51
|
von Hohenberg CC, Wigand MC, Kubicki M, Leicht G, Giegling I, Karch S, Hartmann AM, Konte B, Friedl M, Ballinger T, Eckbo R, Bouix S, Jäger L, Shenton ME, Rujescu D, Mulert C. CNTNAP2 polymorphisms and structural brain connectivity: a diffusion-tensor imaging study. J Psychiatr Res 2013; 47:1349-56. [PMID: 23871450 PMCID: PMC3780783 DOI: 10.1016/j.jpsychires.2013.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
CNTNAP2 is a gene on chromosome 7 that has shown associations with autism and schizophrenia, and there is evidence that it plays an important role for neuronal synchronization and brain connectivity. In this study, we assessed the relationship between Diffusion Tensor Imaging (DTI), a putative marker of anatomical brain connectivity, and multiple single nucleotide polymorphisms (SNPs) spread out over this large gene. 81 healthy controls and 44 patients with schizophrenia (all Caucasian) underwent DTI and genotyping of 31 SNPs within CNTNAP2. We employed Tract-based Spatial Statistics (TBSS) for inter-subject brain registration and computed average diffusivity values for six major white matter tracts. Analyses of Covariance (ANCOVAs) were computed to test for possible associations with genotypes. The strongest association, which survived rigorous Bonferroni correction, was between rs2710126 genotype and Fractional Anisotropy (FA) in the uncinate fasciculus (p = .00003). This anatomical location is particularly interesting given the enriched fronto-temporal expression of CNTNAP2 in the developing brain. For this SNP, no phenotype association has been reported before. There were several further genotype-DTI associations that were nominally significant but did not survive Bonferroni correction, including an association between axial diffusivity in the dorsal cingulum bundle and a region in intron 13 (represented by rs2710102, rs759178, rs2538991), which has previously been reported to be associated with anterior-posterior functional connectivity. We present new evidence about the effects of CNTNAP2 on brain connectivity, whose disruption has been hypothesized to be central to schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Christian Clemm von Hohenberg
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany,Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and
Department of Psychiatry and Psychotherapy, University Medical Center
Hamburg-Eppendorf, Germany
| | - Marlene C. Wigand
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany,Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and
Department of Psychiatry and Psychotherapy, University Medical Center
Hamburg-Eppendorf, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Departments of Psychiatry and Radiology, Harvard Medical School,
Boston, MA
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and
Department of Psychiatry and Psychotherapy, University Medical Center
Hamburg-Eppendorf, Germany
| | - Ina Giegling
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanne Karch
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Annette M. Hartmann
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Bettina Konte
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Marion Friedl
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Ballinger
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA
| | - Ryan Eckbo
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Departments of Psychiatry and Radiology, Harvard Medical School,
Boston, MA
| | - Lorenz Jäger
- Department of Radiology, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's
Hospital and Harvard Medical School, Boston, MA,Departments of Psychiatry and Radiology, Harvard Medical School,
Boston, MA,Clinical Neuroscience Division, Laboratory of Neuroscience, Veterans
Affairs Boston Healthcare System, Brockton Division, Brockton, MA
| | - Dan Rujescu
- Department of Psychiatry, Faculty of Medicine,
Ludwig-Maximilians-Universität, Munich, Germany,Department of Psychiatry, University Hospital and Faculty of
Medicine, Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Imaging Center NeuroImage Nord and
Department of Psychiatry and Psychotherapy, University Medical Center
Hamburg-Eppendorf, Germany
| |
Collapse
|
52
|
Jiang T. Brainnetome: A new -ome to understand the brain and its disorders. Neuroimage 2013; 80:263-72. [DOI: 10.1016/j.neuroimage.2013.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 10/27/2022] Open
|
53
|
Prata DP, Kanaan RA, Barker GJ, Shergill S, Woolley J, Georgieva L, Picchioni MM, Kravariti E, Walshe M, Allin M, Toulopoulou T, Bramon E, McDonald C, Giampietro V, Murray RM, Brammer M, O'Donovan M, McGuire P. Risk variant of oligodendrocyte lineage transcription factor 2 is associated with reduced white matter integrity. Hum Brain Mapp 2013; 34:2025-31. [PMID: 22505278 PMCID: PMC6870420 DOI: 10.1002/hbm.22045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/14/2011] [Accepted: 01/01/2011] [Indexed: 11/12/2022] Open
Abstract
The oligodendrocyte lineage transcription factor 2 (OLIG2) regulates the genesis of oligodendrocytes, the brain cells responsible for axonal myelination. Although it has been associated with psychiatric and neurological disorders, the impact of this gene on white matter integrity has never been investigated in humans. Using diffusion tensor imaging, we examined the effect of a single nucleotide polymorphism (rs1059004) in OLIG2 previously associated with reduced gene expression, and with psychiatric disorders on fractional anisotropy in 78 healthy subjects. We found that the risk allele (A) was associated with reduced white matter integrity in the corona radiata bilaterally. This is consistent with evidence that it is a schizophrenia susceptibility gene, and suggests that it may confer increased risk through an effect on neuroanatomical connectivity.
Collapse
Affiliation(s)
- Diana P Prata
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, King's Health Partners, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Whalley HC, Sprooten E, Hackett S, Hall L, Blackwood DH, Glahn DC, Bastin M, Hall J, Lawrie SM, Sussmann JE, McIntosh AM. Polygenic risk and white matter integrity in individuals at high risk of mood disorder. Biol Psychiatry 2013; 74:280-6. [PMID: 23453289 PMCID: PMC4185278 DOI: 10.1016/j.biopsych.2013.01.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bipolar disorder (BD) and major depressive disorder (MDD) are highly heritable and genetically overlapping conditions characterized by episodic elevation and/or depression of mood. Both demonstrate abnormalities in white matter integrity, measured with diffusion tensor magnetic resonance imaging, that are also heritable. However, it is unclear how these abnormalities relate to the underlying genetic architecture of each disorder. Genome-wide association studies have demonstrated a significant polygenic contribution to BD and MDD, where risk is attributed to the summation of many alleles of small effect. Determining the effects of an overall polygenic risk profile score on neuroimaging abnormalities might help to identify proxy measures of genetic susceptibility and thereby inform models of risk prediction. METHODS In the current study, we determined the extent to which common genetic variation underlying risk to mood disorders (BD and MDD) was related to fractional anisotropy, an index of white matter integrity. This was conducted in unaffected individuals at familial risk of mood disorder (n = 70) and comparison subjects (n = 62). Polygenic risk scores were calculated separately for BD and MDD on the basis of genome-wide association study data from the Psychiatric GWAS Consortia. RESULTS We report that a higher polygenic risk allele load for MDD was significantly associated with decreased white matter integrity across both groups in a large cluster, with a peak in the right-sided superior longitudinal fasciculus. CONCLUSIONS These findings suggest that the polygenic approach to examining brain imaging data might be a useful means of identifying traits linked to the genetic risk of mood disorders.
