51
|
Prosdocimo DA, Sabeh MK, Jain MK. Kruppel-like factors in muscle health and disease. Trends Cardiovasc Med 2014; 25:278-87. [PMID: 25528994 DOI: 10.1016/j.tcm.2014.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022]
Abstract
Kruppel-like factors (KLF) are zinc-finger DNA-binding transcription factors that are critical regulators of tissue homeostasis. Emerging evidence suggests that KLFs are critical regulators of muscle biology in the context of cardiovascular health and disease. The focus of this review is to provide an overview of the current state of knowledge regarding the physiologic and pathologic roles of KLFs in the three lineages of muscle: cardiac, smooth, and skeletal.
Collapse
Affiliation(s)
- Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH
| | - M Khaled Sabeh
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH.
| |
Collapse
|
52
|
Yeung KS, Chee YY, Luk HM, Kan ASY, Tang MHY, Lau ET, Shuen AY, Lo IFM, Chan KYK, Chung BHY. Spread of X inactivation on chromosome 15 is associated with a more severe phenotype in a girl with an unbalanced t(X; 15) translocation. Am J Med Genet A 2014; 164A:2521-8. [DOI: 10.1002/ajmg.a.36670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 05/22/2014] [Indexed: 01/29/2023]
Affiliation(s)
- KS Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - YY Chee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - HM Luk
- Clinical Genetic Service; Department of Health; Hong Kong SAR China
| | - Anita SY Kan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - Mary HY Tang
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - Elizabeth T Lau
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - Andrew Y Shuen
- Department of Human Genetics; McGill University; Montreal Canada
| | - Ivan FM Lo
- Clinical Genetic Service; Department of Health; Hong Kong SAR China
| | - Kelvin YK Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| | - Brian HY Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine; The University of Hong Kong, Hong Kong Special Administrative Region; China
| |
Collapse
|
53
|
Clinical utility gene card for: 15q13.3 microdeletion syndrome. Eur J Hum Genet 2014; 22:ejhg201488. [PMID: 24824131 DOI: 10.1038/ejhg.2014.88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 12/20/2022] Open
|
54
|
Krüppel-like transcription factor 11 (KLF11) overexpression inhibits cardiac hypertrophy and fibrosis in mice. Biochem Biophys Res Commun 2014; 443:683-8. [DOI: 10.1016/j.bbrc.2013.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 02/02/2023]
|
55
|
FU DAZHI, CHENG YING, HE HUI, LIU HAIYANG, LIU YONGFENG. The fate of Krüppel-like factor 9-positive hepatic carcinoma cells may be determined by the programmed cell death protein 5. Int J Oncol 2013; 44:153-60. [DOI: 10.3892/ijo.2013.2147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/07/2013] [Indexed: 11/06/2022] Open
|
56
|
Serra-Juhé C, Rodríguez-Santiago B, Cuscó I, Vendrell T, Camats N, Torán N, Pérez-Jurado LA. Contribution of rare copy number variants to isolated human malformations. PLoS One 2012; 7:e45530. [PMID: 23056206 PMCID: PMC3463597 DOI: 10.1371/journal.pone.0045530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
Background Congenital malformations are present in approximately 2–3% of liveborn babies and 20% of stillborn fetuses. The mechanisms underlying the majority of sporadic and isolated congenital malformations are poorly understood, although it is hypothesized that the accumulation of rare genetic, genomic and epigenetic variants converge to deregulate developmental networks. Methodology/Principal Findings We selected samples from 95 fetuses with congenital malformations not ascribed to a specific syndrome (68 with isolated malformations, 27 with multiple malformations). Karyotyping and Multiplex Ligation-dependent Probe Amplification (MLPA) discarded recurrent genomic and cytogenetic rearrangements. DNA extracted from the affected tissue (46%) or from lung or liver (54%) was analyzed by molecular karyotyping. Validations and inheritance were obtained by MLPA. We identified 22 rare copy number variants (CNV) [>100 kb, either absent (n = 7) or very uncommon (n = 15, <1/2,000) in the control population] in 20/95 fetuses with congenital malformations (21%), including 11 deletions and 11 duplications. One of the 9 tested rearrangements was de novo while the remaining were inherited from a healthy parent. The highest frequency was observed in fetuses with heart hypoplasia (8/17, 62.5%), with two events previously related with the phenotype. Double events hitting candidate genes were detected in two samples with brain malformations. Globally, the burden of deletions was significantly higher in fetuses with malformations compared to controls. Conclusions/Significance Our data reveal a significant contribution of rare deletion-type CNV, mostly inherited but also de novo, to human congenital malformations, especially heart hypoplasia, and reinforce the hypothesis of a multifactorial etiology in most cases.
