51
|
Collart P, Dramaix M, Levêque A, Coppieters Y. Short-term effects of air pollution on hospitalization for acute myocardial infarction: age effect on lag pattern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:68-81. [PMID: 28002975 DOI: 10.1080/09603123.2016.1268678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study is to analyse the age effect on the lag patterns of relative risk of hospitalization for acute myocardial infarction and NO2, PM10 and O3. Daily hospitalizations for AMI during the period 2008-2011 were extracted from administrative data. Analyses were performed using the quasi-Poisson regression model adjusted for seasonality, long-term trend, day of the week and temperature. We observed very different patterns depending on age. For NO2 and PM10, the younger group (25-54 years) shows a more delayed effect in comparison with the two older age groups (55-64 and ≥ 65 years). Overall, the associations between NO2 and AMI are higher compared to PM10. There are no associations between O3 and AMI. This study indicates that age plays a major role in the lag pattern. Younger people have delayed effects, but they are nevertheless sensitive to air pollution.
Collapse
Affiliation(s)
- Philippe Collart
- a Research Center in Epidemiology, Biostatistics and Clinical Trials, School of Public Health, Université Libre de Bruxelles (ULB) , Route de Lennik 808, 1070 Brussels, Belgium
| | - Michele Dramaix
- a Research Center in Epidemiology, Biostatistics and Clinical Trials, School of Public Health, Université Libre de Bruxelles (ULB) , Route de Lennik 808, 1070 Brussels, Belgium
| | - Alain Levêque
- a Research Center in Epidemiology, Biostatistics and Clinical Trials, School of Public Health, Université Libre de Bruxelles (ULB) , Route de Lennik 808, 1070 Brussels, Belgium
| | - Yves Coppieters
- a Research Center in Epidemiology, Biostatistics and Clinical Trials, School of Public Health, Université Libre de Bruxelles (ULB) , Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
52
|
Luo K, Li R, Li W, Wang Z, Ma X, Zhang R, Fang X, Wu Z, Cao Y, Xu Q. Acute Effects of Nitrogen Dioxide on Cardiovascular Mortality in Beijing: An Exploration of Spatial Heterogeneity and the District-specific Predictors. Sci Rep 2016; 6:38328. [PMID: 27910959 PMCID: PMC5133577 DOI: 10.1038/srep38328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/08/2016] [Indexed: 01/04/2023] Open
Abstract
The exploration of spatial variation and predictors of the effects of nitrogen dioxide (NO2) on fatal health outcomes is still sparse. In a multilevel case-crossover study in Beijing, China, we used mixed Cox proportional hazard model to examine the citywide effects and conditional logistic regression to evaluate the district-specific effects of NO2 on cardiovascular mortality. District-specific predictors that could be related to the spatial pattern of NO2 effects were examined by robust regression models. We found that a 10 μg/m3 increase in daily mean NO2 concentration was associated with a 1.89% [95% confidence interval (CI): 1.33–2.45%], 2.07% (95% CI: 1.23–2.91%) and 1.95% (95% CI: 1.16–2.72%) increase in daily total cardiovascular (lag03), cerebrovascular (lag03) and ischemic heart disease (lag02) mortality, respectively. For spatial variation of NO2 effects across 16 districts, significant effects were only observed in 5, 4 and 2 districts for the above three outcomes, respectively. Generally, NO2 was likely having greater adverse effects on districts with larger population, higher consumption of coal and more civilian vehicles. Our results suggested independent and spatially varied effects of NO2 on total and subcategory cardiovascular mortalities. The identification of districts with higher risk can provide important insights for reducing NO2 related health hazards.
Collapse
Affiliation(s)
- Kai Luo
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.,Centre of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Wenjing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.,Centre of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Zongshuang Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinming Ma
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.,Centre of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ruiming Zhang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.,Centre of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xin Fang
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Zhenglai Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.,Centre of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yang Cao
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden.,Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro 70185, Sweden
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.,Centre of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
53
|
Mills IC, Atkinson RW, Anderson HR, Maynard RL, Strachan DP. Distinguishing the associations between daily mortality and hospital admissions and nitrogen dioxide from those of particulate matter: a systematic review and meta-analysis. BMJ Open 2016; 6:e010751. [PMID: 27443553 PMCID: PMC4964176 DOI: 10.1136/bmjopen-2015-010751] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES To quantitatively assess time-series studies of daily nitrogen dioxide (NO2) and mortality and hospital admissions which also controlled for particulate matter (PM) to determine whether or to what extent the NO2 associations are independent of PM. DESIGN A systematic review and meta-analysis. METHODS Time-series studies-published in peer-reviewed journals worldwide, up to May 2011-that reported both single-pollutant and two-pollutant model estimates for NO2 and PM were ascertained from bibliographic databases (PubMed, EMBASE and Web of Science) and reviews. Random-effects summary estimates were calculated globally and stratified by different geographical regions, and effect modification was investigated. OUTCOME MEASURES Mortality and hospital admissions for various cardiovascular or respiratory diseases in different age groups in the general population. RESULTS 60 eligible studies were identified, and meta-analysis was conducted on 23 outcomes. Two-pollutant model study estimates generally showed that the NO2 associations were independent of PM mass. For all-cause mortality, a 10 µg/m(3) increase in 24-hour NO2 was associated with a 0.78% (95% CI 0.47% to 1.09%) increase in the risk of death, which reduced to 0.60% (0.33% to 0.87%) after control for PM. Heterogeneity between geographical region-specific estimates was removed by control for PM (I(2) from 66.9% to 0%). Estimates of PM and daily mortality assembled from the same studies were greatly attenuated after control for NO2: from 0.51% (0.29% to 0.74%) to 0.18% (-0.11% to 0.47%) per 10 µg/m(3) PM10 and 0.74% (0.34% to 1.14%) to 0.54% (-0.25% to 1.34%) for PM2.5. CONCLUSIONS The association between short-term exposure to NO2 and adverse health outcomes is largely independent of PM mass. Further studies should attempt to investigate whether this is a generic PM effect or whether it is modified by the source and physicochemical characteristics of PM. This finding strengthens the argument for NO2 having a causal role in health effects.
Collapse
Affiliation(s)
- I C Mills
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - R W Atkinson
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK
| | - H R Anderson
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK
- MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | | | - D P Strachan
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK
| |
Collapse
|
54
|
Stanišić Stojić S, Stanišić N, Stojić A. Temperature-related mortality estimates after accounting for the cumulative effects of air pollution in an urban area. Environ Health 2016; 15:73. [PMID: 27401549 PMCID: PMC4940758 DOI: 10.1186/s12940-016-0164-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/30/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND To propose a new method for including the cumulative mid-term effects of air pollution in the traditional Poisson regression model and compare the temperature-related mortality risk estimates, before and after including air pollution data. RESULTS The analysis comprised a total of 56,920 residents aged 65 years or older who died from circulatory and respiratory diseases in Belgrade, Serbia, and daily mean PM10, NO2, SO2 and soot concentrations obtained for the period 2009-2014. After accounting for the cumulative effects of air pollutants, the risk associated with cold temperatures was significantly lower and the overall temperature-attributable risk decreased from 8.80 to 3.00 %. Furthermore, the optimum range of temperature, within which no excess temperature-related mortality is expected to occur, was very broad, between -5 and 21 °C, which differs from the previous findings that most of the attributable deaths were associated with mild temperatures. CONCLUSIONS These results suggest that, in polluted areas of developing countries, most of the mortality risk, previously attributed to cold temperatures, can be explained by the mid-term effects of air pollution. The results also showed that the estimated relative importance of PM10 was the smallest of four examined pollutant species, and thus, including PM10 data only is clearly not the most effective way to control for the effects of air pollution.
Collapse
Affiliation(s)
- Svetlana Stanišić Stojić
- />Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | | | - Andreja Stojić
- />Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
55
|
Jandarov RA, Sheppard LA, Sampson PD, Szpiro AA. A novel principal component analysis for spatially misaligned multivariate air pollution data. J R Stat Soc Ser C Appl Stat 2016; 66:3-28. [PMID: 28239196 DOI: 10.1111/rssc.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.
