51
|
Barzily-Rokni M, Friedman N, Ron-Bigger S, Isaac S, Michlin D, Eden A. Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16(CDKN2A). Nucleic Acids Res 2010; 39:1326-35. [PMID: 21030442 PMCID: PMC3045621 DOI: 10.1093/nar/gkq994] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Promoter hypermethylation and heterochromatinization is a frequent event leading to gene inactivation and tumorigenesis. At the molecular level, inactivation of tumor suppressor genes in cancer has many similarities to the inactive X chromosome in female cells and is defined and maintained by DNA methylation and characteristic histone modifications. In addition, the inactive-X is marked by the histone macroH2A, a variant of H2A with a large non-histone region of unknown function. Studying tumor suppressor genes (TSGs) silenced in cancer cell lines, we find that when active, these promoters are associated with H2A.Z but become enriched for macroH2A1 once silenced. Knockdown of macroH2A1 was not sufficient for reactivation of silenced genes. However, when combined with DNA demethylation, macroH2A1 deficiency significantly enhanced reactivation of the tumor suppressor genes p16, MLH1 and Timp3 and inhibited cell proliferation. Our findings link macroH2A1 to heterochromatin of epigenetically silenced cancer genes and indicate synergism between macroH2A1 and DNA methylation in maintenance of the silenced state.
Collapse
Affiliation(s)
- Michal Barzily-Rokni
- Department of Cell & Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
52
|
Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol Cell Biol 2010; 30:5473-83. [PMID: 20937776 DOI: 10.1128/mcb.00518-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Studies of macroH2A histone variants indicate that they have a role in regulating gene expression. To identify direct targets of the macroH2A1 variants, we produced a genome-wide map of the distribution of macroH2A1 nucleosomes in mouse liver chromatin using high-throughput DNA sequencing. Although macroH2A1 nucleosomes are widely distributed across the genome, their local concentration varies over a range of 100-fold or more. The transcribed regions of most active genes are depleted of macroH2A1, often in sharply localized domains that show depletion of 4-fold or more relative to bulk mouse liver chromatin. We used macroH2A1 enrichment to help identify genes that appear to be directly regulated by macroH2A1 in mouse liver. These genes functionally cluster in the area of lipid metabolism. All but one of these genes has increased expression in macroH2A1 knockout mice, indicating that macroH2A1 functions primarily as a repressor in adult liver. This repressor activity is further supported by the substantial and relatively uniform macroH2A1 enrichment along the inactive X chromosome, which averages 4-fold. Genes that escape X inactivation stand out as domains of macroH2A1 depletion. The rarity of such genes indicates that few genes escape X inactivation in mouse liver, in contrast to what has been observed in human cells.
Collapse
|
53
|
Natoli G. Control of NF-kappaB-dependent transcriptional responses by chromatin organization. Cold Spring Harb Perspect Biol 2010; 1:a000224. [PMID: 20066094 DOI: 10.1101/cshperspect.a000224] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A large number of genes have been positively selected and recruited to participate in various phases of the inflammatory response triggered by microbial stimuli. Because of the complexity of the response, the many phases in which it is deployed, and the many "flavors" in which it appears (depending on quality and intensity of the stimulus as well as the target organ), very elaborated mechanisms evolved to ensure that the expression of the induced genes is carefully and precisely organized so that each gene is expressed in response to specific stimuli and with kinetics and intensities that suit the peculiar function of its product(s). Data accumulated in recent years have strengthened the concept that chromatin is an essential substrate at which multiple signals are integrated to promote a correctly choreographed expression of the genes involved in inflammatory transcriptional responses. Although the current level of understanding of these mechanisms is far from complete, some concepts and ideas have resisted experimental challenges and now represent accepted paradigms that are the subject of this article.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
54
|
Joshi R, Sun L, Mann R. Dissecting the functional specificities of two Hox proteins. Genes Dev 2010; 24:1533-45. [PMID: 20634319 DOI: 10.1101/gad.1936910] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hox proteins frequently select and regulate their specific target genes with the help of cofactors like Extradenticle (Exd) and Homothorax (Hth). For the Drosophila Hox protein Sex combs reduced (Scr), Exd has been shown to position a normally unstructured portion of Scr so that two basic amino acid side chains can insert into the minor groove of an Scr-specific DNA-binding site. Here we provide evidence that another Drosophila Hox protein, Deformed (Dfd), uses a very similar mechanism to achieve specificity in vivo, thus generalizing this mechanism. Furthermore, we show that subtle differences in the way Dfd and Scr recognize their specific binding sites, in conjunction with non-DNA-binding domains, influence whether the target gene is transcriptionally activated or repressed. These results suggest that the interaction between these DNA-binding proteins and the DNA-binding site determines the architecture of the Hox-cofactor-DNA ternary complex, which in turn determines whether the complex recruits coactivators or corepressors.