Collapse
Affiliation(s)
- Clara Serra-Juhé
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | | | - Ivon Cuscó
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Teresa Vendrell
- Programa de Medicina Molecular i Genètica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Núria Camats
- Servei d'Anatomia Patològica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Núria Torán
- Servei d'Anatomia Patològica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Luis A. Pérez-Jurado
- Unitat de Genètica, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- * E-mail:
| |
Collapse
|
57
|
Yamak A, Temsah R, Maharsy W, Caron S, Paradis P, Aries A, Nemer M. Cyclin D2 rescues size and function of GATA4 haplo-insufficient hearts. Am J Physiol Heart Circ Physiol 2012; 303:H1057-66. [PMID: 22923619 DOI: 10.1152/ajpheart.00250.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor GATA4 is a key regulator of cardiomyocyte growth, and differentiation and 50% reduction in GATA4 levels results in hypoplastic hearts. Search for GATA4 targets/effectors revealed cyclin D(2) (CD2), a member of the D-type cyclins (D(1), D(2), and D(3)) that play a vital role in cell growth and differentiation as a direct transcriptional target and a mediator of GATA4 growth in postnatal cardiomyocytes. GATA4 associates with the CD2 promoter in cardiomyocytes and is sufficient to induce endogenous CD2 transcription and to dose-dependently activate the CD2 promoter in heterologous cells. Cardiomyocyte-specific overexpression of CD2 results in enhanced postnatal cardiac growth because of increased cardiomyocyte proliferation. When these transgenic mice are crossed with Gata4 heterozygote mice, they rescue the hypoplastic cardiac phenotype of Gata4(+/-) mice and enhance cardiomyocyte survival and heart function. The data uncover a role for CD2 in the postnatal heart as an effector of GATA4 in myocyte growth and survival. The finding that postnatal upregulation of a cell-cycle gene in GATA4 haplo-insufficient hearts may be protective opens new avenues for maintaining or restoring cardiac function in GATA4-dependent cardiac disease.
Collapse
Affiliation(s)
- Abir Yamak
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | | | | | | | | | | |
Collapse
|
58
|
Gallagher JM, Komati H, Roy E, Nemer M, Latinkić BV. Dissociation of cardiogenic and postnatal myocardial activities of GATA4. Mol Cell Biol 2012; 32:2214-23. [PMID: 22473995 PMCID: PMC3372269 DOI: 10.1128/mcb.00218-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Transcription factor GATA4 is a critical regulator of the embryonic and postnatal heart, but the mechanisms and cofactors required for its diverse functions are not fully understood. Here, we show that whereas the N-terminal domain of GATA4 is required for inducing cardiogenesis and for promoting postnatal cardiomyocyte survival, distinct residues and domains therein are necessary to mediate these effects. Cardiogenic activity of GATA4 requires a 24-amino-acid (aa) region (aa 129 to 152) which is needed for transcriptional synergy and physical interaction with BAF60c. The same region is not essential for induction of endoderm or blood cell markers by GATA4, suggesting that it acts as a cell-type-specific transcriptional activation domain. On the other hand, a serine residue at position 105, which is a known target for mitogen-activated protein kinase (MAPK) phosphorylation, is necessary for GATA4-dependent cardiac myocyte survival and hypertrophy but is entirely dispensable for GATA4-induced cardiogenesis. We find that S105 is differentially required for transcriptional synergy between GATA4 and serum response factor (SRF) but not other cardiac cofactors such as TBX5 and NKX2.5. The findings provide new insight into GATA4 mechanisms of action and suggest that distinct regulatory pathways regulate activities of GATA4 in embryonic development and postnatal hearts.