Collapse
|
56
|
Geddes JA, Martin RV, Boys BL, van Donkelaar A. Long-Term Trends Worldwide in Ambient NO2 Concentrations Inferred from Satellite Observations. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:281-9. [PMID: 26241114 PMCID: PMC4786989 DOI: 10.1289/ehp.1409567] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/29/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Air pollution is associated with morbidity and premature mortality. Satellite remote sensing provides globally consistent decadal-scale observations of ambient nitrogen dioxide (NO2) pollution. OBJECTIVE We determined global population-weighted annual mean NO2 concentrations from 1996 through 2012. METHODS We used observations of NO2 tropospheric column densities from three satellite instruments in combination with chemical transport modeling to produce a global 17-year record of ground-level NO2 at 0.1° × 0.1° resolution. We calculated linear trends in population-weighted annual mean NO2 (PWMNO2) concentrations in different regions around the world. RESULTS We found that PWMNO2 in high-income North America (Canada and the United States) decreased more steeply than in any other region, having declined at a rate of -4.7%/year [95% confidence interval (CI): -5.3, -4.1]. PWMNO2 decreased in western Europe at a rate of -2.5%/year (95% CI: -3.0, -2.1). The highest PWMNO2 occurred in high-income Asia Pacific (predominantly Japan and South Korea) in 1996, with a subsequent decrease of -2.1%/year (95% CI: -2.7, -1.5). In contrast, PWMNO2 almost tripled in East Asia (China, North Korea, and Taiwan) at a rate of 6.7%/year (95% CI: 6.0, 7.3). The satellite-derived estimates of trends in ground-level NO2 were consistent with regional trends inferred from data obtained from ground-station monitoring networks in North America (within 0.7%/year) and Europe (within 0.3%/year). Our rankings of regional average NO2 and long-term trends differed from the satellite-derived estimates of fine particulate matter reported elsewhere, demonstrating the utility of both indicators to describe changing pollutant mixtures. CONCLUSIONS Long-term trends in satellite-derived ambient NO2 provide new information about changing global exposure to ambient air pollution. Our estimates are publicly available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=232.
Collapse
Affiliation(s)
- Jeffrey A. Geddes
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Address correspondence to J.A. Geddes, Department of Physics and Atmospheric Science, Dalhousie University, Box 15000, Halifax, NS, B3H 4R2 Canada. Telephone: 1 (902) 494-4261. E-mail:
| | - Randall V. Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Brian L. Boys
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
57
|
Wang B, Chen Z. High-resolution satellite-based analysis of ground-level PM2.5 for the city of Montreal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1059-1069. [PMID: 26473708 DOI: 10.1016/j.scitotenv.2015.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/21/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Satellite remote sensing offers the opportunity to determine the spatial distribution of aerosol properties and could fill the gap of ground-level observations. Various algorithms have recently been developed in order to retrieve the aerosol optical depth (AOD) at continental scales. However, they are, to some extent, subject to coarse spatial resolutions which are not appropriate for intraurban scales as usually needed in health studies. This paper presents an improved AOD retrieval algorithm for satellite instrument MODIS at 1-km resolution for intraurban scales. The MODIS-retrieved AODs are used to derive the ground-level PM2.5 concentrations using the aerosol vertical profiles and local scale factors obtained from the GEOS-Chem model simulation. The developed method has been applied to retrieve the AODs and to evaluate the ground-level PM2.5 over the city of Montreal, Canada for 2009 on daily, monthly and annual scales. The daily and monthly results are compared with the monitoring values with correlations R(2) ranging from 0.86 to 0.93. Especially, the annual mean PM2.5 concentrations are in good agreement with the measurement values at all monitoring stations (r=0.96, slope=1.0132 ± 0.0025, intercept=0.5739 ± 0.0013). This illustrates that the developed AOD retrieval algorithm can be used to retrieve AODs at a higher spatial resolution than previous studies to further derive the regional full coverage PM2.5 results at finer spatial and temporal scales. The study results are useful in health risk assessment across this region.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada.
| |
Collapse
|
58
|
Stojić SS, Stanišić N, Stojić A, Šoštarić A. Single and combined effects of air pollutants on circulatory and respiratory system-related mortality in Belgrade, Serbia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:17-27. [PMID: 26699658 DOI: 10.1080/15287394.2015.1101407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The aim of this study was to investigate the association between short- and long-term exposure to particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and soot and mortality attributed to circulatory and respiratory diseases in Belgrade area (Serbia). The analyzed data set comprised results of regular pollutant monitoring and corresponding administrative records on frequency of daily mortality in the period 2009-2014. Nonlinear exposure-response dependencies and delayed effects of temperature were examined by means of distributed lag nonlinear models. The air pollutant loadings and circulatory system-related death rates in Belgrade area are among the highest in Europe. Data demonstrated that excess risk of death with short-term exposure to elevated concentrations of PM10, SO2, and soot was not significant, whereas marked effect size estimates for exposure over 90 d preceding mortality were found. The influence of chronic exposure was shown to be greater for respiratory than circulatory system-related mortality. When stratified by age and gender, higher risk was noted for male individuals below the age of 65 years.
Collapse
Affiliation(s)
| | | | - Andreja Stojić
- c Institute of Physics Belgrade, University of Belgrade , Belgrade , Serbia
| | | |
Collapse
|
59
|
Hamra GB, Laden F, Cohen AJ, Raaschou-Nielsen O, Brauer M, Loomis D. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1107-12. [PMID: 25870974 PMCID: PMC4629738 DOI: 10.1289/ehp.1408882] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 04/09/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND OBJECTIVE Exposure to traffic-related air pollutants is an important public health issue. Here, we present a systematic review and meta-analysis of research examining the relationship of measures of nitrogen oxides (NOx) and of various measures of traffic-related air pollution exposure with lung cancer. METHODS We conducted random-effects meta-analyses of studies examining exposure to nitrogen dioxide (NO2) and NOx and its association with lung cancer. We identified 20 studies that met inclusion criteria and provided information necessary to estimate the change in lung cancer per 10-μg/m3 increase in exposure to measured NO2. Further, we qualitatively assessed the evidence of association between distance to roadways and traffic volume associated with lung cancer. RESULTS The meta-estimate for the change in lung cancer associated with a 10-μg/m3 increase in exposure to NO2 was 4% (95% CI: 1%, 8%). The meta-estimate for change in lung cancer associated with a 10-μg/m3 increase in NOx was similar and slightly more precise, 3% (95% CI: 1%, 5%). The NO2 meta-estimate was robust to different confounding adjustment sets as well as the exposure assessment techniques used. Trim-and-fill analyses suggest that if publication bias exists, the overall meta-estimate is biased away from the null. Forest plots for measures of traffic volume and distance to roadways largely suggest a modest increase in lung cancer risk. CONCLUSION We found consistent evidence of a relationship between NO2, as a proxy for traffic-sourced air pollution exposure, with lung cancer. Studies of lung cancer related to residential proximity to roadways and NOx also suggest increased risk, which may be attributable partly to air pollution exposure. The International Agency for Research on Cancer recently classified outdoor air pollution and particulate matter as carcinogenic (Group 1). These meta-analyses support this conclusion, drawing particular attention to traffic-sourced air pollution. CITATION Hamra GB, Laden F, Cohen AJ, Raaschou-Nielsen O, Brauer M, Loomis D. 2015. Lung cancer and exposure to nitrogen dioxide and traffic: a systematic review and meta-analysis. Environ Health Perspect 123:1107-1112; http://dx.doi.org/10.1289/ehp.1408882.
Collapse
Affiliation(s)
- Ghassan B Hamra
- Department of Environmental and Occupational Health, Drexel University School of Public Health, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
60
|
Bechle MJ, Millet DB, Marshall JD. National Spatiotemporal Exposure Surface for NO2: Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000-2010. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12297-305. [PMID: 26397123 DOI: 10.1021/acs.est.5b02882] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Land-use regression (LUR) is widely used for estimating within-urban variability in air pollution. While LUR has recently been extended to national and continental scales, these models are typically for long-term averages. Here we present NO2 surfaces for the continental United States with excellent spatial resolution (∼100 m) and monthly average concentrations for one decade. We investigate multiple potential data sources (e.g., satellite column and surface estimates, high- and standard-resolution satellite data, and a mechanistic model [WRF-Chem]), approaches to model building (e.g., one model for the whole country versus having separate models for urban and rural areas, monthly LURs versus temporal scaling of a spatial LUR), and spatial interpolation methods for temporal scaling factors (e.g., kriging versus inverse distance weighted). Our core approach uses NO2 measurements from U.S. EPA monitors (2000-2010) to build a spatial LUR and to calculate spatially varying temporal scaling factors. The model captures 82% of the spatial and 76% of the temporal variability (population-weighted average) of monthly mean NO2 concentrations from U.S. EPA monitors with low average bias (21%) and error (2.4 ppb). Model performance in absolute terms is similar near versus far from monitors, and in urban, suburban, and rural locations (mean absolute error 2-3 ppb); since low-density locations generally experience lower concentrations, model performance in relative terms is better near monitors than far from monitors (mean bias 3% versus 40%) and is better for urban and suburban locations (1-6%) than for rural locations (78%, reflecting the relatively clean conditions in many rural areas). During 2000-2010, population-weighted mean NO2 exposure decreased 42% (1.0 ppb [∼5.2%] per year), from 23.2 ppb (year 2000) to 13.5 ppb (year 2010). We apply our approach to all U.S. Census blocks in the contiguous United States to provide 132 months of publicly available, high-resolution NO2 concentration estimates.