Collapse
Affiliation(s)
- Rohit Joshi
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | |
Collapse
|
55
|
Boulard M, Storck S, Cong R, Pinto R, Delage H, Bouvet P. Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Epigenetics Chromatin 2010; 3:8. [PMID: 20359320 PMCID: PMC2857834 DOI: 10.1186/1756-8935-3-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/01/2010] [Indexed: 01/16/2023] Open
Abstract
Background Vertebrate heterochromatin contains a non-allelic variant of the histone H2A called macroH2A1, which has the characteristic of being three times the size of the canonical H2A. The macroH2A1 C-terminal extension can recruit onto chromatin the poly-ADP-ribose polymerase (PARP)1, which is crucial for DNA repair. This led to the speculation that macroH2A1 could be essential for genome surveillance; however, no experimental evidence supported this hypothesis. Because macroH2A1 has been found to be enriched on the inactive X-chromosome in females, it is thought to play a role in sex chromosome dosage compensation through its ability to regulate gene expression. However, more genetic data are needed to further understand the function of macroH2A1 in mammals. Results Deletion of the murine gene H2afy, which encodes for macroH2A1, resulted in lipid accumulation in liver. Hepatic steatosis caused by H2afy disruption occurred specifically in homozygous mutant females. The metabolic disorder constantly affected half of the number of homozygote females. Given the mixed genetic background of the mutants, an unreported genetic modifier is likely to influence the penetrance of the phenotype. In addition, the X-linked thyroxine-binding globulin (Tbg) gene was specifically upregulated in steatotic livers. Chromatin immunoprecitation indicated that macroH2A1 is enriched at the Tbg promoter in wild-type female animals, indicating that increased Tbg expression in H2afy null mutants is likely to be a direct consequence of the absence of macroH2A1. Furthermore, male mice, which are not prone to the metabolic disorder, had a reduced level of macroH2A1 incorporated into the Tbg promoter. Conclusions Because TBG is the main carrier of the thyroid hormone T4, which regulates energy metabolism, we propose that overexpression of TBG is responsible for the fat accumulation observed in H2afy-deficient liver. Moreover, our results suggest that the sexual dimorphism of the steatotic phenotype is probably due to the different incorporation of macroH2A1 in males and females. In combination with previous studies, our data demonstrate a role for macroH2A1 in regulating homeostasis in a sex-dependent manner, subject to genetic background.
Collapse
Affiliation(s)
- Mathieu Boulard
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie (CNRS USR 3010), 46 allée d'Italie, 69364 Lyon cedex 07, France.,Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Sébastien Storck
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie (CNRS USR 3010), 46 allée d'Italie, 69364 Lyon cedex 07, France.,Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Rong Cong
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie (CNRS USR 3010), 46 allée d'Italie, 69364 Lyon cedex 07, France.,Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, 46 allée d'Italie, 69364 Lyon cedex 07, France.,The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rodrigo Pinto
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie (CNRS USR 3010), 46 allée d'Italie, 69364 Lyon cedex 07, France.,Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Hélène Delage
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie (CNRS USR 3010), 46 allée d'Italie, 69364 Lyon cedex 07, France.,Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Philippe Bouvet
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire Joliot-Curie (CNRS USR 3010), 46 allée d'Italie, 69364 Lyon cedex 07, France.,Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, 46 allée d'Italie, 69364 Lyon cedex 07, France
| |
Collapse
|
56
|
Abstract
Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires1428, Argentina,
| | - Eric Lau
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA,
| | - Ze'ev Ronai
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| |
Collapse
|
57
|
Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev 2009; 24:21-32. [PMID: 20008927 DOI: 10.1101/gad.1876110] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MacroH2A1 is a histone variant that is enriched on the inactive X chromosome (Xi) in mammals and is postulated to play an important, but unknown, role in the repression of gene expression. Here we show that, although macroH2A1 marks repressed autosomal chromatin, it positively regulates transcription when located in the transcribed regions of a subset of its target genes. We used chromatin immunoprecipitation (ChIP) coupled with tiling microarrays (ChIP-chip) to determine the genomic localization of macroH2A1 in IMR90 human primary lung fibroblasts and MCF-7 breast cancer cells. The patterns of macroH2A1 deposition are largely similar across the autosomes of both cell lines. Our studies revealed a genomic localization pattern unique among histone variants; namely, the occupation by macroH2A1 of large chromatin domains (>500 kb in some cases) that contain repressive chromatin marks (e.g., histone H3 Lys 27 trimethylation). The boundaries of macroH2A1-containing domains tend to occur in promoter-proximal regions. Not all promoters, however, serve as macroH2A1 boundaries; many macroH2A1-containing chromatin domains invade the transcribed regions of genes whose products play key roles in development and cell-cell signaling. Surprisingly, the expression of a subset of these genes is positively regulated by macroH2A1. MacroH2A1 also plays a role in augmenting signal-regulated transcription, specifically for genes responsive to serum starvation. Collectively, our results document an unexpected role for macroH2A1 in the escape from heterochromatin-associated silencing and the enhancement of autosomal gene transcription.
Collapse
Affiliation(s)
- Matthew J Gamble
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
58
|
Jagannathan M, Hasturk H, Liang Y, Shin H, Hetzel JT, Kantarci A, Rubin D, McDonnell ME, Van Dyke TE, Ganley-Leal LM, Nikolajczyk BS. TLR cross-talk specifically regulates cytokine production by B cells from chronic inflammatory disease patients. THE JOURNAL OF IMMUNOLOGY 2009; 183:7461-70. [PMID: 19917698 DOI: 10.4049/jimmunol.0901517] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic systemic inflammation links periodontal disease and diabetes to increased incidence of serious comorbidities. Activation of TLRs, particularly TLR2 and TLR4, promotes chronic systemic inflammation. Human B cells have been generally thought to lack these TLRs. However, recent work showed that an increased percentage of circulating B cells from inflammatory disease patients express TLR2 and TLR4, and that TLR engagement on B cells resulted in unexpected changes in gene expression. New data show that B cells from inflammatory disease patients secrete multiple cytokines in response to different classes of TLR ligands. Furthermore, the B cell response to combinations of TLR ligands is cytokine- and ligand-specific. Some cytokines (IL-1beta and IL-10) are predominantly regulated by TLR4, but others (IL-8 and TNF-alpha) are predominantly regulated by TLR2, due in part to TLR-dictated changes in transcription factor/promoter association. TLR2 and TLR9 also regulate B cell TLR4 expression, demonstrating that TLR cross-talk controls B cell responses at multiple levels. Parallel examination of B cells from periodontal disease and diabetes patients suggested that outcomes of TLR cross-talk are influenced by disease pathology. We conclude that disease-associated alteration of B cell TLR responses specifically regulates cytokine production and may influence chronic inflammation.
Collapse
Affiliation(s)
- Madhumita Jagannathan
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene. EMBO J 2009; 29:196-208. [PMID: 19893493 DOI: 10.1038/emboj.2009.318] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 10/08/2009] [Indexed: 11/08/2022] Open
Abstract
Many symptoms induced by isolation rearing of rodents may be relevant to neuropsychiatric disorders, including depression. However, identities of transcription factors that regulate gene expression in response to chronic social isolation stress remain elusive. The transcription factor ATF-7 is structurally related to ATF-2, which is activated by various stresses, including inflammatory cytokines. Here, we report that Atf-7-deficient mice exhibit abnormal behaviours and increased 5-HT receptor 5B (Htr5b) mRNA levels in the dorsal raphe nuclei. ATF-7 silences the transcription of Htr5B by directly binding to its 5'-regulatory region, and mediates histone H3-K9 trimethylation via interaction with the ESET histone methyltransferase. Isolation-reared wild-type (WT) mice exhibit abnormal behaviours that resemble those of Atf-7-deficient mice. Upon social isolation stress, ATF-7 in the dorsal raphe nucleus is phosphorylated via p38 and is released from the Htr5b promoter, leading to the upregulation of Htr5b. Thus, ATF-7 may have a critical role in gene expression induced by social isolation stress.