Collapse
Affiliation(s)
- Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Braskie MN, Kohannim O, Jahanshad N, Chiang MC, Barysheva M, Toga AW, Ringman JM, Montgomery GW, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Thompson PM. Relation between variants in the neurotrophin receptor gene, NTRK3, and white matter integrity in healthy young adults. Neuroimage 2013; 82:146-53. [PMID: 23727532 DOI: 10.1016/j.neuroimage.2013.05.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/10/2023] Open
Abstract
The NTRK3 gene (also known as TRKC) encodes a high affinity receptor for the neurotrophin 3'-nucleotidase (NT3), which is implicated in oligodendrocyte and myelin development. We previously found that white matter integrity in young adults is related to common variants in genes encoding neurotrophins and their receptors. This underscores the importance of neurotrophins for white matter development. NTRK3 variants are putative risk factors for schizophrenia, bipolar disorder, and obsessive-compulsive disorder hoarding, suggesting that some NTRK3 variants may affect the brain. To test this, we scanned 392 healthy adult twins and their siblings (mean age, 23.6 ± 2.2 years; range: 20-29 years) with 105-gradient 4-Tesla diffusion tensor imaging (DTI). We identified 18 single nucleotide polymorphisms (SNPs) in the NTRK3 gene that have been associated with neuropsychiatric disorders. We used a multi-SNP model, adjusting for family relatedness, age, and sex, to relate these variants to voxelwise fractional anisotropy (FA) - a DTI measure of white matter integrity. FA was optimally predicted (based on the highest false discovery rate critical p), by five SNPs (rs1017412, rs2114252, rs16941261, rs3784406, and rs7176429; overall FDR critical p=0.028). Gene effects were widespread and included the corpus callosum genu and inferior longitudinal fasciculus - regions implicated in several neuropsychiatric disorders and previously associated with other neurotrophin-related genetic variants in an overlapping sample of subjects. NTRK3 genetic variants, and neurotrophins more generally, may influence white matter integrity in brain regions implicated in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Meredith N Braskie
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Dennis EL, Thompson PM. WITHDRAWN: Mapping Connectivity in the Developing Brain. Int J Dev Neurosci 2013:S0736-5748(13)00069-5. [PMID: 23702184 DOI: 10.1016/j.ijdevneu.2013.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/27/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.ijdevneu.2013.05.007. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
57
|
Microstructural white matter alterations in psychotic disorder: a family-based diffusion tensor imaging study. Schizophr Res 2013; 146:291-300. [PMID: 23523694 DOI: 10.1016/j.schres.2013.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is evidence for microstructural white matter alterations in patients with psychotic disorder, suggesting altered interregional connectivity. Less is known about the presence and role of white matter alterations in well individuals at higher than average genetic risk for psychotic disorder. METHODS 85 patients with psychotic disorder, 93 non-psychotic siblings of patients with psychotic disorder and 80 healthy controls underwent a diffusion tensor imaging (DTI) scanning protocol. In a whole brain voxel-based analysis using Tract Based Spatial Statistics (TBSS), fractional anisotropy (FA) values were compared between the three groups. Effects of antipsychotic medication and drug use were examined. RESULTS The patients displayed significantly lower mean FA than the controls in the following regions: corpus callosum (genu, body, splenium), forceps major and minor, external capsule bilaterally, corona radiata (anterior, posterior) bilaterally, left superior corona radiata and posterior thalamic radiation bilaterally. Similar FA differences existed between the patients and siblings; the siblings did not differ from the controls. CONCLUSION Profound microstructural white matter alterations were found in the corpus callosum and other tracti and fasciculi in the patients with psychotic disorder, but not in siblings and the controls. These alterations may reflect brain pathology associated with the illness, illness-related environmental risk factors, or its treatment, rather than genetic risk.
Collapse
|
58
|
Sprooten E, Fleming KM, Thomson PA, Bastin ME, Whalley HC, Hall J, Sussmann JE, McKirdy J, Blackwood D, Lawrie SM, McIntosh AM. White matter integrity as an intermediate phenotype: exploratory genome-wide association analysis in individuals at high risk of bipolar disorder. Psychiatry Res 2013; 206:223-31. [PMID: 23218918 DOI: 10.1016/j.psychres.2012.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/14/2012] [Accepted: 11/01/2012] [Indexed: 12/13/2022]
Abstract
White matter integrity, as measured using diffusion tensor imaging (DTI), is reduced in individuals with bipolar disorder (BD), their unaffected relatives and carriers of specific risk-alleles. Fractional anisotropy (FA), an index of white matter integrity, is highly heritable but the genetic architecture of this trait has received little investigation. In this study we performed a genome-wide association study with FA as quantitative phenotype, in unaffected relatives of patients with BD (N=70) and a matched control group (N=80). Amongst our top results were SNPs located in genes involved in cell adhesion, white matter development and neuronal plasticity. Pathway analysis of the top associated polymorphisms and genes confirmed the enrichment of processes relevant to BD and white matter development, including axon guidance, ErbB-signalling neurotrophin signalling, phosphatidylinositol signalling, and cell adhesion. The majority of genes implicated in these pathways were differentially associated with FA in individuals at high familial risk, suggesting interactions with genetic background or environmental factors secondary to familial risk for BD. Although the present findings require independent replication, the results encourage the use of global FA as a quantitative phenotype in future large-scale studies which may help to identify the biological processes underlying reduced FA in BD and other psychiatric disorders.