Collapse
Affiliation(s)
- Joseph M. Gallagher
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| | - Hiba Komati
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emmanuel Roy
- Graduate Program in Biomedical Sciences, University of Montréal, Montréal, Québec, Canada
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Graduate Program in Biomedical Sciences, University of Montréal, Montréal, Québec, Canada
| | - Branko V. Latinkić
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| |
Collapse
|
59
|
Stephens SH, Franks A, Berger R, Palionyte M, Fingerlin TE, Wagner B, Logel J, Olincy A, Ross RG, Freedman R, Leonard S. Multiple genes in the 15q13-q14 chromosomal region are associated with schizophrenia. Psychiatr Genet 2012; 22:1-14. [PMID: 21970977 PMCID: PMC3878876 DOI: 10.1097/ypg.0b013e32834c0c33] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The chromosomal region, 15q13-q14, including the α7 nicotinic acetylcholine receptor gene, CHRNA7, is a replicated region for schizophrenia. This study fine-mapped genes at 15q13-q14 to determine whether the association is unique to CHRNA7. METHODS Family-based and case-control association studies were performed on Caucasian-non-Hispanic and African-American individuals from 120 families as well as 468 individual patients with schizophrenia and 144 well-characterized controls. Single-nucleotide polymorphism (SNP) markers were genotyped, and association analyses carried out for the outcomes of schizophrenia, smoking, and smoking in schizophrenia. RESULTS Three genes were associated with schizophrenia in both ethnic populations: TRPM1, KLF13, and RYR3. Two SNPs in CHRNA7 were associated with schizophrenia in African-Americans, and a second SNP in CHRNA7 was significant for an association with smoking and smoking in schizophrenia in Caucasians. CONCLUSION Results of these studies support association of the 15q13-q14 region with schizophrenia. The broad positive association suggests that more than one 15q gene may be contributing to the disorder, either in combination or through a regulatory mechanism.
Collapse
Affiliation(s)
- Sarah H. Stephens
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Alexis Franks
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Ralph Berger
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Milda Palionyte
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Tasha E. Fingerlin
- Preventive Medicine and Biometrics, University of Colorado Denver, Denver, Colorado, USA
| | - Brandie Wagner
- Preventive Medicine and Biometrics, University of Colorado Denver, Denver, Colorado, USA
| | - Judith Logel
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Randal G. Ross
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
- Veterans Affairs Medical Research Center, Denver, Colorado, USA
| | - Sherry Leonard
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
- Veterans Affairs Medical Research Center, Denver, Colorado, USA
| |
Collapse
|
60
|
Kitsiou-Tzeli S, Tzetis M, Sofocleous C, Vrettou C, Xaidara A, Giannikou K, Pampanos A, Mavrou A, Kanavakis E. De novo interstitial duplication of the 15q11.2-q14 PWS/AS region of maternal origin: Clinical description, array CGH analysis, and review of the literature. Am J Med Genet A 2010; 152A:1925-32. [PMID: 20575009 DOI: 10.1002/ajmg.a.33447] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The 15q11-q13 PWS/AS critical region involves genes that are characterized by genomic imprinting. Multiple repeat elements within the region mediate rearrangements, including interstitial duplications, interstitial triplications, and supernumerary isodicentric marker chromosomes, as well as the deletions that cause Prader-Willi syndrome (PWS) and Angelman syndrome (AS). Recently, duplications of maternal origin concerning the same critical region have been implicated in autism spectrum disorders (ASD). We present a 6-month-old girl carrying a de novo duplication of maternal origin of the 15q11.2-q14 PWS/AS region (17.73 Mb in size) [46,XX,dup(15)(q11.2-q14)] detected with a high-resolution microarray-based comparative genomic hybridization (array-CGH). The patient is characterized by severe hypotonia, obesity, microstomia, long eyelashes, hirsutism, microretrognathia, short nose, severe psychomotor retardation, and multiple episodes of drug-resistant epileptic seizures, while her brain magnetic resonance imaging (MRI) documented partial corpus callosum dysplasia. In our patient the duplicated region is quite large extending beyond the Prader-Willi-Angelman critical region (PWACR), containing a number of genes that have been shown to be involved in ASD, exhibiting a severe phenotype, beyond the typical PWS/AS clinical manifestations. Reporting of similar well-characterized clinical cases with clearly delineated breakpoints of the duplicated region will clarify the contribution of specific genes to the phenotype.