Collapse
|
60
|
|
61
|
The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol 2009; 16:1074-9. [PMID: 19734898 DOI: 10.1038/nsmb.1665] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 08/07/2009] [Indexed: 01/22/2023]
Abstract
The histone variants macroH2A1 and macroH2A2 are associated with X chromosome inactivation in female mammals. However, the physiological function of macroH2A proteins on autosomes is poorly understood. Microarray-based analysis in human male pluripotent cells uncovered occupancy of both macroH2A variants at many genes encoding key regulators of development and cell fate decisions. On these genes, the presence of macroH2A1+2 is a repressive mark that overlaps locally and functionally with Polycomb repressive complex 2. We demonstrate that macroH2A1+2 contribute to the fine-tuning of temporal activation of HOXA cluster genes during neuronal differentiation. Furthermore, elimination of macroH2A2 function in zebrafish embryos produced severe but specific phenotypes. Taken together, our data demonstrate that macroH2A variants constitute an important epigenetic mark involved in the concerted regulation of gene expression programs during cellular differentiation and vertebrate development.
Collapse
|
62
|
Hyperactivated NF-{kappa}B and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 2009; 29:5488-504. [PMID: 19687301 DOI: 10.1128/mcb.01657-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin-6 (IL-6), involved in cancer-related inflammation, acts as an autocrine and paracrine growth factor, which promotes angiogenesis, metastasis, and subversion of immunity, and changes the response to hormones and to chemotherapeutics. We explored transcription mechanisms involved in differential IL-6 gene expression in breast cancer cells with different metastatic properties. In weakly metastatic MCF7 cells, histone H3 K9 methylation, HP1 binding, and weak recruitment of AP-1 Fra-1/c-Jun, NF-kappaB p65 transcription factors, and coactivators is indicative of low chromatin accessibility and gene transcription at the IL-6 gene promoter. In highly metastatic MDA-MB231 cells, strong DNase, MNase, and restriction enzyme accessibility, as well potent constitutive transcription of the IL-6 gene promoter, coincide with increased H3 S10 K14 phosphoacetylation and promoter enrichment of AP-1 Fra-1/c-Jun and NF-kappaB p65 transcription factors and MSK1, CBP/p300, Brg1, and Ezh2 cofactors. Complementation, silencing, and kinase inhibitor experiments further demonstrate involvement of AP-1 Fra-1/c-Jun and NF-kappaB p65/RelB members, but not of the alpha estrogen receptor in promoting chromatin accessibility and transcription across the IL-6 gene promoter in metastatic breast cancer cells. Finally, the natural withanolide Withaferin A was found to repress IL-6 gene transcription in metastatic breast cancer cells upon dual inhibition of NF-kappaB and AP-1 Fra-1 transcription factors and silencing of IL-6 promoter chromatin accessibility.
Collapse
|
63
|
Safronova O, Pluemsampant S, Nakahama KI, Morita I. Regulation of chemokine gene expression by hypoxia via cooperative activation of NF-kappaB and histone deacetylase. Int J Biochem Cell Biol 2009; 41:2270-80. [PMID: 19446037 DOI: 10.1016/j.biocel.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 11/28/2022]
Abstract
Hypoxia is a microenvironmental factor frequently associated with tumors and inflammation. This study addresses the question of how hypoxia modulates the basal and IL-1 beta-induced production of cytokines and aims to identify the underlying mechanism of hypoxic transcriptional repression. We found that despite the similarities of the promoter structures of IL-8 and MCP-1, these chemokines were differently regulated by hypoxia (an increase in IL-8, but a decrease in MCP-1 mRNA and protein expression). Such differences were not observed in a reporter gene assay, in which both of the promoters were activated by hypoxia. The difference in the response to hypoxia between MCP-1 expression and the promoter assay was not due to mRNA instability. Using proteosome inhibitor MG132 and I kappaB overexpression we demonstrated that an NF-kappaB-dependent mechanism was involved in both the activation of IL-8 and the repression of MCP-1 mRNA expression in response to hypoxia. The histone deacetylase inhibitor Trihostatin A abolished the inhibitory actions of hypoxia on IL-1 beta-induced MCP-1 gene expression. Furthermore, hypoxia induced histone deacetylase activity in the nuclear extracts. Although stimulation with IL-1 beta and/or hypoxia increased the acetylation of histones H3 and H4 in the presence of Trihostatin A, histone acetylation remained unchanged when the cells were treated without histone deacetylase inhibitor. Collectively, our findings suggest that transiently transfected promoters are not subject to the same NF-kappaB regulatory mechanisms as their chromatinized counterparts. NF-kappaB, activated by hypoxia, can act as a transcriptional repressor via a mechanism that involves deacetylation of histones.