Collapse
Affiliation(s)
- Emma Sprooten
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Jahanshad N, Kochunov PV, Sprooten E, Mandl RC, Nichols TE, Almasy L, Blangero J, Brouwer RM, Curran JE, de Zubicaray GI, Duggirala R, Fox PT, Hong LE, Landman BA, Martin NG, McMahon KL, Medland SE, Mitchell BD, Olvera RL, Peterson CP, Starr JM, Sussmann JE, Toga AW, Wardlaw JM, Wright MJ, Hulshoff Pol HE, Bastin ME, McIntosh AM, Deary IJ, Thompson PM, Glahn DC. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage 2013; 81:455-469. [PMID: 23629049 DOI: 10.1016/j.neuroimage.2013.04.061] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022] Open
Abstract
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
Collapse
Affiliation(s)
- Neda Jahanshad
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
| | - Peter V Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emma Sprooten
- Olin Neuropsychiatry Research Center in the Institute of Living, Yale University School of Medicine, New Haven, CT, USA; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - René C Mandl
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas E Nichols
- Department of Statistics & Warwick Manufacturing Group, The University of Warwick, Coventry, UK; Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Oxford University, UK
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Rachel M Brouwer
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Ravi Duggirala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; South Texas Veterans Administration Medical Center, San Antonio, TX, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Katie L McMahon
- University of Queensland, Center for Advanced Imaging, Brisbane, Australia
| | - Sarah E Medland
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rene L Olvera
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Charles P Peterson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jessika E Sussmann
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Arthur W Toga
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Hilleke E Hulshoff Pol
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA.
| | - David C Glahn
- Olin Neuropsychiatry Research Center in the Institute of Living, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
60
|
White matter microstructural abnormalities in bipolar disorder: A whole brain diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2013; 2:558-68. [PMID: 24179807 PMCID: PMC3777761 DOI: 10.1016/j.nicl.2013.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/11/2022]
Abstract
Background Bipolar disorder (BD) is a chronic mental illness characterized by severe disruptions in mood and cognition. Diffusion tensor imaging (DTI) studies suggest that white matter (WM) tract abnormalities may contribute to the clinical hallmarks of the disorder. Using DTI and whole brain voxel-based analysis, we mapped the profile of WM anomalies in BD. All patients in our sample were euthymic and lithium free when scanned. Methods Diffusion-weighted and T1-weighted structural brain images were acquired from 23 lithium-free euthymic subjects with bipolar I disorder and 19 age- and sex-matched healthy control subjects on a 1.5 T MRI scanner. Scans were processed to provide measures of fractional anisotropy (FA) and mean and radial diffusivity (MD and RD) at each WM voxel, and processed scans were nonlinearly aligned to a customized brain imaging template for statistical group comparisons. Results Relative to controls, the bipolar group showed widespread regions of lower FA, including the corpus callosum, cortical and thalamic association fibers. MD and RD were abnormally elevated in patients in many of these same regions. Conclusions Our findings agree with prior reports of WM abnormalities in the corpus callosum and further link a bipolar diagnosis with structural abnormalities of the tapetum, fornix and stria terminalis. Future studies assessing the diagnostic specificity and prognostic implications of these abnormalities would be of interest. Using DTI and whole brain voxel-based analysis, we mapped WM anomalies in BD. Relative to controls, the bipolar group showed widespread regions of lower FA. MD and RD were abnormally elevated in patients in many of these same regions.
Collapse
|
61
|
Kukshal P, Bhatia T, Bhagwat AM, Gur RE, Gur RC, Deshpande SN, Nimgaonkar VL, Thelma BK. Association study of neuregulin-1 gene polymorphisms in a North Indian schizophrenia sample. Schizophr Res 2013; 144:24-30. [PMID: 23360725 PMCID: PMC4040109 DOI: 10.1016/j.schres.2012.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 12/17/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuregulin-1 (NRG1) gene polymorphisms have been proposed as risk factors for several common disorders. Associations with cognitive variation have also been tested. With regard to schizophrenia (SZ) risk, studies of Caucasian ancestry samples indicate associations more consistently than East Asian samples, suggesting heterogeneity. To exploit the differences in linkage disequilibrium (LD) structure across ethnic groups, we conducted a SZ case-control study (that included cognitive evaluations) in a sample from the north Indian population. METHODS NRG1 variants (n=35 SNPs, three microsatellite markers) were initially analyzed among cases (DSM IV criteria, n=1007) and controls (n=1019, drawn from two groups) who were drawn from the same geographical region in North India. Nominally significant associations with SZ were next analyzed in relation to neurocognitive measures estimated with a computerized neurocognitive battery in a subset of the sample (n=116 cases, n=170 controls). RESULTS Three variants and one microsatellite showed allelic association with SZ (rs35753505, rs4733263, rs6994992, and microsatellite 420M9-1395, p≤0.05 uncorrected for multiple comparisons). A six marker haplotype 221121 (rs35753505-rs6994992-rs1354336-rs10093107-rs3924999-rs11780123) showed (p=0.0004) association after Bonferroni corrections. Regression analyses with the neurocognitive measures showed nominal (uncorrected) associations with emotion processing and attention at rs35753505 and rs6994992, respectively. CONCLUSIONS Suggestive associations with SZ and SZ-related neurocognitive measures were detected with two SNPs from the NRG1 promoter region in a north Indian cohort. The functional role of the alleles merits further investigation.
Collapse
Affiliation(s)
- Prachi Kukshal
- Department of Genetics, University of Delhi South campus, Benito
Juarez Road, New Delhi – 110 021, India
- C.B. Patel Research Centre, Vile Parle (West), Mumbai, India
| | - Triptish Bhatia
- Department of Psychiatry, Dr. RML Hospital, New Delhi – 110
001, India
| | - A. M. Bhagwat
- C.B. Patel Research Centre, Vile Parle (West), Mumbai, India
| | - Raquel E. Gur
- Department of Psychiatry, Neuropsychiatry Section, University of
Pennsylvania, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, Neuropsychiatry Section, University of
Pennsylvania, Philadelphia, PA, USA
| | | | - Vishwajit L. Nimgaonkar
- Department of Psychiatry and Human Genetics, Western Psychiatric
Institute and Clinic, University of Pittsburgh School of Medicine and Graduate
School of Public Health, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - B. K. Thelma
- Department of Genetics, University of Delhi South campus, Benito
Juarez Road, New Delhi – 110 021, India
| |
Collapse
|
62
|
Abstract
The BDNF Val(66)Met polymorphism, a possible risk variant for mental disorders, is a potent modulator of neural plasticity in humans and has been linked to deficits in gray matter structure, function, and cognition. The impact of the variant on brain white matter structure, however, is controversial and remains poorly understood. Here, we used diffusion tensor imaging to examine the effects of BDNF Val(66)Met genotype on white matter microstructure in a sample of 85 healthy Caucasian adults. We demonstrate decreases of fractional anisotropy and widespread increases in radial diffusivity in Val/Val homozygotes compared with Met-allele carriers, particularly in prefrontal and occipital pathways. These data provide an independent confirmation of prior imaging genetics work, are consistent with complex effects of the BDNF Val(66)Met polymorphism on human brain structure, and may serve to generate hypotheses about variation in white matter microstructure in mental disorders associated with this variant.
