30/2011] [Indexed: 01/06/2023]
Abstract
Cross-talk between the immune- and nervous-system is considered an important biological process in health and disease. Because mast cells are often strategically placed between nerves and surrounding (immune)-cells they may function as important intermediate cells. This review summarizes the current knowledge on bidirectional interaction between mast cells and nerves and its possible relevance in (inflammation-induced) increased nociception. Our main focus is on mast cell mediators involved in sensitization of TRP channels, thereby contributing to nociception, as well as neuron-released neuropeptides and their effects on mast cell activation. Furthermore we discuss mechanisms involved in physical mast cell-nerve interactions. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Sophie A van Diest
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
95
|
Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices. J Neurochem 2011; 117:665-77. [DOI: 10.1111/j.1471-4159.2011.07235.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
96
|
Di Marzo V. Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight. Nat Neurosci 2011; 14:9-15. [PMID: 21187849 DOI: 10.1038/nn.2720] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of the endocannabinoid system in the CNS have been mostly focused on endocannabinoid receptors and inactivating mechanisms. Until recently, very little was known about the role of biosynthetic enzymes in endocannabinoid signaling. New data from the recent development of pharmacological and genetic tools for the study of these enzymes point to their fundamental role in determining where and when endocannabinoids function, and raise the possibility of new intriguing and previously unsuspected concepts in the general strategy of endocannabinoid signaling. However, even with these new tools, the cross-talk between anandamide and 2-arachidonoylglycerol biosynthesis makes it difficult to dissect one from the other, and data will need to be interpreted with this in mind.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.
| |
Collapse
|
97
|
Wang W, Zhang K, Yan S, Li A, Hu X, Zhang L, Liu C. Enhancement of apamin-sensitive medium afterhyperpolarization current by anandamide and its role in excitability control in cultured hippocampal neurons. Neuropharmacology 2011; 60:901-9. [PMID: 21272594 DOI: 10.1016/j.neuropharm.2011.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 01/03/2011] [Accepted: 01/17/2011] [Indexed: 12/30/2022]
Abstract
Although endocannabinoid anandamide (AEA) plays an important role in synaptic signaling and neuronal survival, the underlying mechanism is not fully understood. Afterhyperpolarization (AHP) is the critical modulator of cell excitability and in turn shapes the neuronal output. Here, we examined the effects of AEA on AHP current and action potential firing in cultured rat hippocampal neurons. In whole-cell patch-clamp recording, AEA applied in the extracellular medium at nanomolar concentration enhanced medium AHP (mAHP) current and spike-frequency adaptation. Activation of apamin-sensitive, small conductance Ca(2+)-activated K(+) (SK) channels, probably SK2 and SK3 as the immunofluorescence analysis indicated, attributed largely to the AEA action on mAHP. Interestingly, AEA-induced potentiation of mAHP current was abolished by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) blockade. However, the potentiation was not affected by inhibiting Ca(2+) influx or Ca(2+) release from internal store through ryanodine receptors. In addition, blockade of CB1, TRPV1 or Gi/o-protein did not attenuate the potentiation. Thus, AEA might enhance the SK mAHP currents mainly in a non-CB1/TRPV1 receptor way. Our study provides the first evidence that a functional cascade might lie among AEA, IP(3)Rs and SK channels, which may keep the membrane excitability stable in a negative-feedback manner.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, Hubei Province 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
98
|
Patil MJ, Jeske NA, Akopian AN. Transient receptor potential V1 regulates activation and modulation of transient receptor potential A1 by Ca2+. Neuroscience 2010; 171:1109-19. [PMID: 20884333 PMCID: PMC2991566 DOI: 10.1016/j.neuroscience.2010.09.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/06/2010] [Accepted: 09/20/2010] [Indexed: 11/29/2022]
Abstract
The transient receptor potential A1 (TRPA1) channel contributes to nociceptive signaling in certain pain models. It has been suggested that Ca(2+), which activates and modulates TRPA1, could play a critical regulatory role in this process. Since TRPA1 and transient receptor potential V1 (TRPV1) channels are co-expressed and interact in neurons, we investigated whether activation and modulation of TRPA1 by Ca(2+) is regulated by TRPV1. Cell-attached recordings showed that TRPA1 is activated by extracellular Ca(2+) ([Ca(2+)](e)) in concentration-response fashion. This activation, especially by 2 mM [Ca(2+)](e) was substantially suppressed by co-expression with TRPV1. Inside-out recordings demonstrated that intracellular Ca(2+) ([Ca(2+)](i))-triggered activation of TRPA1 was attenuated by the presence of TRPV1 only at 2 mM [Ca(2+)](e), but not in Ca(2+)-free conditions. Further, depletion of internal Ca(2+) stores by thapsigargin generated TRPA1-mediated currents, which is affected by TRPV1 in both Chinese hamster ovary cells and sensory neurons. Since mustard oil current (I(MO)) is modulated by [Ca(2+)](e), we next examined whether alterations in the Ca(2+)-permeability of TRPV1 by mutating Y671 effect I(MO) properties. First it was demonstrated that the mutations in TRPV1 did not affect association of the TRPA1 and TRPV1 channels. However, these TRPV1 mutations, particularly Y671K, altered the following characteristics of TRPA1: magnitude of I(MO) in presence and absence of [Ca(2+)](e); the influence of [Ca(2+)](e) on the voltage-dependency of I(MO), and open probability of single-channel I(MO). In summary, activation of TRPA1 by [Ca(2+)](e) and [Ca(2+)](i) is controlled by the TRPV1 channel, and characteristics of I(MO) depend on Ca(2+) permeability of the TRPV1 channel.