Collapse
Affiliation(s)
- Olga Safronova
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|
64
|
Park E, Griffin DE. The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 2009; 388:305-14. [PMID: 19395054 PMCID: PMC2683903 DOI: 10.1016/j.virol.2009.03.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 02/25/2009] [Accepted: 03/20/2009] [Indexed: 12/29/2022]
Abstract
Sindbis virus (SINV), the prototype alphavirus, contains a macro domain in the highly conserved N-terminal region of nonstructural protein 3 (nsP3). However, the biological role of the macro domain is unclear. Mutations of amino acids 10 and 24 from asparagine to alanine in the ADP-ribose binding region of the macro domain impaired SINV replication and viral RNA synthesis particularly in neurons, but did not alter binding of poly(ADP-ribose). Mutation at position 10 had the greatest effect and caused nsP3 instability in neurons, decreased SINV-induced death of mature, but not immature neurons, and attenuated virulence in 2 week-old, but not 5 day-old mice. A compensatory mutation at amino acid 31 in the macro domain of nsP3, as well as reversion of mutated amino acid 10, occurred during replication of double mutant SINV in vitro and in vivo. The nsP3 macro domain is important for SINV replication and age-dependent susceptibility to encephalomyelitis.
Collapse
Affiliation(s)
- Eunhye Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health and Cellular and Molecular Medicine Graduate Program, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | |
Collapse
|
65
|
Abstract
A bioinformatic analysis identified two putative NF-kappaB binding sites in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) promoter. The ability of p65RelA to interact with the LMP1 promoter was shown by in vitro and in vivo assays. Using an EBV-transformed lymphoblastoid cell line as a reporter system for the activity of the +40/-328 LMP1 promoter region, the functional importance of NF-kappaB and other transcription factor binding sites was demonstrated. p65RelA could also induce LMP1 expression from the EBV genome in Daudi and P3HR1 Burkitt's lymphoma cell lines. Finally, it was shown that p65RelA could cooperate with EBNA2 or the aryl hydrocarbon receptor in the transactivation of the LMP1 promoter. Our study established the importance of NF-kappaB and several cis-acting elements in the regulation of the LMP1 promoter in a latency III environment and highlighted a complex interplay between NF-kappaB and other transcription factors in this process.
Collapse
|
66
|
Chang EY, Ferreira H, Somers J, Nusinow DA, Owen-Hughes T, Narlikar GJ. MacroH2A allows ATP-dependent chromatin remodeling by SWI/SNF and ACF complexes but specifically reduces recruitment of SWI/SNF. Biochemistry 2008; 47:13726-32. [PMID: 19035833 PMCID: PMC3428728 DOI: 10.1021/bi8016944] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The variant histone macroH2A helps maintain X inactivation and gene silencing. Previous work implied that nucleosomes containing macroH2A cannot be remodeled by ISWI and SWI/SNF chromatin remodeling enzymes. Using approaches that prevent misassembly of macroH2A nucleosomes, we find that macroH2A nucleosomes are excellent substrates for both enzyme families. Interestingly, SWI/SNF, which is involved in gene activation, preferentially binds H2A nucleosomes over macroH2A nucleosomes, but ACF, an ISWI complex implicated in gene repression, shows no preference. Thus, macroH2A may help regulate the balance between activating and repressive remodeling complexes.
Collapse
|
67
|
Neuvonen M, Ahola T. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J Mol Biol 2008; 385:212-25. [PMID: 18983849 PMCID: PMC7094737 DOI: 10.1016/j.jmb.2008.10.045] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/29/2008] [Accepted: 10/11/2008] [Indexed: 11/17/2022]
Abstract
Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.