Collapse
Affiliation(s)
- Matthew J Bechle
- Department of Civil, Environmental, and Geo- Engineering and ‡Department of Soil, Water, and Climate, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Dylan B Millet
- Department of Civil, Environmental, and Geo- Engineering and ‡Department of Soil, Water, and Climate, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Julian D Marshall
- Department of Civil, Environmental, and Geo- Engineering and ‡Department of Soil, Water, and Climate, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
61
|
Mills IC, Atkinson RW, Kang S, Walton H, Anderson HR. Quantitative systematic review of the associations between short-term exposure to nitrogen dioxide and mortality and hospital admissions. BMJ Open 2015; 5:e006946. [PMID: 25967992 PMCID: PMC4452753 DOI: 10.1136/bmjopen-2014-006946] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Short-term exposure to NO₂ has been associated with adverse health effects and there is increasing concern that NO₂ is causally related to health effects, not merely a marker of traffic-generated pollution. No comprehensive meta-analysis of the time-series evidence on NO₂ has been published since 2007. OBJECTIVE To quantitatively assess the evidence from epidemiological time-series studies published worldwide to determine whether and to what extent short-term exposure to NO₂ is associated with increased numbers of daily deaths and hospital admissions. DESIGN We conducted a quantitative systematic review of 204 time-series studies of NO₂ and daily mortality and hospital admissions for several diagnoses and ages, which were indexed in three bibliographic databases up to May 2011. We calculated random-effects estimates by different geographic regions and globally, and also tested for heterogeneity and small study bias. RESULTS Sufficient estimates for meta-analysis were available for 43 cause-specific and age-specific combinations of mortality or hospital admissions (25 for 24 h NO₂ and 18 of the same combinations for 1 h measures). For the all-age group, a 10 µg/m(3) increase in 24 h NO₂ was associated with increases in all-cause, cardiovascular and respiratory mortality (0.71% (95% CI 0.43% to 1.00%), 0.88% (0.63% to 1.13%) and 1.09% (0.75% to 1.42%), respectively), and with hospital admissions for respiratory (0.57% (0.33% to 0.82%)) and cardiovascular (0.66% (0.32% to 1.01%)) diseases. Evidence of heterogeneity between geographical region-specific estimates was identified in more than half of the combinations analysed. CONCLUSIONS Our review provides clear evidence of health effects associated with short-term exposure to NO₂ although further work is required to understand reasons for the regional heterogeneity observed. The growing literature, incorporating large multicentre studies and new evidence from less well-studied regions of the world, supports further quantitative review to assess the independence of NO₂ health effects from other air pollutants.
Collapse
Affiliation(s)
- I C Mills
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - R W Atkinson
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK
| | - S Kang
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK
| | - H Walton
- MRC-PHE Centre for Environment and Health, King's College London, London, UK NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK NIHR Health Protection Research Unit on Environmental Hazards at King's College London in partnership with Public Health England, London, UK
| | - H R Anderson
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK MRC-PHE Centre for Environment and Health, King's College London, London, UK
| |
Collapse
|
62
|
Wilson WE. The relationship between daily cardiovascular mortality and daily ambient concentrations of particulate pollutants (sulfur, arsenic, selenium, and mercury) and daily source contributions from coal power plants and smelters (individually, combined, and with interaction) in Phoenix, AZ, 1995-1998: A multipollutant approach to acute, time-series air pollution epidemiology: I. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:599-610. [PMID: 25947318 DOI: 10.1080/10962247.2015.1033067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED The objective of this paper is to estimate the increase in risk of daily cardiovascular mortality due to an increase in the daily ambient concentration of the individual particulate pollutants sulfur (S), arsenic (As), selenium (Se), and mercury (Hg) using single-pollutant models (SPMs) and to compare this risk to the combined increase in risk due to an increase in all four pollutants by including all four pollutants in the same model (multipollutant model, MPM) and to the risks from source contributions from power plants and smelters. Individual betas in a multipollutant model (MPM) were summed to give a combined beta. Interaction was investigated with a pollutant product term. SPMs (controlling for time trends, temperature, and relative humidity), for an interquartile range (IQR) increase in the pollutant concentration on lag day 0, gave these percent excess risks (±95% confidence levels): S, 6.9% (1.3-12%); As, 2.9% (0.4-5.5%); Se, 1.4% (-1.7 to 4.6); Hg, 9.6% (4.8-14.6%). The SPM beta for S (as sulfate) was higher than found in other studies. The SPM beta for Hg gave the largest t-statistic and beta per unit mass of any pollutant studied. An (IQR) increase in all four pollutants gave an excess risk of 15.4% (7.5-23.8%), slightly smaller than the combination of S and Hg, 16.7% (9.1-24.9%). The combined beta was 71% of the sum of the four individual SPM betas, indicating a reduction in confounding among pollutants in the combined model. As and Se were shown to be noncausal; their SPM betas could be explained as confounding by S. IMPLICATIONS The combined effect of several pollutants can be estimated by including the appropriate pollutants in the same statistical model, summing their individual betas to give a combined beta, and using a variance-covariance matrix to obtain the standard error. This approach identifies and reduces confounding among the species in the multipollutant model and can be used to identify confounded species that have no independent relationship with mortality. The effect of several pollutants acting together may be higher than that of one pollutant. Further work is needed to understand the strong relationship of mortality with particulate mercury and sulfate.
Collapse
|
63
|
Rengaraj D, Kwon WS, Pang MG. Effects of motor vehicle exhaust on male reproductive function and associated proteins. J Proteome Res 2014; 14:22-37. [PMID: 25329744 DOI: 10.1021/pr500939c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Air pollution is consistently associated with various diseases and subsequent death among children, adult, and elderly people worldwide. Motor vehicle exhaust contributes to a large proportion of the air pollution present. The motor vehicle exhaust systems emit a variety of toxic components, including carbon monoxide, nitrogen oxides, volatile organic compounds, ozone, particulate matter, and polycyclic aromatic hydrocarbons. Several epidemiological studies and laboratory studies have demonstrated that these components are potentially mutagenic, carcinogenic, and endocrine disrupting agents. However, their impact on male reproductive function and associated proteins is not very clear. Therefore, a comprehensive review on the effects of motor vehicle exhaust on male reproductive function and associated proteins is needed to better understand the risks of exhaust exposure for men. We found that motor vehicle exhaust can cause harmful effects on male reproductive functions by altering organ weights, reducing the spermatozoa qualities, and inducing oxidative stress. Remarkably, motor vehicle exhaust exposure causes significant changes in the expression patterns of proteins that are key components involved in spermatogenesis and testosterone synthesis. In conclusion, this review helps to describe the risks of vehicle exhaust exposure and its relationship to potential adverse effects on the male reproduction system.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science & Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | | | | |
Collapse
|
64
|
Oakes M, Baxter L, Long TC. Evaluating the application of multipollutant exposure metrics in air pollution health studies. ENVIRONMENT INTERNATIONAL 2014; 69:90-9. [PMID: 24815342 DOI: 10.1016/j.envint.2014.03.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Health effects associated with air pollution are typically evaluated using a single pollutant approach, yet people are exposed to mixtures consisting of multiple pollutants that may have independent or combined effects on human health. Development of exposure metrics that represent the multipollutant environment is important to understand the impact of ambient air pollution on human health. OBJECTIVES We reviewed existing multipollutant exposure metrics to evaluate how they can be applied to understand associations between air pollution and health effects. METHODS We conducted a literature search using both targeted search terms and a relational search in Web of Science and PubMed in April and December 2013. We focused on exposure metrics that are constructed from ambient pollutant concentrations and can be broadly applied to evaluate air pollution health effects. RESULTS Multipollutant exposure metrics were identified in 57 eligible studies. Metrics reviewed can be categorized into broad pollutant grouping paradigms based on: 1) source emissions and atmospheric processes or 2) common health outcomes. DISCUSSION When comparing metrics, it is apparent that no universal exposure metric exists; each type of metric addresses different research questions and provides unique information on human health effects. Key limitations of these metrics include the balance between complexity and simplicity as well as the lack of an existing "gold standard" for multipollutant health effects and exposure. CONCLUSIONS Future work on characterizing multipollutant exposure error and joint effects will inform development of improved multipollutant metrics to advance air pollution health effects research and human health risk assessment.