Collapse
Affiliation(s)
- Sophia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
62
|
Henson BJ, Gollin SM. Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet Genome Res 2010; 128:192-8. [PMID: 20539070 DOI: 10.1159/000308303] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
KLF13 and FGFR3 have important cellular functions and each is believed to play a role in cancer. KLF13 is a transcription factor required for the expression of several oncogenes. FGFR3 is a fibroblast growth factor receptor that initiates a signaling cascade leading to the activation of numerous cellular pathways. Here we show that KLF13 and FGFR3 are overexpressed in oral cancer cells. We also show that artificially reducing cellular levels of KLF13 and FGFR3 decreases cell proliferation and increases sensitivity to ionizing radiation. These data suggest that KLF13 and FGFR3 contribute to malignancy in oral cancer cells and may be useful biomarkers for early detection and possible targets for therapy.
Collapse
Affiliation(s)
- B J Henson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
63
|
|
64
|
Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 2009; 120:254-65. [PMID: 20038803 DOI: 10.1172/jci40295] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/21/2009] [Indexed: 12/28/2022] Open
Abstract
Fibroblasts, which are the most numerous cell type in the heart, interact with cardiomyocytes in vitro and affect their function; however, they are considered to play a secondary role in cardiac hypertrophy and failure. Here we have shown that cardiac fibroblasts are essential for the protective and hypertrophic myocardial responses to pressure overload in vivo in mice. Haploinsufficiency of the transcription factor-encoding gene Krüppel-like factor 5 (Klf5) suppressed cardiac fibrosis and hypertrophy elicited by moderate-intensity pressure overload, whereas cardiomyocyte-specific Klf5 deletion did not alter the hypertrophic responses. By contrast, cardiac fibroblast-specific Klf5 deletion ameliorated cardiac hypertrophy and fibrosis, indicating that KLF5 in fibroblasts is important for the response to pressure overload and that cardiac fibroblasts are required for cardiomyocyte hypertrophy. High-intensity pressure overload caused severe heart failure and early death in mice with Klf5-null fibroblasts. KLF5 transactivated Igf1 in cardiac fibroblasts, and IGF-1 subsequently acted in a paracrine fashion to induce hypertrophic responses in cardiomyocytes. Igf1 induction was essential for cardioprotective responses, as administration of a peptide inhibitor of IGF-1 severely exacerbated heart failure induced by high-intensity pressure overload. Thus, cardiac fibroblasts play a pivotal role in the myocardial adaptive response to pressure overload, and this role is partly controlled by KLF5. Modulation of cardiac fibroblast function may provide a novel strategy for treating heart failure, with KLF5 serving as an attractive target.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Henson BJ, Bhattacharjee S, O'Dee DM, Feingold E, Gollin SM. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 2009; 48:569-82. [PMID: 19396866 DOI: 10.1002/gcc.20666] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Altered microRNA (miRNA) expression profiles have been observed in numerous malignancies, including oral squamous cell carcinoma (OSCC). However, their role in disease is not entirely clear. Several genetic aberrations are characteristic of OSCC, with amplification of chromosomal band 11q13 and loss of distal 11q being among the most prevalent. It is not known if the expression levels of miRNAs in these regions are altered or whether they play a role in disease. We hypothesize that the expression of miRNAs mapping to 11q are altered in OSCC because of loss or amplification of chromosomal material, and that this contributes to the development and progression of OSCC. We found that miR-125b and miR-100 are down-regulated in OSCC tumor and cell lines, and that transfecting cells with exogenous miR-125b and miR-100 significantly reduced cell proliferation and modified the expression of target and nontarget genes, including some that are overexpressed in radioresistant OSCC cells. In conclusion, the down-regulation of miR-125b and miR-100 in OSCC appears to play an important role in the development and/or progression of disease and may contribute to the loss of sensitivity to ionizing radiation.
Collapse
Affiliation(s)
- Brian J Henson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
66
|
van Bon BWM, Mefford HC, Menten B, Koolen DA, Sharp AJ, Nillesen WM, Innis JW, de Ravel TJL, Mercer CL, Fichera M, Stewart H, Connell LE, Ounap K, Lachlan K, Castle B, Van der Aa N, van Ravenswaaij C, Nobrega MA, Serra-Juhé C, Simonic I, de Leeuw N, Pfundt R, Bongers EM, Baker C, Finnemore P, Huang S, Maloney VK, Crolla JA, van Kalmthout M, Elia M, Vandeweyer G, Fryns JP, Janssens S, Foulds N, Reitano S, Smith K, Parkel S, Loeys B, Woods CG, Oostra A, Speleman F, Pereira AC, Kurg A, Willatt L, Knight SJL, Vermeesch JR, Romano C, Barber JC, Mortier G, Pérez-Jurado LA, Kooy F, Brunner HG, Eichler EE, Kleefstra T, de Vries BBA. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet 2009; 46:511-23. [PMID: 19372089 PMCID: PMC3395372 DOI: 10.1136/jmg.2008.063412] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. METHODS To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. RESULTS The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. CONCLUSIONS Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.