Collapse
Affiliation(s)
- Maarit Neuvonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
68
|
Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol Cell Biol 2008; 29:150-6. [PMID: 18936163 DOI: 10.1128/mcb.00997-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We studied the enrichment and distribution of the histone variant mH2A1 in the condensed inactive X (Xi) chromosome. By using highly specific antibodies against mH2A1 and stable HEK 293 cell lines expressing either green fluorescent protein (GFP)-mH2A1 or GFP-H2A, we found that the Xi chromosome contains approximately 1.5-fold more mH2A1 than the autosomes. To determine the in vivo distribution of mH2A1 along the X chromosome, we used a native chromatin immunoprecipitation-on-chip technique. DNA isolated from mH2A1-immunoprecipitated nucleosomes from either male or female mouse liver were hybridized to tiling microarrays covering 5 kb around most promoters or the entire X chromosome. The data show that mH2A1 is uniformly distributed across the entire Xi chromosome. Interestingly, a stronger mH2A1 enrichment along the pseudoautosomal X chromosome region was observed in both sexes. Our results indicate a potential role for macroH2A in large-scale chromosome structure and genome stability.
Collapse
|
69
|
Apostolou E, Thanos D. Virus Infection Induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-beta gene expression. Cell 2008; 134:85-96. [PMID: 18614013 DOI: 10.1016/j.cell.2008.05.052] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/18/2008] [Accepted: 05/03/2008] [Indexed: 12/20/2022]
Abstract
Transcriptional activation of the IFN-beta gene by virus infection requires the cooperative assembly of an enhanceosome. We report that the stochastic and monoallelic expression of the IFN-beta gene depends on interchromosomal associations with three identified distinct genetic loci that could mediate binding of the limiting transcription factor NF-kappaB to the IFN-beta enhancer, thus triggering enhanceosome assembly and activation of transcription from this allele. The probability of a cell to express IFN-beta is dramatically increased when the cell is transfected with any of these loci. The secreted IFN-beta protein induces high-level expression of the enhanceosome factor IRF-7, which in turn promotes enhanceosome assembly and IFN-beta transcription from the remaining alleles and in other initially nonexpressing cells. Thus, the IFN-beta enhancer functions in a nonlinear fashion by working as a signal amplifier.
Collapse
Affiliation(s)
- Effie Apostolou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | | |
Collapse
|
70
|
Thireos G, Panayotou G, Thanos D. Biochemistry and molecular biology research achievements in Greece. IUBMB Life 2008; 60:254-7. [DOI: 10.1002/iub.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
71
|
Kojima M, Suzuki T, Maekawa T, Ishii S, Sumi-Ichinose C, Nomura T, Ichinose H. Increased expression of tyrosine hydroxylase and anomalous neurites in catecholaminergic neurons of ATF-2 null mice. J Neurosci Res 2008; 86:544-52. [PMID: 17896792 DOI: 10.1002/jnr.21510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ATF-2/CRE-BP1 was originally identified as a cAMP-responsive element (CRE) binding protein abundant in the brain. We previously reported that phosphorylation of ATF-2 increased the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, directly acting on the CRE in the promoter region of the TH gene in PC12D cells (Suzuki et al. [2002] J. Biol. Chem. 277:40768-40774). To examine the role of ATF-2 on transcriptional control of the TH gene in the brain, we investigated the TH expression in ATF-2-/- mice. We found that TH expression was greatly increased in medulla oblongata and locus ceruleus of the ATF-2-deficient embryos. Ectopic expression of TH was observed in the raphe magnus nucleus, where serotonergic neural cell bodies are located. Interestingly, A10 dorsal neurons were lost in the embryos of ATF-2-/- mice. There was no difference in the TH immunoreactivity in the olfactory bulb. The data showed that alteration in TH expression by absence of ATF-2 gradually declined from caudal to rostral part of the brain. We also found anomalous neurite extension in catecholaminergic neurons of ATF-2 null mice, i.e., increased dendritic arborization and shortened axons. These data suggest that ATF-2 plays critical roles for proper expression of the TH gene and for neurite extension of catecholaminergic neurons, possibly through a repressor-like action.