Collapse
Affiliation(s)
- Mayur J. Patil
- Department of Endodontics, University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Nathaniel A. Jeske
- Oral and Maxillillofacial Surgery, University of Texas Health Science Center at San Antonio, TX, 78229, USA
- Pharmacology, University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, TX, 78229, USA
| |
Collapse
|
99
|
Grueter BA, Brasnjo G, Malenka RC. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 2010; 13:1519-25. [PMID: 21076424 PMCID: PMC3092590 DOI: 10.1038/nn.2685] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/22/2010] [Indexed: 12/12/2022]
Abstract
Synaptic modifications in the nucleus accumbens (NAc) are important for adaptive and pathological reward-dependent learning. Medium spiny neurons (MSNs), the major cell type in the NAc, participate in two parallel circuits that subserve distinct behavioral functions, yet little is known about differences in their electrophysiological and synaptic properties. Using bacterial artificial chromosome transgenic mice, we found that synaptic activation of group I metabotropic glutamate receptors in NAc MSNs in the indirect, but not direct, pathway led to the production of endocannabinoids, which activated presynaptic CB1 receptors to trigger endocannabinoid-mediated long-term depression (eCB-LTD) as well as postsynaptic transient receptor potential vanilloid 1 (TRPV1) channels to trigger a form of LTD resulting from endocytosis of AMPA receptors. These results reveal a previously unknown action of TRPV1 channels and indicate that the postsynaptic generation of endocannabinoids can modulate synaptic strength in a cell type-specific fashion by activating distinct pre- and postsynaptic targets.
Collapse
Affiliation(s)
- Brad A. Grueter
- Nancy Pritzker Laboratory, Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304
| | - Gabor Brasnjo
- Nancy Pritzker Laboratory, Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304
| |
Collapse
|
100
|
Chávez AE, Chiu CQ, Castillo PE. TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci 2010; 13:1511-8. [PMID: 21076423 PMCID: PMC3058928 DOI: 10.1038/nn.2684] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/29/2010] [Indexed: 11/26/2022]
Abstract
The transient receptor potential TRPV1 is a nonselective cation channel that mediates pain sensations and is commonly activated by a wide variety of exogenous and endogenous, physical and chemical stimuli. Although TRPV1 receptors are mainly found in nociceptive neurons of the peripheral nervous system, these receptors have also been found in the brain, where their role is far less understood. Activation of TRPV1 reportedly regulates neurotransmitter release at several central synapses. However, we found that TRPV1 suppressed excitatory transmission in rat and mouse dentate gyrus by regulating postsynaptic function in an input-specific manner. This suppression was a result of Ca(2+)-calcineurin and clathrin-dependent internalization of AMPA receptors. Moreover, synaptic activation of TRPV1 triggered a form of long-term depression (TRPV1-LTD) mediated by the endocannabinoid anandamide in a type 1 cannabinoid receptor-independent manner. Thus, our findings reveal a previously unknown form of endocannabinoid- and TRPV1-mediated regulation of synaptic strength at central synapses.
Collapse
Affiliation(s)
- Andrés E. Chávez
- Dominick P. Purpura, Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Room 703, Bronx, NY 10461
| | - Chiayu Q. Chiu
- Dominick P. Purpura, Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Room 703, Bronx, NY 10461
| | - Pablo E. Castillo
- Dominick P. Purpura, Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Room 703, Bronx, NY 10461
| |
Collapse
|