Collapse
|
63
|
Reading SAJ, Oishi K, Redgrave GW, McEntee J, Shanahan M, Yoritomo N, Younes L, Mori S, Miller MI, van Zijl P, Margolis RL, Ross CA. Diffuse abnormality of low to moderately organized white matter in schizophrenia. Brain Connect 2013; 1:511-9. [PMID: 22500774 DOI: 10.1089/brain.2011.0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increasing evidence suggests that abnormal white matter is central to the pathophysiology and, potentially, the pathogenesis of schizophrenia (SCZ). The spatial distribution of observed abnormalities and the type of white matter involved remain to be elucidated. Seventeen chronically ill individuals with SCZ and 17 age- and gender-matched controls were studied using a 3T magnetic resonance imaging diffusion tensor imaging protocol designed to examine the abnormalities of white matter by region and by level of architectural infrastructure as assessed by fractional anisotropy (FA) in native space. After assessing whole-brain FA, FA was divided into quartiles, capturing all brain regions with FA values from 0 to 0.25, 0.25 to 0.5, 0.5 to 0.75, and 0.75 to 1.0. Mean whole-brain FA was 4.6% smaller in the SCZ group than in healthy controls. This difference was largely accounted for by FA values from the second quartile (between 0.25 and 0.5). Second quartile FA was decreased in all 130 brain regions of the template in the SCZ group, with the difference reaching statistical significance in 41 regions. Correspondingly, the amount of brain tissue with an FA of ∼0.4 was significantly reduced in the SCZ group, while the amount of brain tissue falling in the lowest quartile of FA was increased. These findings strongly imply a diffuse loss of white matter integrity in SCZ. Our finding that the loss of integrity disproportionately involves white matter of low to moderate organization suggests an approach to the specificity of white matter abnormalities in SCZ based on microstructure rather than spatial distribution.
Collapse
Affiliation(s)
- Sarah A J Reading
- Division of Neuroimaging, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Maksimov M, Vaht M, Harro J, Bachmann T. Can common functional gene variants affect visual discrimination in metacontrast masking? PLoS One 2013; 8:e55287. [PMID: 23359627 PMCID: PMC3554658 DOI: 10.1371/journal.pone.0055287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/21/2012] [Indexed: 11/18/2022] Open
Abstract
Mechanisms of visual perception should be robustly fast and provide veridical information about environmental objects in order to facilitate survival and successful coping. Because species-specific brain mechanisms for fast vision must have evolved under heavy pressure for efficiency, it has been held that different human individuals see the physical world in the same way and produce psychophysical functions of visual discrimination that are qualitatively the same. For many years, this assumption has been implicitly accepted in vision research studying extremely fast, basic visual processes, including studies of visual masking. However, in recent studies of metacontrast masking surprisingly robust individual differences in the qualitative aspects of subjects' performance have been found. As the basic species-specific visual functions very likely are based on universal brain mechanisms of vision, these differences probably are the outcome of variability in ontogenetic development (i.e., formation of idiosyncrasic skills of perception). Such developmental differences can be brought about by variants of genes that are differentially expressed in the course of CNS development. The objective of this study was to assess whether visual discrimination in metacontrast masking is related to three widely studied genetic polymorphisms implicated in brain function and used here as independent variables. The findings suggest no main effects of BDNF Val66Met, NRG1/rs6994992, or 5-HTTLPR polymorphisms on metacontrast performance, but several notable interactions of genetic variables with gender, stage of the sequence of experimental trials, perceptual strategies, and target/mask shape congruence were found. Thus, basic behavioral functions of fast vision may be influenced by common genetic variability. Also, when left uncontrolled, genetic factors may seriously confound variables in vision research using masking, obscure clear theoretical interpretation, lead to unexplicable inter-regional differences and create problems of replicability of formerly successful experiments.
Collapse
|
65
|
Samartzis L, Dima D, Fusar-Poli P, Kyriakopoulos M. White Matter Alterations in Early Stages of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J Neuroimaging 2013; 24:101-10. [DOI: 10.1111/j.1552-6569.2012.00779.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/18/2012] [Accepted: 10/06/2012] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lampros Samartzis
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- Athalassa Psychiatric Hospital; Cyprus Mental Health Services; Nicosia Cyprus
| | - Danai Dima
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Marinos Kyriakopoulos
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- National and Specialist Children's Inpatient Unit; South London and Maudsley NHS Foundation Trust; London UK
| |
Collapse
|
66
|
Savadjiev P, Whitford TJ, Hough ME, Clemm von Hohenberg C, Bouix S, Westin CF, Shenton ME, Crow TJ, James AC, Kubicki M. Sexually dimorphic white matter geometry abnormalities in adolescent onset schizophrenia. Cereb Cortex 2013; 24:1389-96. [PMID: 23307635 DOI: 10.1093/cercor/bhs422] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the "torque", is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449-457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175-3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia.
Collapse
|
67
|
Genetics of ageing-related changes in brain white matter integrity - a review. Ageing Res Rev 2013; 12:391-401. [PMID: 23128052 DOI: 10.1016/j.arr.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/05/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022]
Abstract
White matter (WM) plays a vital role in the efficient transfer of information between grey matter regions. Modern imaging techniques such as diffusion tensor imaging (DTI) have enabled the examination of WM microstructural changes across the lifespan, but there is limited knowledge about the role genetics plays in the pattern and aetiology of age-related WM microstructural changes. Family and twin studies suggest that the heritability of WM integrity measures changes over the lifespan, with the common DTI measure, fractional anisotropy (FA), showing moderate to high heritability in adults. However, few heritability studies have been undertaken in older adults. Linkage studies in middle-aged adults suggest that specific regions on chromosomes 3 and 15 may harbour genetic variants for WM integrity. A number of studies have investigated candidate genes, with the APOE ɛ4 polymorphism being the most frequently studied. Although these candidate gene studies suggest associations of particular genes with WM integrity measures in some specific brain regions, the findings remain inconsistent due to differences in their methodologies, samples and the outcome measures used. The APOE ɛ4 allele has been associated with decreased WM integrity (FA) in the cingulum, corpus callosum and parahippocampal gyrus. Only one genome-wide association study of global WM integrity measures in older adults has been published, and reported suggestive single nucleotide polymorphisms await replication. Overall, genetic age-related WM integrity studies are lacking and a concerted effort to examine the genetic determinants of age-related decline in WM integrity is clearly needed to improve our understanding of the ageing brain.