Collapse
Affiliation(s)
- Masayo Kojima
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
72
|
S-glutathionylation of IRF3 regulates IRF3-CBP interaction and activation of the IFN beta pathway. EMBO J 2008; 27:865-75. [PMID: 18309294 DOI: 10.1038/emboj.2008.28] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 02/07/2008] [Indexed: 01/08/2023] Open
Abstract
Interferon regulatory factor 3 (IRF3) is an essential transcriptional regulator of the interferon genes. IRF3 is constitutively present in a latent conformation in the cell cytoplasm. In cells infected by Sendai virus, IRF3 becomes phosphorylated, homodimerizes, translocates to the nucleus, binds to target genes and activates transcription by interacting with CBP/p300 co-activators. In this study, we report that in non-infected cells IRF3 is post-translationally modified by S-glutathionylation. Upon viral-infection, it undergoes a deglutathionylation step that is controlled by the cytoplasmic enzyme glutaredoxin-1 (GRX-1). In virus-infected GRX-1 knockdown cells, phosphorylation, homodimerization and nuclear translocation of IRF3 were not affected, but the transcriptional activity of IRF3 and the expression of interferon-beta (IFNbeta), were severely reduced. We show that deglutathionylation of IRF3 is necessary for efficient interaction of IRF3 with CBP, an event essential for transcriptional activation of the interferon genes. Taken together, these findings reveal a crucial role for S-glutathionylation and GRX-1 in controlling the activation of IRF3 and IFNbeta gene expression.
Collapse
|
73
|
Abstract
The Latin word "facultas" literally means "opportunity." Facultative heterochromatin (fHC) then designates genomic regions in the nucleus of a eukaryotic cell that have the opportunity to adopt open or compact conformations within temporal and spatial contexts. This review focuses on the molecular and functional aspects of fHC that distinguish it from constitutive heterochromatin (cHC) and euchromatin (EC) and discusses various concepts regarding the regulation of fHC structure. We begin by revisiting the historical developments that gave rise to our current appreciation of fHC.
Collapse
Affiliation(s)
- Patrick Trojer
- Howard Hughes Medical Institute, New York University Medical School, 522 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
74
|
Abstract
We show that macroH2A1 histone variants are important for repressing the expression of endogenous murine leukemia viruses (MLVs) in mouse liver. Intact MLV proviruses and proviruses with deletions in env were nearly silent in normal mouse liver and showed substantial derepression in macroH2A1 knockout liver. In contrast, MLV proviruses with a deletion in the 5' end of pro-pol were expressed in normal liver and showed relatively low levels of derepression in knockout liver. macroH2A1 nucleosomes were enriched on endogenous MLVs, with the highest enrichment occurring on the 5' end of pro-pol. The absence of macroH2A1 also led to a localized loss of DNA methylation on the 5' ends of MLV proviruses. These results demonstrate that macroH2A1 histones have a significant role in silencing endogenous MLVs in vivo and suggest that specific internal MLV sequences are targeted by a macroH2A1-dependent silencing mechanism.
Collapse
|
75
|
Hisatsune J, Yamasaki E, Nakayama M, Shirasaka D, Kurazono H, Katagata Y, Inoue H, Han J, Sap J, Yahiro K, Moss J, Hirayama T. Helicobacter pylori VacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells. Infect Immun 2007; 75:4472-81. [PMID: 17591797 PMCID: PMC1951161 DOI: 10.1128/iai.00500-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment of AZ-521 cells with Helicobacter pylori VacA increased cyclooxygenase 2 (COX-2) mRNA in a time- and dose-dependent manner. A p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, blocked elevation of COX-2 mRNA levels, whereas PD98059, which blocks the Erk1/2 cascade, partially suppressed the increase. Consistent with involvement of p38 MAPK, VacA-induced accumulation of COX-2 mRNA was reduced in AZ-521 cells overexpressing a dominant-negative p38 MAPK (DN-p38). Phosphatidylinositol-specific phospholipase C, which inhibits VacA-induced p38 MAPK activation, blocked VacA-induced COX-2 expression. In parallel with COX-2 expression, VacA increased prostaglandin E(2) (PGE(2)) production, which was inhibited by SB203580 and NS-398, a COX-2 inhibitor. VacA-induced PGE(2) production was markedly attenuated in AZ-521 cells stably expressing DN-p38. VacA increased transcription of a COX-2 promoter reporter gene and activated a COX-2 promoter containing mutated NF-kappaB or NF-interleukin-6 sites but not a mutated cis-acting replication element (CRE) site, suggesting direct involvement of the activating transcription factor 2 (ATF-2)/CREB-binding region in VacA-induced COX-2 promoter activation. The reduction of ATF-2 expression in AZ-521 cells transformed with ATF-2-small interfering RNA duplexes resulted in suppression of COX-2 expression. Thus, VacA enhances PGE(2) production by AZ-521 cells through induction of COX-2 expression via the p38 MAPK/ATF-2 cascade, leading to activation of the CRE site in the COX-2 promoter.