Collapse
Affiliation(s)
- Michelle Oakes
- Oak Ridge Institute for Science and Education, Oak Ridge National Laboratories, Oak Ridge, TN, United States; United States Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park, NC, United States
| | - Lisa Baxter
- United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - Thomas C Long
- United States Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park, NC, United States
| |
Collapse
|
65
|
Vutcovici M, Goldberg MS, Valois MF. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Québec, 1984-2007. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2014; 58:843-852. [PMID: 23609901 DOI: 10.1007/s00484-013-0664-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 03/10/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
The association between ambient temperature and mortality has been studied extensively. Recent data suggest an independent role of diurnal temperature variations in increasing daily mortality. Elderly adults-a growing subgroup of the population in developed countries-may be more susceptible to the effects of temperature variations. The aim of this study was to determine whether variations in diurnal temperature were associated with daily non-accidental mortality among residents of Montreal, Québec, who were 65 years of age and over during the period between 1984 and 2007. We used distributed lag non-linear Poisson models constrained over a 30-day lag period, adjusted for temporal trends, mean daily temperature, and mean daily concentrations of nitrogen dioxide and ozone to estimate changes in daily mortality with diurnal temperature. We found, over the 30 day lag period, a cumulative increase in daily mortality of 5.12% [95% confidence interval (CI): 0.02-10.49%] for a change from 5.9 °C to 11.1 °C (25th to 75th percentiles) in diurnal temperature, and a 11.27% (95%CI: 2.08-21.29%) increase in mortality associated with an increase of diurnal temperature from 11.1 to 17.5 °C (75th to 99th percentiles). The results were relatively robust to adjustment for daily mean temperature. We found that, in Montreal, diurnal variations in temperature are associated with a small increase in non-accidental mortality among the elderly population. More studies are needed in different geographical locations to confirm this effect.
Collapse
Affiliation(s)
- Maria Vutcovici
- Division of Gastroenterology, McGill University Health Center, Royal Victoria Hospital, 687 Pine Avenue West, RVH, Pavilion Ross R4.32, Montreal, Québec, H3A 1A1, Canada,
| | | | | |
Collapse
|
66
|
Weichenthal S, Farrell W, Goldberg M, Joseph L, Hatzopoulou M. Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations. ENVIRONMENTAL RESEARCH 2014; 132:305-10. [PMID: 24834826 DOI: 10.1016/j.envres.2014.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Increasing evidence suggests that ultrafine particles (UFPs) may contribute to cardiorespiratory morbidity. We examined the relationship between near road UFPs and several traffic and built environment factors to identify predictors that may be used to estimate exposures in population-based studies. Black carbon (BC) was also examined. METHODS Data were collected on up to 6 occasions at 73 sites in Montreal, Canada over 6-week period during summer, 2012. After excluding highly correlated variables, road width, truck ratio (trucks/total traffic), building height, land zoning parameters, and meteorological factors were evaluated. Random-effect models were used to estimate percent changes in UFP and BC concentrations with interquartile changes in each candidate predictor adjusted for meteorological factors. RESULTS Mean pollutant concentrations varied substantially across sites (UFP range: 1977-94, 798 particles/cm(3); BC range: 29-9460 ng/m(3)). After adjusting for meteorology, interquartile increases in road width (14%, 95% CI: 0, 30), building height (13%, 95% CI: 5, 22), and truck ratio (13%, 95% CI: 3, 23) were the most important predictors of mean UFP concentrations. Road width (28%, 95% CI: 9, 51) and industrial zoning (18%, 95% CI: 2, 37) were the strongest predictors of maximum UFP concentrations. Industrial zoning (35%, 95% CI: 9, 67) was the strongest predictor of BC. CONCLUSIONS A number of traffic and built environmental factors were identified as important predictors of near road UFP and BC concentrations. Exposure models incorporating these factors may be useful in evaluating the health effects of traffic related air pollution.
Collapse
Affiliation(s)
- Scott Weichenthal
- Air Health Science Division, Health Canada, 269 Laurier Ave West, Ottawa, Ontario, Canada K1A 0K9.
| | - William Farrell
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C3.
| | - Mark Goldberg
- Division of Clinical Epidemiology, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | - Lawrence Joseph
- Division of Clinical Epidemiology, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | - Marianne Hatzopoulou
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C3.
| |
Collapse
|
67
|
Vanos JK, Cakmak S, Kalkstein LS, Yagouti A. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities. AIR QUALITY, ATMOSPHERE, & HEALTH 2014; 8:307-320. [PMID: 26052369 PMCID: PMC4449933 DOI: 10.1007/s11869-014-0266-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 04/30/2014] [Indexed: 05/03/2023]
Abstract
It has been well established that both meteorological attributes and air pollution concentrations affect human health outcomes. We examined all cause nonaccident mortality relationships for 28 years (1981-2008) in relation to air pollution and synoptic weather type (encompassing air mass) data in 12 Canadian cities. This study first determines the likelihood of summertime extreme air pollution events within weather types using spatial synoptic classification. Second, it examines the modifying effect of weather types on the relative risk of mortality (RR) due to daily concentrations of air pollution (nitrogen dioxide, ozone, sulfur dioxide, and particulate matter <2.5 μm). We assess both single- and two-pollutant interactions to determine dependent and independent pollutant effects using the relatively new time series technique of distributed lag nonlinear modeling (DLNM). Results display dry tropical (DT) and moist tropical plus (MT+) weathers to result in a fourfold and twofold increased likelihood, respectively, of an extreme pollution event (top 5 % of pollution concentrations throughout the 28 years) occurring. We also demonstrate statistically significant effects of single-pollutant exposure on mortality (p < 0.05) to be dependent on summer weather type, where stronger results occur in dry moderate (fair weather) and DT or MT+ weather types. The overall average single-effect RR increases due to pollutant exposure within DT and MT+ weather types are 14.9 and 11.9 %, respectively. Adjusted exposures (two-way pollutant effect estimates) generally results in decreased RR estimates, indicating that the pollutants are not independent. Adjusting for ozone significantly lowers 67 % of the single-pollutant RR estimates and reduces model variability, which demonstrates that ozone significantly controls a portion of the mortality signal from the model. Our findings demonstrate the mortality risks of air pollution exposure to differ by weather type, with increased accuracy obtained when accounting for interactive effects through adjustment for dependent pollutants using a DLNM.
Collapse
Affiliation(s)
- J. K. Vanos
- Environmental Health Research Bureau, Population Studies Division, Health Canada, 50 Columbine Driveway, Ottawa, ON K1A 0K9 Canada
- Atmospheric Sciences Group, Department of Geosciences, Texas Tech University, Lubbock, TX USA
| | - S. Cakmak
- Environmental Health Research Bureau, Population Studies Division, Health Canada, 50 Columbine Driveway, Ottawa, ON K1A 0K9 Canada
| | - L. S. Kalkstein
- Miller School of Medicine, Department of Public Health Sciences, Environment and Public Health Division, University of Miami, Miami, FL USA
| | | |
Collapse
|
68
|
Villeneuve PJ, Jerrett M, Brenner D, Su J, Chen H, McLaughlin JR. A case-control study of long-term exposure to ambient volatile organic compounds and lung cancer in Toronto, Ontario, Canada. Am J Epidemiol 2014; 179:443-51. [PMID: 24287467 DOI: 10.1093/aje/kwt289] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Few studies have investigated associations between nonoccupational exposure to ambient volatile organic compounds and lung cancer. We conducted a case-control study of 445 incident lung cancers and 948 controls (523 hospital, 425 general population) in Toronto, Ontario, Canada, between 1997 and 2002. Participants provided information on several risk factors, including tobacco use, secondhand exposure to cigarette smoke, obesity, and family history of cancer. Exposure to benzene, hydrocarbons, and nitrogen dioxide was estimated using land-use regression models. Exposures were linked to residential addresses to estimate exposure at the time of interview, 10 years before interview, and across past residences (time-weighted average). Logistic regression was used to estimate adjusted odds ratios. Analyses involving the population-based controls found that an interquartile-range increase in the time-weighted average benzene concentration (0.15 µg/m(3)) across previous residences was associated with lung cancer (odds ratio = 1.84, 95% confidence interval: 1.26, 2.68). Similarly, an interquartile-range increase in the time-weighted average nitrogen dioxide concentration (4.8 ppb) yielded an odds ratio of 1.59 (95% confidence interval: 1.19, 2.12). Our study suggests that long-term exposure to ambient volatile organic compounds and nitrogen dioxide at relatively low concentrations is associated with lung cancer. Further work is needed to evaluate joint relationships between these pollutants, smoking, and lung cancer.