Collapse
|
68
|
Hazlett EA, Collazo T, Zelmanova Y, Entis JJ, Chu KW, Goldstein KE, Roussos P, Haznedar MM, Koenigsberg HW, New AS, Buchsbaum MS, Hershowitz JP, Siever LJ, Byne W. Anterior limb of the internal capsule in schizotypal personality disorder: fiber-tract counting, volume, and anisotropy. Schizophr Res 2012; 141:119-27. [PMID: 22995934 PMCID: PMC3742803 DOI: 10.1016/j.schres.2012.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 01/16/2023]
Abstract
Mounting evidence suggests that white matter abnormalities and altered subcortical-cortical connectivity may be central to the pathology of schizophrenia (SZ). The anterior limb of the internal capsule (ALIC) is an important thalamo-frontal white-matter tract shown to have volume reductions in SZ and to a lesser degree in schizotypal personality disorder (SPD). While fractional anisotropy (FA) and connectivity abnormalities in the ALIC have been reported in SZ, they have not been examined in SPD. In the current study, magnetic resonance (MRI) and diffusion tensor imaging (DTI) were obtained in age- and sex-matched individuals with SPD (n=33) and healthy controls (HCs; n=38). The ALIC was traced bilaterally on five equally spaced dorsal-to-ventral axial slices from each participant's MRI scan and co-registered to DTI for the calculation of FA. Tractography was used to examine tracts between the ALIC and two key Brodmann areas (BAs; BA10, BA45) within the dorsolateral prefrontal cortex (DLPFC). Compared with HCs, the SPD participants exhibited (a) smaller relative volume at the mid-ventral ALIC slice level but not the other levels; (b) normal FA within the ALIC; (c) fewer relative number of tracts between the most-dorsal ALIC levels and BA10 but not BA45 and (d) fewer dorsal ALIC-DLPFC tracts were associated with greater symptom severity in SPD. In contrast to prior SZ studies that report lower FA, individuals with SPD show sparing. Our findings are consistent with a pattern of milder thalamo-frontal dysconnectivity in SPD than schizophrenia.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Cannon DM, Walshe M, Dempster E, Collier DA, Marshall N, Bramon E, Murray RM, McDonald C. The association of white matter volume in psychotic disorders with genotypic variation in NRG1, MOG and CNP: a voxel-based analysis in affected individuals and their unaffected relatives. Transl Psychiatry 2012; 2:e167. [PMID: 23032943 PMCID: PMC3565820 DOI: 10.1038/tp.2012.82] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 04/16/2012] [Accepted: 05/31/2012] [Indexed: 02/05/2023] Open
Abstract
We investigated the role of variation in putative psychosis genes coding for elements of the white matter system by examining the contribution of genotypic variation in three single-nucleotide polymorphisms (SNPs) neuregulin 1 (NRG1) SNP8NRG221533, myelin oligodendrocytes glycoprotein (MOG) rs2857766 and CNP (rs2070106) and one haplotype HAP(ICE) (deCODE) to white matter volume in patients with psychotic disorder and their unaffected relatives. Structural magnetic resonance imaging and blood samples for genotyping were collected on 189 participants including patients with schizophrenia (SZ) or bipolar I disorder (BDI), unaffected first-degree relatives of these patients and healthy volunteers. The association of genotypic variation with white matter volume was assessed using voxel-based morphometry in SPM5. The NRG1 SNP and the HAP(ICE) haplotype were associated with abnormal white matter volume in the BDI group in the fornix, cingulum and parahippocampal gyrus circuit. In SZ the NRG1 SNP risk allele was associated with lower white matter volume in the uncinate fasciculus (UF), right inferior longitudinal fasciculus and the anterior limb of the internal capsule. Healthy G-homozygotes of the MOG SNP had greater white matter volume in areas of the brainstem and cerebellum; this relationship was absent in those with a psychotic disorder and the unaffected relatives groups. The CNP SNP did not contribute to white matter volume variation in the diagnostic groups studied. Variation in the genes coding for structural and protective components of myelin are implicated in abnormal white matter volume in the emotion circuitry of the cingulum, fornix, parahippocampal gyrus and UF in psychotic disorders.
Collapse
Affiliation(s)
- D M Cannon
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Biomarkers are chemical and physiologic parameters that can provide reliable and predictive information about the course and treatment of a given illness. Biomarkers are being increasingly sought after in other medical conditions, and in some instances (eg, breast cancer therapy) are beginning to be incorporated into clinical decision making. There is a confluence of research investigating potential biomarkers for schizophrenia. This article reviews early progress and strategies for evaluating biomarkers, as well as how this approach can advance the treatment of schizophrenia toward personalized medicine.
Collapse
Affiliation(s)
- Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Health Sciences University, 997 Saint Sebastian Way, Augusta, GA 30912, USA
| | | |
Collapse
|
71
|
Tosato S, Bellani M, Bonetto C, Ruggeri M, Perlini C, Lasalvia A, Marinelli V, Rambaldelli G, Cristofalo D, Bertani M, Zanoni M, Lazzarotto L, Cerini R, Pozzi Mucelli R, Tansella M, Dazzan P, Di Forti M, Murray RM, Collier DA, Brambilla P. Is neuregulin 1 involved in determining cerebral volumes in schizophrenia? Preliminary results showing a decrease in superior temporal gyrus volume. Neuropsychobiology 2012; 65:119-25. [PMID: 22378022 DOI: 10.1159/000330584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/05/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Reduced left superior temporal gyrus (STG) volume is one of the most replicated imaging findings in schizophrenia. However, it remains unclear whether genes play any role in our understanding of such structural alteration. It has been proposed that Neuregulin 1 (NRG1) might be a promising gene involved in schizophrenia, because of its role in neurodevelopment and neuroplasticity. In this study, the association between NRG1 and STG anatomy in patients with schizophrenia was explored for the first time. METHODS We investigated a 1-year treated prevalence cohort of patients with schizophrenia in contact with the South Verona Community-Based Mental Health Service. A blood sample was collected for DNA extraction and brain structure was assessed with an MRI scan. A total of 27 subjects with schizophrenia underwent both assessments and were included in the study. RESULTS We investigated the association between the polymorphism SNP8NRG222662 (rs4623364) of NRG1 and volume of the STG. We found that patients homozygous for the C allele had reduced left STG gray and white matter volumes in comparison to those homozygous for the G allele (p < 0.01 and p < 0.001, respectively). CONCLUSIONS This exploratory study suggests that NRG1 may be involved in determining STG size in schizophrenia, and may play a role in the neurogenetic basis of the language disturbances seen in this disorder. However, due to our small sample size, the results should be regarded as preliminary and replicated in a larger sample.