Collapse
Affiliation(s)
- Junzo Hisatsune
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Adams PD. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 2007; 397:84-93. [PMID: 17544228 PMCID: PMC2755200 DOI: 10.1016/j.gene.2007.04.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/09/2007] [Indexed: 11/18/2022]
Abstract
Cellular senescence is an important tumor suppression process, and a possible contributor to tissue aging. Senescence is accompanied by extensive changes in chromatin structure. In particular, many senescent cells accumulate specialized domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), which are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. This article reviews our current understanding of the structure, assembly and function of these SAHF at a cellular level. The possible contribution of SAHF to tumor suppression and tissue aging is also critically discussed.
Collapse
Affiliation(s)
- Peter D Adams
- W446, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
77
|
Nusinow DA, Hernández-Muñoz I, Fazzio TG, Shah GM, Kraus WL, Panning B. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 2007; 282:12851-9. [PMID: 17322296 DOI: 10.1074/jbc.m610502200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in modulating chromatin structure, regulation of gene expression, and sensing DNA damage. Here, we report that PARP-1 enzymatic activity is inhibited by macroH2A, a vertebrate histone H2A variant that is enriched on facultative heterochromatin. MacroH2A family members have a large C-terminal non-histone domain (NHD) and H2A-like histone domain. MacroH2A1.2 and PARP-1 interact in vivo and in vitro via the NHD. The NHD of each macroH2A family member was sufficient to inhibit PARP-1 enzymatic activity in vitro. The NHD of macroH2A1.2 was a mixed inhibitor of PARP-1 catalytic activity, with affects on both catalytic activity and the substrate binding affinity of PARP-1. Depletion of PARP-1 by RNA interference caused reactivation of a reporter gene on the inactive X chromosome, demonstrating that PARP-1 participates in the maintenance of silencing. These results suggest that one function of macroH2A in gene silencing is to inhibit PARP-1 enzymatic activity, and this may affect PARP-1 association with chromatin.
Collapse
Affiliation(s)
- Dmitri A Nusinow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
78
|
Changolkar LN, Costanzi C, Leu NA, Chen D, McLaughlin KJ, Pehrson JR. Developmental changes in histone macroH2A1-mediated gene regulation. Mol Cell Biol 2007; 27:2758-64. [PMID: 17242180 PMCID: PMC1899912 DOI: 10.1128/mcb.02334-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
macroH2A histone variants have been implicated to function in gene silencing by several studies, including ones showing a preferential association of macroH2A on the inactive X chromosome. To examine macroH2A function in vivo, we knocked out macroH2A1. macroH2A1 knockout mice are viable and fertile. A broad screen of liver gene expression showed no evidence of defects in X inactivation but did identify genes that have increased expression levels in macroH2A1 knockouts. macroH2A1-containing nucleosomes are enriched on the coding and/or upstream regions of these genes, suggesting that their increased expression levels are a direct effect of the absence of macroH2A1. The concentrations of macroH2A1 nucleosomes on these genes are low in the livers of newborn mice, and the macroH2A1 knockout had little effect on the expression levels of these genes in newborn liver. Our results indicate that an increase in liver macroH2A1 during the transition from newborn to young-adult status contributes to a decrease in the expression levels of these genes. These genes cluster in the area of lipid metabolism, and we observed metabolic effects in macroH2A1 knockouts. Our results indicate that the function of macroH2A1 histones is not restricted to gene silencing but also involves fine tuning the expression of specific genes.
Collapse
Affiliation(s)
- Lakshmi N Changolkar
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|