Collapse
|
69
|
Costa S, Ferreira J, Silveira C, Costa C, Lopes D, Relvas H, Borrego C, Roebeling P, Miranda AI, Teixeira JP. Integrating health on air quality assessment--review report on health risks of two major European outdoor air pollutants: PM and NO₂. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:307-40. [PMID: 25333993 DOI: 10.1080/10937404.2014.946164] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Quantifying the impact of air pollution on the public's health has become an increasingly critical component in policy discussion. Recent data indicate that more than 70% of the world population lives in cities. Several studies reported that current levels of air pollutants in urban areas are associated with adverse health risks, namely, cardiovascular diseases and lung cancer. IARC recently classified outdoor air pollution and related particulate matter (PM) as carcinogenic to humans. Despite the air quality improvements observed over the last few years, there is still continued widespread exceedance within Europe, particularly regarding PM and nitrogen oxides (NOx). The European Air Quality Directive 2008/50/EC requires Member States to design appropriate air quality plans for zones where air quality does not comply with established limit values. However, in most cases, air quality is only quantified using a combination of monitored and modeled data and no health impact assessment is carried out. An integrated approach combining the effects of several emission abatement measures on air quality, impacts on human health, and associated implementation costs enables an effective cost-benefit analysis and an added value to the decision-making process. Hence, this review describes the basic steps and tools for integrating health into air quality assessment (health indicators, exposure-response functions). In addition, consideration is given to two major outdoor pollutants: PM and NO2. A summary of the health metrics used to assess the health impact of PM and NO2 and recent epidemiologic data are also described.
Collapse
Affiliation(s)
- Solange Costa
- a National Institute of Public Health , Environmental Health Department , Porto , Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Levy I, Mihele C, Lu G, Narayan J, Brook JR. Evaluating multipollutant exposure and urban air quality: pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:65-72. [PMID: 24225648 PMCID: PMC3888565 DOI: 10.1289/ehp.1306518] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 11/07/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Although urban air pollution is a complex mix containing multiple constituents, studies of the health effects of long-term exposure often focus on a single pollutant as a proxy for the entire mixture. A better understanding of the component pollutant concentrations and interrelationships would be useful in epidemiological studies that exploit spatial differences in exposure by clarifying the extent to which measures of individual pollutants, particularly nitrogen dioxide (NO2), represent spatial patterns in the multipollutant mixture. OBJECTIVES We examined air pollutant concentrations and interrelationships at the intraurban scale to obtain insight into the nature of the urban mixture of air pollutants. METHODS Mobile measurements of 23 air pollutants were taken systematically at high resolution in Montreal, Quebec, Canada, over 34 days in the winter, summer, and autumn of 2009. RESULTS We observed variability in pollution levels and in the statistical correlations between different pollutants according to season and neighborhood. Nitrogen oxide species (nitric oxide, NO2, nitrogen oxides, and total oxidized nitrogen species) had the highest overall spatial correlations with the suite of pollutants measured. Ultrafine particles and hydrocarbon-like organic aerosol concentration, a derived measure used as a specific indicator of traffic particles, also had very high correlations. CONCLUSIONS Our findings indicate that the multipollutant mix varies considerably throughout the city, both in time and in space, and thus, no single pollutant would be a perfect proxy measure for the entire mix under all circumstances. However, based on overall average spatial correlations with the suite of pollutants measured, nitrogen oxide species appeared to be the best available indicators of spatial variation in exposure to the outdoor urban air pollutant mixture.
Collapse
Affiliation(s)
- Ilan Levy
- Air Quality Processes Research Section, Environment Canada, Downsview, Ontario, Canada
| | | | | | | | | |
Collapse
|
71
|
Villeneuve PJ, Jerrett M, Su J, Burnett RT, Chen H, Brook J, Wheeler AJ, Cakmak S, Goldberg MS. A cohort study of intra-urban variations in volatile organic compounds and mortality, Toronto, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 183:30-39. [PMID: 23369806 DOI: 10.1016/j.envpol.2012.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
This study investigated associations between long-term exposure to ambient volatile organic compounds (VOCs) and mortality. 58,760 Toronto residents (≥35 years of age) were selected from tax filings and followed from 1982 to 2004. Death information was extracted using record linkage to national mortality data. Land-use regression surfaces for benzene, n-hexane, and total hydrocarbons were generated from sampling campaigns in 2002 and 2004 and assigned to residential addresses in 1982. Cox regression was used to estimate relationships between each VOC and non-accidental, cardiovascular, and cancer mortality. Positive associations were observed for each VOC. In multi-pollutant models the benzene and total hydrocarbon signals were strongest for cancer. The hazard ratio for cancer that corresponded to an increase in the interquartile range of benzene (0.13 μg/m(3)) was 1.06 (95% CI = 1.02-1.11). Our findings suggest ambient concentrations of VOCs were associated with cancer mortality, and that these exposures did not confound our previously reported associations between NO2 and cardiovascular mortality.
Collapse
Affiliation(s)
- Paul J Villeneuve
- Population Studies Division, Health Canada, Ottawa, Ontario, Canada; Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Goldberg MS, Burnett RT, Stieb DM, Brophy JM, Daskalopoulou SS, Valois MF, Brook JR. Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:931-42. [PMID: 23872247 DOI: 10.1016/j.scitotenv.2013.06.095] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 06/12/2013] [Accepted: 06/24/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Persons with underlying health conditions may be at higher risk for the short-term effects of air pollution. We have extended our original mortality time series study in Montreal, Quebec, among persons 65 years of age and older, for an additional 10 years (1990-2003) to assess whether these associations persisted and to investigate new health conditions. METHODS AND RESULTS We created subgroups of subjects diagnosed with major health conditions one year before death using billing and prescription data from the Quebec Health Insurance Plan. We used parametric log-linear Poisson models within the distributed lag non-linear models framework, that were adjusted for long-term temporal trends and daily maximum temperature, for which we assessed associations with NO2, O3, CO, SO2, and particles with aerodynamic diameters 2.5 μm in diameter or less (PM2.5). We found positive associations between daily non-accidental mortality and all air pollutants but O3 (e.g., for a cumulative effect over a 3-day lag, with a mean percent change (MPC) in daily mortality of 1.90% [95% confidence interval: 0.73, 3.08%] for an increase of the interquartile range (17.56 μg m(-3)) of NO2). Positive associations were found amongst persons having cardiovascular disease (cumulative MPC for an increase equal to the interquartile range of NO2=2.67%), congestive heart failure (MPC=3.46%), atrial fibrillation (MPC=4.21%), diabetes (MPC=3.45%), and diabetes and cardiovascular disease (MPC=3.50%). Associations in the warm season were also found for acute and chronic coronary artery disease, hypertension, and cancer. There was no persuasive evidence to conclude that there were seasonal associations for cerebrovascular disease, acute lower respiratory disease (defined within 2 months of death), airways disease, and diabetes and airways disease. CONCLUSIONS These data indicate that individuals with certain health conditions, especially those with diabetes and cardiovascular disease, hypertension, atrial fibrillation, and cancer, may be susceptible to the short-term effects of air pollution.
Collapse
Affiliation(s)
- Mark S Goldberg
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Division of Clinical Epidemiology, McGill University Health Centre, 687 Pine Ave. W., R4.29, Montreal, Quebec H3A 1A1, Canada.
| | | | | | | | | | | | | |
Collapse
|
73
|
Hatzopoulou M, Weichenthal S, Barreau G, Goldberg M, Farrell W, Crouse D, Ross N. A web-based route planning tool to reduce cyclists' exposures to traffic pollution: a case study in Montreal, Canada. ENVIRONMENTAL RESEARCH 2013; 123:58-61. [PMID: 23562391 DOI: 10.1016/j.envres.2013.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/26/2012] [Accepted: 03/13/2013] [Indexed: 05/19/2023]
Abstract
We developed a web-based route planning tool for cyclists in Montreal, Canada, using spatial monitoring data for ambient nitrogen dioxide (NO2). With this tool, we estimated exposures to NO2 along shortest routes and lower exposure alternatives using origin-destination survey data. On average, exposures were estimated to be lower by 0.76 ppb (95% CI: 0.72, 0.80) relative to the shortest route, with decreases of up to 6.1 ppb for a single trip. Cumulative exposure levels (ppb km) decreased by approximately 4%. In general, the benefits of decreased exposure could be achieved with little increase (less than 1 km) in the overall route length.