Collapse
Affiliation(s)
- Sarah Tosato
- Department of Public Health and Community Medicine, Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy. sarah.tosato @ univr.it
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Voineskos AN, Felsky D, Kovacevic N, Tiwari AK, Zai C, Chakravarty MM, Lobaugh NJ, Shenton ME, Rajji TK, Miranda D, Pollock BG, Mulsant BH, McIntosh AR, Kennedy JL. Oligodendrocyte genes, white matter tract integrity, and cognition in schizophrenia. ACTA ACUST UNITED AC 2012; 23:2044-57. [PMID: 22772651 DOI: 10.1093/cercor/bhs188] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte genes and white matter tracts have been implicated in the pathophysiology of schizophrenia and may play an important etiopathogenic role in cognitive dysfunction in schizophrenia. The objective of the present study in 60 chronic schizophrenia patients individually matched to 60 healthy controls was to determine whether 1) white matter tract integrity influences cognitive performance, 2) oligodendrocyte gene variants influence white matter tract integrity and cognitive performance, and 3) effects of oligodendrocyte gene variants on cognitive performance are mediated via white matter tract integrity. We used the partial least-squares multivariate approach to ascertain relationships among oligodendrocyte gene variants, integrity of cortico-cortical and subcortico-cortical white matter tracts, and cognitive performance. Robust relationships among oligodendrocyte gene variants, white matter tract integrity, and cognitive performance were found in both patients and controls. We also showed that effects of gene variants on cognitive performance were mediated by the integrity of white matter tracts. Our results were strengthened by bioinformatic analyses of gene variant function. To our knowledge, this is the first study that has brought together these lines of investigation in the same population and highlights the importance of the oligodendrocyte/white matter pathway in schizophrenia, particularly as it pertains to cognitive function.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Clark K, Narr KL, O'Neill J, Levitt J, Siddarth P, Phillips O, Toga A, Caplan R. White matter integrity, language, and childhood onset schizophrenia. Schizophr Res 2012; 138:150-6. [PMID: 22405729 PMCID: PMC3372669 DOI: 10.1016/j.schres.2012.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND The heterogeneity of symptoms and cognitive deficits in schizophrenia can be explained by abnormal connectivity between brain regions. Childhood-onset schizophrenia (COS) is a particularly severe form of schizophrenia, with an onset during a key time period for both cerebral pruning and myelination. METHODS Diffusion tensor images were acquired from 18 children and adolescents with COS and 25 controls. The COS group was divided into two sub-groups-one with linguistic impairment (LI) and the other without (NLI). The fractional anisotropy (FA), axial (AD), and radial diffusivity (RD) data from the two COS sub-groups were compared to each other and to the controls using tract-based spatial statistics (TBSS) analyses, which is a voxel-based method used to identify regions of white matter abnormalities. RESULTS TBSS identified several regions in the left hemisphere where the LI group had increased AD and RD relative to the NLI and the control groups. These areas primarily localized to linguistic tracts: left superior longitudinal fasciculus and left inferior longitudinal fasciculus/inferior fronto-occipital fasciculus. Regions of increased RD overlapped regions of increased AD, with the former showing more pronounced effects. CONCLUSIONS Studies of adult-onset schizophrenia typically identify areas of higher RD but unchanged AD; however, normal development studies have shown that while RD decreases are pronounced over this age range, smaller decreases in AD can also be detected. The observed increases in both RD and AD suggest that developmental disturbances affecting the structural connectivity of these pathways are more severe in COS accompanied by severe linguistic impairments.
Collapse
Affiliation(s)
- Kristi Clark
- Laboratory of Neuro Imaging, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Schizophrenia. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
75
|
Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 2012; 11:560-79. [DOI: 10.1038/nrd3649] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
76
|
Blond BN, Fredericks CA, Blumberg HP. Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala-anterior paralimbic neural system. Bipolar Disord 2012; 14:340-55. [PMID: 22631619 PMCID: PMC3880745 DOI: 10.1111/j.1399-5618.2012.01015.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In past decades, neuroimaging research in bipolar disorder has demonstrated a convergence of findings in an amygdala-anterior paralimbic cortex neural system. This paper reviews behavioral neurology literature that first suggested a central role for this neural system in the disorder and the neuroimaging evidence that supports it. METHODS Relevant articles are reviewed to provide an amygdala-anterior paralimbic cortex neural system model of bipolar disorder, including articles from the fields of behavioral neurology and neuroanatomy, and neuroimaging. RESULTS The literature is highly supportive of key roles for the amygdala, anterior paralimbic cortices, and connections among these structures in the emotional dysregulation of bipolar disorder. The functions subserved by their more widely distributed connection sites suggest that broader system dysfunction could account for the range of functions-from neurovegetative to cognitive-disrupted in the disorder. Abnormalities in some components of this neural system are apparent by adolescence, while others, such as those in rostral prefrontal regions, appear to progress over adolescence and young adulthood, suggesting a neurodevelopmental model of the disorder. However, some findings conflict, which may reflect the small sample sizes of some studies, and clinical heterogeneity and methodological differences across studies. CONCLUSIONS Consistent with models derived from early behavioral neurology studies, neuroimaging studies support a central role for an amygdala-anterior paralimbic neural system in bipolar disorder, and implicate abnormalities in the development of this system in the disorder. This system will be an important focus of future studies on the developmental pathophysiology, detection, treatment, and prevention of the disorder.