Collapse
Affiliation(s)
- B W M van Bon
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
|
68
|
Gordon AR, Outram SV, Keramatipour M, Goddard CA, Colledge WH, Metcalfe JC, Hager-Theodorides AL, Crompton T, Kemp PR. Splenomegaly and Modified Erythropoiesis in KLF13–/– Mice. J Biol Chem 2008; 283:11897-904. [DOI: 10.1074/jbc.m709569200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
69
|
Hepatocyte nuclear factor 4alpha contributes to thyroid hormone homeostasis by cooperatively regulating the type 1 iodothyronine deiodinase gene with GATA4 and Kruppel-like transcription factor 9. Mol Cell Biol 2008; 28:3917-31. [PMID: 18426912 DOI: 10.1128/mcb.02154-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4alpha (HNF4alpha)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4alpha-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4alpha plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4alpha site (direct repeat 1 [TGGACAAAGGTGC]; HNF4alpha-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4alpha. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4alpha-RE. Furthermore, KLF9 functions together with HNF4alpha and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4alpha and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4alpha regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9.
Collapse
|
70
|
Distinct expression and function of alternatively spliced Tbx5 isoforms in cell growth and differentiation. Mol Cell Biol 2008; 28:4052-67. [PMID: 18391012 DOI: 10.1128/mcb.02100-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations in the T-box transcription factor Tbx5 cause Holt-Oram syndrome, an autosomal dominant disease characterized by a wide spectrum of cardiac and upper limb defects with variable expressivity. Tbx5 haploinsufficiency has been suggested to be the underlying mechanism, and experimental models are consistent with a dosage-sensitive requirement for Tbx5 in heart development. Here, we report that Tbx5 levels are regulated through alternative splicing that generates, in addition to the known 518-amino-acid protein, a C-terminal truncated isoform. This shorter isoform retains the capacity to bind DNA, but its interaction with Tbx5 collaborators such as GATA-4 is altered. In vivo, the two spliced isoforms are oppositely regulated in a temporal and growth factor-dependent manner and are present in distinct DNA-binding complexes. The expression of the long isoform correlates with growth stimulation, and its reexpression in postnatal transgenic mouse hearts promotes hypertrophy. Conversely, the upregulation of the short but not the long isoform in C2C12 myoblasts leads to growth arrest and cell death. The results provide novel insight into posttranscriptional Tbx5 regulation and point to an important role not only in cell differentiation but also in cell proliferation and organ growth. The data may help analyze genotype-phenotype relations in patients with Holt-Oram syndrome.
Collapse
|
71
|
Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1229-36. [PMID: 18406357 PMCID: PMC2396231 DOI: 10.1016/j.bbamcr.2008.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/03/2023]
Abstract
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (4th Floor), Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
72
|
Haldar SM, Ibrahim OA, Jain MK. Kruppel-like Factors (KLFs) in muscle biology. J Mol Cell Cardiol 2007; 43:1-10. [PMID: 17531262 PMCID: PMC2743293 DOI: 10.1016/j.yjmcc.2007.04.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
The Kruppel-like Factor (KLF) family of zinc-finger transcription factors are critical regulators of cell differentiation, phenotypic modulation and physiologic function. An emerging body of evidence implicates an important role for these factors in cardiovascular biology, however, the role of KLFs in muscle biology is only beginning to be understood. This article reviews the published data describing the role of KLFs in the heart, smooth muscle, and skeletal muscle and highlights the importance of these factors in cardiovascular development, physiology and disease pathobiology.
Collapse
Affiliation(s)
| | | | - Mukesh K. Jain
- Address correspondence to: Mukesh K. Jain M.D., Case Cardiovascular Research Institute, Case Medical School and Cardiovascular Division, University Hospitals of Cleveland, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106. ; Tel: (216) 368-3609, Fax: (216) 368-0556
| |
Collapse
|