Collapse
|
74
|
Pappin AJ, Hakami A. Source attribution of health benefits from air pollution abatement in Canada and the United States: an adjoint sensitivity analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:572-9. [PMID: 23434744 PMCID: PMC3673189 DOI: 10.1289/ehp.1205561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 02/21/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Decision making regarding air pollution can be better informed if air quality impacts are traced back to individual emission sources. Adjoint or backward sensitivity analysis is a modeling tool that can achieve this goal by allowing for quantification of how emissions from sources in different locations influence human health metrics. OBJECTIVES We attributed short-term mortality (valuated as an overall "health benefit") in Canada and the United States to anthropogenic nitrogen oxides (NO(x)) and volatile organic compound (VOC) emissions across North America. METHODS We integrated epidemiological data derived from Canadian and U.S. time-series studies with the adjoint of an air quality model and also estimated influences of anthropogenic emissions at each location on nationwide health benefits. RESULTS We found significant spatiotemporal variability in estimated health benefit influences of NO(x) and VOC emission reductions on Canada and U.S. mortality. The largest estimated influences on Canada (up to $250,000/day) were from emissions originating in the Quebec City-Windsor Corridor, where population centers are concentrated. Estimated influences on the United States tend to be widespread and more substantial owing to both larger emissions and larger populations. The health benefit influences calculated using 24-hr average ozone (O(3)) concentrations are lower in magnitude than estimates calculated using daily 1-hr maximum O(3) concentrations. CONCLUSIONS Source specificity of the adjoint approach provides valuable information for guiding air quality decision making. Adjoint results suggest that the health benefits of reducing NO(x) and VOC emissions are substantial and highly variable across North America.
Collapse
Affiliation(s)
- Amanda Joy Pappin
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
75
|
Cooper MJ, Martin RV, van Donkelaar A, Lamsal L, Brauer M, Brook JR. A satellite-based multi-pollutant index of global air quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8523-8524. [PMID: 22853810 DOI: 10.1021/es302672p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
76
|
Villeneuve PJ, Johnson JYM, Pasichnyk D, Lowes J, Kirkland S, Rowe BH. Short-term effects of ambient air pollution on stroke: who is most vulnerable? THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 430:193-201. [PMID: 22647242 DOI: 10.1016/j.scitotenv.2012.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/17/2012] [Accepted: 05/01/2012] [Indexed: 05/23/2023]
Abstract
Several studies have demonstrated positive associations between day-to-day increases in air pollution and stroke. These findings have been inconsistent, and the influence of patient characteristics has been largely ignored. In this study, we investigated the short-term effects of air pollution on stroke using a time-stratified case-crossover design. Data for hospital visits for stroke were extracted from 5927 medical charts of patients who presented to emergency departments between 2003 and 2009 in Edmonton, Canada. Daily concentrations of five air pollutants (NO(2), PM (2.5), CO, O(3), and SO(2)) were obtained from fixed-site monitors. Relative humidity and temperature were obtained from a metrological station operating at the city's airport. Chart data included: disease history, medication use, and smoking status. Conditional logistic regression was used to estimate the odds ratio (OR) of stroke in relation to an increase in the interquartile range for each pollutant. Positive associations were observed between ischemic stroke and air pollution during the 'warm' season (April through September). Specifically, the OR for an increase in 9.4 ppb in the 3-day average of NO(2) was 1.50 (95% CI: 1.12, 2.01). There were no statistically significant associations with any of the other pollutants after adjusting for NO(2) concentrations. Associations with ischemic stroke were stronger for those with a history of stroke (OR=2.31; 95% CI: 1.39, 3.83), heart disease (OR=1.99; 95% CI: 1.20, 3.28), and taking medication for diabetes (OR=2.03; 95% CI: 1.14, 3.59). Temperature was inversely associated with ischemic stroke during the 'warm' season, but no associations were evident with the other stroke subtypes. Air pollution was not associated with hemorrhagic stroke or transient ischemic attacks. The findings suggest that specific patient characteristics modify associations between air pollution and ischemic stroke.
Collapse
Affiliation(s)
- Paul J Villeneuve
- Population Studies Division, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
77
|
Pachon JE, Balachandran S, Hu Y, Mulholland JA, Darrow LA, Sarnat JA, Tolbert PE, Russell AG. Development of outcome-based, multipollutant mobile source indicators. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2012; 62:431-42. [PMID: 22616285 PMCID: PMC3752838 DOI: 10.1080/10473289.2012.656218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Multipollutant indicators of mobile source impacts are developed from readily available CO, NOx, and elemental carbon (EC) data for use in air quality and epidemiologic analysis. Two types of outcome-based Integrated Mobile Source Indicators (IMSI) are assessed. The first is derived from analysis of emissions of EC, CO, and NOx such that pollutant concentrations are mixed and weighted based on emission ratios for both gasoline and diesel vehicles. The emission-based indicators (IMSI(EB)) capture the impact of mobile sources on air quality estimated from receptor models and their uncertainty is comparable to measurement and source apportionment uncertainties. The IMSI(EB) have larger correlation between two different receptor sites impacted by traffic than single pollutants, suggesting they are better indicators of the local impact ofmobile sources. A sensitivity analysis of fractions of pollutants in a two-pollutant mixture and the inclusion in an epidemiologic model is conducted to develop a second set of indicators based on health outcomes. The health-based indicators (IMSI(HB)) are weighted combinations of CO, NOx, and EC pairs that have the lowest P value in their association with cardiovascular disease emergency department visits, possibly due to their better spatial representativeness. These outcome-based, multipollutant indicators can provide support for the setting of multipollutant air quality standards and other air quality management activities.
Collapse
Affiliation(s)
- Jorge E Pachon
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Chang YK, Wu CC, Lee LT, Lin RS, Yu YH, Chen YC. The short-term effects of air pollution on adolescent lung function in Taiwan. CHEMOSPHERE 2012; 87:26-30. [PMID: 22189374 DOI: 10.1016/j.chemosphere.2011.11.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 05/24/2023]
Abstract
A mass screening of lung function associated with air pollutants for children is limited. This study assessed the association between air pollutants exposure and the lung function of junior high school students in a mass screening program in Taipei city, Taiwan. Among 10,396 students with completed asthma screening questionnaires and anthropometric measures, 2919 students aged 12-16 received the spirometry test. Forced vital capacity (FVC) and forced expiratory flow in 1s (FEV(1)) in association with daily ambient concentrations of particulate matter with diameter of 10 μm or less (PM(10)), sulfur dioxide (SO(2)), carbon monoxide (CO), nitrogen dioxide (NO(2)), and ozone (O(3)) were assessed by regression models controlling for the age, gender, height, weight, student living districts, rainfall and temperature. FVC, had a significant negative association with short-term exposure to O(3) and PM(10) measured on the day of spirometry testing. FVC values also were reversely associated with means of SO(2), O(3), NO(2), PM(10) and CO exposed 1 d earlier. An increase of 1-ppm CO was associated with the reduction in FVC for 69.8 mL (95% CI: -115, -24.4 mL) or in FEV(1) for 73.7 mL (95% CI: -118, -29.7 mL). An increase in SO(2) for 1 ppb was associated with the reductions in FVC and FEV(1) for 12.9 mL (95% CI: -20.7, -5.09 mL) and 11.7 mL (95% CI: -19.3, -4.16 mL), respectively. In conclusion, the short-term exposure to O(3) and PM(10) was associated with reducing FVC and FEV(1). CO and SO(2) exposure had a strong 1-d lag effect on FVC and FEV(1).
Collapse
Affiliation(s)
- Yu-Kang Chang
- Department of Public Health, China Medical University, Taichung 404, Taiwan.
| | | | | | | | | | | |
Collapse
|
79
|
Shin HH, Stieb D, Burnett R, Takahara G, Jessiman B. Tracking national and regional spatial-temporal mortality risk associated with NO2 concentrations in Canada: a Bayesian hierarchical two-level model. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2012; 32:513-530. [PMID: 21980998 DOI: 10.1111/j.1539-6924.2011.01684.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The association between daily variations in urban air quality and mortality has been well documented using time series statistical methods. This approach assumes a constant association over time. We develop a space-time dynamic model that relaxes this assumption, thus more directly examining the hypothesis that improvements in air quality translate into improvements in public health. We postulate a Bayesian hierarchical two-level model to estimate annual mortality risks at regional and national levels and to track both risk and heterogeneity of risk within and between regions over time. We illustrate our methods using daily nitrogen dioxide concentrations (NO2) and nonaccidental mortality data collected for 1984-2004 in 24 Canadian cities. Estimates of risk and heterogeneity are compared by cause of mortality (cardio-pulmonary [CP] versus non-CP) and season, respectively. Over the entire period, the NO2 risk for CP mortality was slightly lower but with a narrower credible interval than that for non-CP mortality, mainly due to an unusually low risk for a single year (1998). Warm season NO2 risk was higher than cold season risk for both CP and non-CP mortality. For 21 years overall there were no significant differences detected among the four regional NO2 risks. We found overall that there was no strong evidence for time trends in NO2 risk at national or regional levels. However, an increasing linear time trend in the annual between-region heterogeneities was detected, which suggests the differences in risk among the four regions are getting larger, and further studies are necessary to understand the increasing heterogeneity.