Collapse
Affiliation(s)
- Benjamin N Blond
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Carolyn A Fredericks
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,Department of Diagnostic Radiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,The Child Study Center, Yale School of Medicine, New Haven, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,Research Enhancement Award Program Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
77
|
A genome-wide search for genetic influences and biological pathways related to the brain's white matter integrity. Neurobiol Aging 2012; 33:1847.e1-14. [PMID: 22425255 DOI: 10.1016/j.neurobiolaging.2012.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/31/2012] [Accepted: 02/04/2012] [Indexed: 01/04/2023]
Abstract
A genome-wide search for genetic variants influencing the brain's white matter integrity in old age was conducted in the Lothian Birth Cohort 1936 (LBC1936). At ∼73 years of age, members of the LBC1936 underwent diffusion MRI, from which 12 white matter tracts were segmented using quantitative tractography, and tract-averaged water diffusion parameters were determined (n = 668). A global measure of white matter tract integrity, g(FA), derived from principal components analysis of tract-averaged fractional anisotropy measurements, accounted for 38.6% of the individual differences across the 12 white matter tracts. A genome-wide search was performed with g(FA) on 535 individuals with 542,050 single nucleotide polymorphisms (SNPs). No single SNP association was genome-wide significant (all p > 5 × 10(-8)). There was genome-wide suggestive evidence for two SNPs, one in ADAMTS18 (p = 1.65 × 10(-6)), which is related to tumor suppression and hemostasis, and another in LOC388630 (p = 5.08 × 10(-6)), which is of unknown function. Although no gene passed correction for multiple comparisons in single gene-based testing, biological pathways analysis suggested evidence for an over-representation of neuronal transmission and cell adhesion pathways relating to g(FA).
Collapse
|
78
|
Karlsgodt KH, Jacobson SC, Seal M, Fusar-Poli P. The relationship of developmental changes in white matter to the onset of psychosis. Curr Pharm Des 2012; 18:422-33. [PMID: 22239573 PMCID: PMC7130450 DOI: 10.2174/138161212799316073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/17/2011] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a disorder with a pronounced developmental component. Accordingly, there is a growing interest in characterizing developmental changes in the period leading up to disease onset, in an effort to develop effective preventative interventions. One of the ongoing neurodevelopmental changes known to occur in the late adolescent period that often overlaps with the prodromal phase and time of onset is white matter development and myelination. In this critical review, a disruption in the normal trajectory of white matter development could potentially play an important role in the onset of psychosis. We seek to summarize the existing state of research on white matter development in prodromal subjects, with a particular focus on diffusion tensor imaging (DTI) measures. First, we describe the physiological basis of developmental white matter changes and myelination. Next, we characterize the pattern of white matter changes associated with typical development across adolescence as measured with DTI. Then, we discuss white matter changes observed in adult patients with schizophrenia and in individuals seen in genetic and clinical high risk states. Finally, we discuss the implications of these findings for future research directions and for potential therapeutic interventions.
Collapse
Affiliation(s)
- Katherine H Karlsgodt
- Semel Institute for Neuroscience and Behavior, University of California, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
79
|
Mothersill O, Kelly S, Rose EJ, Donohoe G. The effects of psychosis risk variants on brain connectivity: a review. Front Psychiatry 2012; 3:18. [PMID: 22416237 PMCID: PMC3299399 DOI: 10.3389/fpsyt.2012.00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/22/2012] [Indexed: 01/18/2023] Open
Abstract
In light of observed changes in connectivity in schizophrenia and the highly heritable nature of the disease, neural connectivity may serve as an important intermediate phenotype for schizophrenia. However, how individual variants confer altered connectivity and which measure of brain connectivity is more proximal to the underlying genetic architecture (i.e., functional or structural) has not been well delineated. In this review we consider these issues and the relative sensitivity of imaging methodologies to schizophrenia-related changes in connectivity. We searched PubMed for studies considering schizophrenia risk genes AND functional or structural connectivity. Where data was available, summary statistics were used to determine an estimate of effect size (i.e., Cohen's d). A random-effects meta-analysis was used to consider (1) the largest effect and (2) all significant effects between functional and structural studies. Schizophrenia risk variants involved in neurotransmission, neurodevelopment and myelin function were found to be associated with altered neural connectivity. On average, schizophrenia risk genes had a large effect on functional (mean d = 0.76) and structural connectivity (mean d = 1.04). The examination of the largest effect size indicated that the outcomes of functional and structural studies were comparable (Q = 2.17, p > 0.05). Conversely, consideration of effect size estimates for all significant effects suggest that reported effect sizes in structural connectivity studies were more variable than in functional connectivity studies, and that there was a significant lack of homogeneity across the modalities (Q = 6.928, p = 0.008). Given the more variable profile of effect sizes associated with structural connectivity, these data may suggest that structural imaging methods are more sensitive to a wider range of effects, as opposed to functional studies which may only be able to determine large effects. These conclusions are limited by methodological considerations, and require further investigation involving larger samples, multiple genes, and novel analysis techniques for confirmation.
Collapse
Affiliation(s)
- Omar Mothersill
- Neuropsychiatric Genetics Group, Department of Psychiatry, Trinity College Dublin Dublin, Ireland
| | | | | | | |
Collapse
|
80
|
Sui J, Adali T, Yu Q, Chen J, Calhoun VD. A review of multivariate methods for multimodal fusion of brain imaging data. J Neurosci Methods 2011; 204:68-81. [PMID: 22108139 DOI: 10.1016/j.jneumeth.2011.10.031] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 01/29/2023]
Abstract
The development of various neuroimaging techniques is rapidly improving the measurements of brain function/structure. However, despite improvements in individual modalities, it is becoming increasingly clear that the most effective research approaches will utilize multi-modal fusion, which takes advantage of the fact that each modality provides a limited view of the brain. The goal of multi-modal fusion is to capitalize on the strength of each modality in a joint analysis, rather than a separate analysis of each. This is a more complicated endeavor that must be approached more carefully and efficient methods should be developed to draw generalized and valid conclusions from high dimensional data with a limited number of subjects. Numerous research efforts have been reported in the field based on various statistical approaches, e.g. independent component analysis (ICA), canonical correlation analysis (CCA) and partial least squares (PLS). In this review paper, we survey a number of multivariate methods appearing in previous multimodal fusion reports, mostly fMRI with other modality, which were performed with or without prior information. A table for comparing optimization assumptions, purpose of the analysis, the need of priors, dimension reduction strategies and input data types is provided, which may serve as a valuable reference that helps readers understand the trade-offs of the 7 methods comprehensively. Finally, we evaluate 3 representative methods via simulation and give some suggestions on how to select an appropriate method based on a given research.