Collapse
Affiliation(s)
- Hwashin Hyun Shin
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada.
| | | | | | | | | |
Collapse
|
80
|
Goldberg MS, Gasparrini A, Armstrong B, Valois MF. The short-term influence of temperature on daily mortality in the temperate climate of Montreal, Canada. ENVIRONMENTAL RESEARCH 2011; 111:853-60. [PMID: 21684539 DOI: 10.1016/j.envres.2011.05.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/18/2011] [Accepted: 05/31/2011] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to determine whether short-term changes in ambient temperature were associated with daily mortality among persons who lived in Montreal, Canada, and who died in the urban area between 1984 and 2007. We made use of newly developed distributed lag non-linear Poisson models, constrained to a 30 day lag period, and we adjusted for temporal trends and nitrogen dioxide and ozone. We found a strong non-linear association with high daily maximum temperatures showing an apparent threshold at about 27°C; this association persisted until about lag 5 days. For example, we found across all lag periods that daily non-accidental mortality increased by 28.4% (95% confidence interval: 13.8-44.9%) when temperatures increased from 22.5 to 31.8°C (75-99th percentiles). This association was essentially invariant to different smoothers for time. Cold temperatures were not found to be associated with daily mortality over 30 days, although there was some evidence of a modest increased risk from 2 to 5 days. The adverse association with colder temperatures was sensitive to the smoother for time. For cardio-respiratory mortality we found increased risks for higher temperatures of a similar magnitude to that of non-accidental mortality but no effects at cold temperatures.
Collapse
Affiliation(s)
- Mark S Goldberg
- Department of Medicine, McGill University, Montreal, Canada.
| | | | | | | |
Collapse
|
81
|
Valari M, Menut L, Chatignoux E. Using a chemistry transport model to account for the spatial variability of exposure concentrations in epidemiologic air pollution studies. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:164-79. [PMID: 21387934 DOI: 10.3155/1047-3289.61.2.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Environmental epidemiology and more specifically time-series analysis have traditionally used area-averaged pollutant concentrations measured at central monitors as exposure surrogates to associate health outcomes with air pollution. However, spatial aggregation has been shown to contribute to the overall bias in the estimation of the exposure-response functions. This paper presents the benefit of adding features of the spatial variability of exposure by using concentration fields modeled with a chemistry transport model instead of monitor data and accounting for human activity patterns. On the basis of county-level census data for the city of Paris, France, and a Monte Carlo simulation, a simple activity model was developed accounting for the temporal variability between working and evening hours as well as during transit. By combining activity data with modeled concentrations, the downtown, suburban, and rural spatial patterns in exposure to nitrogen dioxide, ozone, and PM2.5 (particulate matter [PM] < or = 10 microm in aerodynamic diameter) were captured and parametrized. Exposures predicted with this model were used in a time-series study of the short-term effect of air pollution on total nonaccidental mortality for the 4-yr period from 2001 to 2004. It was shown that the time series of the exposure surrogates developed here are less correlated across co-pollutants than in the case of the area-averaged monitor data. This led to less biased exposure-response functions when all three co-pollutants were inserted simultaneously in the same regression model. This finding yields insight into pollutant-specific health effects that are otherwise masked by the high correlation among co-pollutants.
Collapse
Affiliation(s)
- Myrto Valari
- Laboratoire de Météorologie Dynamique/l'Institut Pierre Simon Laplace, Ecole Polytechnique, Palaiseau, France.
| | | | | |
Collapse
|
82
|
Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol 2010; 39:743-81. [PMID: 19852560 DOI: 10.3109/10408440903294945] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nitrogen dioxide (NO2) is a ubiquitous atmospheric pollutant due to the widespread prevalence of both natural and anthropogenic sources, and it can be a respiratory irritant when inhaled at elevated concentrations. Evidence for health effects of ambient NO2 derives from three types of studies: observational epidemiology, human clinical exposures, and animal toxicology. Our review focuses on the human clinical studies of adverse health effects of short-term NO2 exposures, given the substantial uncertainties and limitations in interpretation of the other lines of evidence. We examined more than 50 experimental studies of humans inhaling NO2, finding notably that the reporting of statistically significant changes in lung function and bronchial sensitivity did not show a consistent trend with increasing NO2 concentrations. Functional changes were generally mild and transient, the reported effects were not uniformly adverse, and they were not usually accompanied by NO2-dependent increases in symptoms. The available human clinical results do not establish a mechanistic pathway leading to adverse health impacts for short-term NO2 exposures at levels typical of maximum 1-h concentrations in the present-day ambient environment (i.e., below 0.2 ppm). Our review of these data indicates that a health-protective, short-term NO2 guideline level for susceptible (and healthy) populations would reflect a policy choice between 0.2 and 0.6 ppm. EXTENDED ABSTRACT: Nitrogen dioxide (NO2) is a ubiquitous atmospheric pollutant due to the widespread prevalence of both natural and anthropogenic sources, and it can be a respiratory irritant when inhaled at elevated concentrations. Natural NO2 sources include volcanic action, forest fires, lightning, and the stratosphere; man-made NO2 emissions derive from fossil fuel combustion and incineration. The current National Ambient Air Quality Standard (NAAQS) for NO2, initially established in 1971, is 0.053 ppm (annual average). Ambient concentrations monitored in urban areas in the United States are approximately 0.015 ppm, as an annual mean, i.e., below the current NAAQS. Short-term (1-h peak) NO2 concentrations outdoors are not likely to exceed 0.2 ppm, and even 1-h periods exceeding 0.1 ppm are infrequent. Inside homes, 1-h NO2 peaks, typically arising from gas cooking, can range between 0.4 and 1.5 ppm. The health effects evidence of relevance to ambient NO2 derives from three lines of investigation: epidemiology studies, human clinical studies, and animal toxicology studies. The NO2 epidemiology remains inconsistent and uncertain due to the potential for exposure misclassification, residual confounding, and co-pollutant effects, whereas animal toxicology findings using high levels of NO2 exposure require extrapolation to humans exposed at low ambient NO2 levels. Given the limitations and uncertainties in the other lines of health effects evidence, our review thus focused on clinical studies where human volunteers (including asthmatics, children, and elderly) inhaled NO2 at levels from 0.1 to 3.5 ppm during short-term ((1/2)-6-h) exposures, often combined with exercise, and occasionally combined with co-pollutants. We examined the reported biological effects and classified them into (a) lung immune responses and inflammation, (b) lung function changes and airway hyperresponsiveness (AHR), and (c) health effects outside the lungs (extrapulmonary). We examined more than 50 experimental studies of humans inhaling NO2, finding that such clinical data on short-term exposure allowed discrimination of NO2 no-effect levels versus lowest-adverse-effects levels. Our conclusions are summarized by these six points: For lung immune responses and inflammation: (1) healthy subjects exposed to NO2 below 1 ppm do not show pulmonary inflammation; (2) at 2 ppm for 4 h, neutrophils and cytokines in lung-lavage fluid can increase, but these changes do not necessarily correlate with significant or sustained changes in lung function; (3) there is no consistent evidence that NO2 concentrations below 2 ppm increase susceptibility to viral infection; (4) for asthmatics and individuals having chronic obstructive pulmonary disease (COPD), NO2-induced lung inflammation is not expected below 0.6 ppm, although one research group reported enhancement of proinflammatory processes at 0.26 ppm. With regard to NO2-induced AHR: (5) studies of responses to specific or nonspecific airway challenges (e.g., ragweed, methacholine) suggest that asthmatic individuals were not affected by NO2 up to about 0.6 ppm, although some sensitive subsets may respond to levels as low as 0.2 ppm. And finally, for extra-pulmonary effects: (6) such effects (e.g., changes in blood chemistry) generally required NO2 concentrations above 1-2 ppm. Overall, our review of data from experiments with humans indicates that a health-protective, short-term-average NO2 guideline level for susceptible populations (and healthy populations) would reflect a policy choice between 0.2 and 0.6 ppm. The available human clinical results do not establish a mechanistic pathway leading to adverse health impacts for short-term NO2 exposures at levels typical of maximum 1-h concentrations in the present-day ambient environment (i.e., below 0.2 ppm).
Collapse
|
83
|
Kornartit C, Sokhi RS, Burton MA, Ravindra K. Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments. ENVIRONMENT INTERNATIONAL 2010; 36:36-45. [PMID: 19878999 DOI: 10.1016/j.envint.2009.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/17/2009] [Accepted: 09/20/2009] [Indexed: 05/28/2023]
Abstract
People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).
Collapse
Affiliation(s)
- C Kornartit
- Centre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - R S Sokhi
- Centre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - M A Burton
- School of Life Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Khaiwal Ravindra
- Centre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK.
| |
Collapse
|
84
|
Shin HH, Stieb DM, Jessiman B, Goldberg MS, Brion O, Brook J, Ramsay T, Burnett RT. A temporal, multicity model to estimate the effects of short-term exposure to ambient air pollution on health. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1147-53. [PMID: 18795155 PMCID: PMC2535614 DOI: 10.1289/ehp.11194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/07/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Countries worldwide are expending significant resources to improve air quality partly to improve the health of their citizens. Are these societal expenditures improving public health? OBJECTIVES We consider these issues by tracking the risk of death associated with outdoor air pollution over both space and time in Canadian cities. MATERIALS AND METHODS We propose two multi-year estimators that use current plus several previous years of data to estimate current year risk. The estimators are derived from sequential time series analyses using moving time windows. To evaluate the statistical properties of the proposed methods, a simulation study with three scenarios of changing risk was conducted based on 12 Canadian cities from 1981 to 2000. Then an optimal estimator was applied to 24 of Canada's largest cities over the 17-year period from 1984 to 2000. RESULTS The annual average daily concentrations of ozone appeared to be increasing over the time period, whereas those of nitrogen dioxide were decreasing. However, the proposed method returns different time trends in public health risks. Evidence for some monotonic increasing trends in the annual risks is weak for O(3) (p = 0.3870) but somewhat stronger for NO(2) (p = 0.1082). In particular, an increasing time trend becomes apparent when excluding year 1998, which reveals lower risk than proximal years, even though concentrations of NO(2) were decreasing. The simulation results validate our two proposed methods, producing estimates close to the preassigned values. CONCLUSIONS Despite decreasing ambient concentrations, public health risks related to NO(2) appear to be increasing. Further investigations are necessary to understand why the concentrations and adverse effects of NO(2) show opposite time trends.
Collapse
Affiliation(s)
- Hwashin Hyun Shin
- Air Health Science Division, Safe Environments Programme, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Lamsal LN, Martin RV, van Donkelaar A, Steinbacher M, Celarier EA, Bucsela E, Dunlea EJ, Pinto JP. Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009235] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
86
|
Craig L, Brook JR, Chiotti Q, Croes B, Gower S, Hedley A, Krewski D, Krupnick A, Krzyzanowski M, Moran MD, Pennell W, Samet JM, Schneider J, Shortreed J, Williams M. Air pollution and public health: a guidance document for risk managers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:588-698. [PMID: 18569631 DOI: 10.1080/15287390801997732] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This guidance document is a reference for air quality policymakers and managers providing state-of-the-art, evidence-based information on key determinants of air quality management decisions. The document reflects the findings of five annual meetings of the NERAM (Network for Environmental Risk Assessment and Management) International Colloquium Series on Air Quality Management (2001-2006), as well as the results of supporting international research. The topics covered in the guidance document reflect critical science and policy aspects of air quality risk management including i) health effects, ii) air quality emissions, measurement and modeling, iii) air quality management interventions, and iv) clean air policy challenges and opportunities.
Collapse
Affiliation(s)
- Lorraine Craig
- Network for Environmental Risk Assessment and Management, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Wheeler AJ, Smith-Doiron M, Xu X, Gilbert NL, Brook JR. Intra-urban variability of air pollution in Windsor, Ontario--measurement and modeling for human exposure assessment. ENVIRONMENTAL RESEARCH 2008; 106:7-16. [PMID: 17961539 DOI: 10.1016/j.envres.2007.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 09/06/2007] [Accepted: 09/12/2007] [Indexed: 05/17/2023]
Abstract
There are acknowledged difficulties in epidemiological studies to accurately assign exposure to air pollution for large populations, and large, long-term cohort studies have typically relied upon data from central monitoring stations. This approach has generally been adequate when populations span large areas or diverse cities. However, when the effects of intra-urban differences in exposure are being studied, the use of these existing central sites are likely to be inadequate for representing spatial variability that exists within an urban area. As part of the Border Air Quality Strategy (BAQS), an international agreement between the governments of Canada and the United States, a number of air health effects studies are being undertaken by Health Canada and the US EPA. Health Canada's research largely focuses on the chronic exposure of elementary school children to air pollution. The exposure characterization for this population to a variety of air pollutants has been assessed using land-use regression (LUR) models. This approach has been applied in several cities to nitrogen dioxide (NO2), as an assumed traffic exposure marker. However, the models have largely been developed from limited periods of saturation monitoring data and often only represent one or two seasons. Two key questions from these previous efforts, which are examined in this paper, are: If NO2 is a traffic marker, what other pollutants, potentially traffic related, might it actually represent? How well is the within city spatial variability of NO2, and other traffic-related pollutants, characterized by a single saturation monitoring campaign. Input data for the models developed in this paper were obtained across a network of 54 monitoring sites situated across Windsor, Ontario. The pollutants studied were NO2, sulfur dioxide (SO2) and volatile organic compounds, which were measured in all four seasons by deploying passive samplers for 2-week periods. Correlations among these pollutants were calculated to assess what other pollutants NO2 might represent, and correlations across seasons for a given pollutant were determined to assess how much the within-city spatial pattern varies with time. LUR models were then developed for NO2, SO2, benzene, and toluene. A multiple regression model including proximity to the Ambassador Bridge (the main Canada-US border crossing point), and proximity to highways and major roads, predicted NO2 concentrations with an R2=0.77. The SO2 model predictors included distance to the Ambassador Bridge, dwelling density within 1500m, and Detroit-based SO2 emitters within 3000m resulting in a model with an R2=0.69. Benzene and toluene LUR models included traffic predictors as well as point source emitters resulting in R2=0.73 and 0.46, respectively. Between season pollutant correlations were all significant although actual concentrations for each site varied by season. This suggests that if one season were to be selected to represent the annual concentrations for a specific site this may lead to a potential under or overestimation in exposure, which could be significant for health research. All pollutants had strong inter-pollutant correlations suggesting that NO2 could represent SO2, benzene, and toluene.
Collapse
Affiliation(s)
- Amanda J Wheeler
- Health Canada, Air Health Effects Division, 3rd Floor, 269 Laurier Avenue West, PL 4903c, Ottawa, Ontario, Canada K1A 0K9.
| | | | | | | | | |
Collapse
|
88
|
Kim JY, Burnett RT, Neas L, Thurston GD, Schwartz J, Tolbert PE, Brunekreef B, Goldberg MS, Romieu I. Panel discussion review: session two--interpretation of observed associations between multiple ambient air pollutants and health effects in epidemiologic analyses. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2007; 17 Suppl 2:S83-9. [PMID: 18079769 DOI: 10.1038/sj.jes.7500623] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 06/26/2007] [Indexed: 05/23/2023]
Abstract
Air pollution epidemiologic research has often utilized ambient air concentrations measured from centrally located monitors as a surrogate measure of exposure to these pollutants. Associations between these ambient concentrations and health outcomes such as lung function, hospital admissions, and mortality have been examined in short- and long-term cohort studies as well as in time-series and case-crossover studies. The issues related to interpreting the observed associations of ambient air pollutants with health outcomes were discussed at the US EPA sponsored workshop on December 13 and 14, 2006 in Chapel Hill, North Carolina, USA. The second session of this workshop focused on the following topics: (1) statistical methodology and study designs that may improve understanding of multipollutant health effects; (2) ambient concentrations as surrogate measures of pollutant mixtures; and (3) source-focused epidemiologic research. New methodology and approaches to better distinguish the effects of individual pollutants include multicity hierarchical modeling and the use of case-crossover analysis to control for copollutants. An alternative approach is to examine the mixture as a whole using principal component analysis. Another important consideration is to what extent the observed health associations are attributable to individual pollutants, which are often from common sources and are correlated, versus the pollutant mixtures that the pollutants are representing. For example, several ambient air concentrations, such as particulate matter mass, nitrogen dioxide, and carbon monoxide, may be serving as surrogate measures of motor vehicle exhaust. Source apportionment analysis is one method that may allow further advancement in understanding the source components that contribute to multipollutant health effects.
Collapse
Affiliation(s)
- Jee Young Kim
- National Center for Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|