Collapse
Affiliation(s)
- Jing Sui
- The Mind Research Network, Albuquerque, NM 87106, USA.
| | - Tülay Adali
- Dept. of CSEE, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Qingbao Yu
- The Mind Research Network, Albuquerque, NM 87106, USA
| | - Jiayu Chen
- The Mind Research Network, Albuquerque, NM 87106, USA; Dept. of ECE, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA; Dept. of ECE, University of New Mexico, Albuquerque, NM 87131, USA; Dept. of Psychiatry, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
81
|
Colby JB, Soderberg L, Lebel C, Dinov ID, Thompson PM, Sowell ER. Along-tract statistics allow for enhanced tractography analysis. Neuroimage 2011; 59:3227-42. [PMID: 22094644 DOI: 10.1016/j.neuroimage.2011.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/19/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023] Open
Abstract
Diffusion imaging tractography is a valuable tool for neuroscience researchers because it allows the generation of individualized virtual dissections of major white matter tracts in the human brain. It facilitates between-subject statistical analyses tailored to the specific anatomy of each participant. There is prominent variation in diffusion imaging metrics (e.g., fractional anisotropy, FA) within tracts, but most tractography studies use a "tract-averaged" approach to analysis by averaging the scalar values from the many streamline vertices in a tract dissection into a single point-spread estimate for each tract. Here we describe a complete workflow needed to conduct an along-tract analysis of white matter streamline tract groups. This consists of 1) A flexible MATLAB toolkit for generating along-tract data based on B-spline resampling and compilation of scalar data at different collections of vertices along the curving tract spines, and 2) Statistical analysis and rich data visualization by leveraging tools available through the R platform for statistical computing. We demonstrate the effectiveness of such an along-tract approach over the tract-averaged approach in an example analysis of 10 major white matter tracts in a single subject. We also show that these techniques easily extend to between-group analyses typically used in neuroscience applications, by conducting an along-tract analysis of differences in FA between 9 individuals with fetal alcohol spectrum disorders (FASDs) and 11 typically-developing controls. This analysis reveals localized differences between FASD and control groups that were not apparent using a tract-averaged method. Finally, to validate our approach and highlight the strength of this extensible software framework, we implement 2 other methods from the literature and leverage the existing workflow tools to conduct a comparison study.
Collapse
Affiliation(s)
- John B Colby
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
82
|
Tost H, Bilek E, Meyer-Lindenberg A. Brain connectivity in psychiatric imaging genetics. Neuroimage 2011; 62:2250-60. [PMID: 22100419 DOI: 10.1016/j.neuroimage.2011.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 12/17/2022] Open
Abstract
In the past decade, imaging genetics has evolved into a highly successful neuroimaging discipline with a variety of sophisticated research tools. To date, several neural systems mechanisms have been identified that mediate genetic risk for mental disorders linked to common candidate and genome-wide-supported variants. In particular, the examination of intermediate connectivity phenotypes has recently gained increasing popularity. This paper gives an overview of the scientific methods and evidence that link indices of neural network organization to the genetic susceptibility for mental illness with a focus on the effects of candidate genes and genome-wide supported risk variants on brain structure and function.
Collapse
Affiliation(s)
- Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | |
Collapse
|
83
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
84
|
Nickl-Jockschat T, Stöcker T, Markov V, Krug A, Huang R, Schneider F, Habel U, Zerres K, Nöthen MM, Treutlein J, Rietschel M, Shah NJ, Kircher T. The impact of a Dysbindin schizophrenia susceptibility variant on fiber tract integrity in healthy individuals: a TBSS-based diffusion tensor imaging study. Neuroimage 2011; 60:847-53. [PMID: 22019876 DOI: 10.1016/j.neuroimage.2011.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder with high heritability, though its exact etiopathogenesis is yet unknown. An increasing number of studies point to the importance of white matter anomalies in the pathophysiology of schizophrenia. While several studies have identified the impact of schizophrenia susceptibility gene variants on gray matter anatomy in both schizophrenia patients and healthy risk variant carriers, studies dealing with the impact of these gene variants on white matter integrity are still scarce. We here present a study on the effects of a Dysbindin schizophrenia susceptibility gene variant on fiber tract integrity in healthy young subjects. 101 subjects genotyped for Dysbindin-gene variant rs1018381, though without personal or first degree relative history of psychiatric disorders underwent diffusion tensor imaging (DTI), 83 of them were included in the final analysis. We used Tract-Based Spatial Statistics (TBSS) analysis to delineate the major fiber tracts. Carriers of the minor allele T of the rs1018381 in the Dysbindin gene showed two clusters of reduced fractional anisotropy (FA) values in the perihippocampal region of the right temporal lobe compared to homozygote carriers of the major allele C. Clusters of increased FA values in T-allele carriers were found in the left prefrontal white matter, the right fornix, the right midbrain area, the left callosal body, the left cerebellum and in proximity of the right superior medial gyrus. Dysbindin has been implicated in neurite outgrowth and morphology. Impairments in anatomic connectivity as found associated with the minor Dysbindin allele in our study may result in increased risk for schizophrenia due to altered fiber tracts.
Collapse
|
85
|
Barnes A, Isohanni M, Barnett JH, Pietiläinen O, Veijola J, Miettunen J, Paunio T, Tanskanen P, Ridler K, Suckling J, Bullmore ET, Jones PB, Murray GK. Neuregulin-1 genotype is associated with structural differences in the normal human brain. Neuroimage 2011; 59:2057-61. [PMID: 22019858 DOI: 10.1016/j.neuroimage.2011.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 11/24/2022] Open
Abstract
The human neuregulin-1 (NRG-1) gene is highly expressed in the brain, is implicated in numerous functions associated with neuronal development, and is a leading candidate gene for schizophrenia. The T allele of SNP8NRG243177, part of a risk haplotype for schizophrenia, has been previously associated with decreases in white matter in the right anterior internal capsule and the left anterior thalamic radiation. To our knowledge no studies have described the effects of SNP8NRG243177 on grey matter volume at a voxelwise level. We assessed associations between this SNP and brain structure in 79 general population volunteers from the Northern Finland 1966 Birth Cohort (NFBC 1966). We show, for the first time, that genetic variation in SNP8NRG243177 is associated with variation in frontal brain structure in both grey and white matter. T allele carriers showed decreased grey matter volume in several frontal gyri, including inferior, middle and superior frontal gyri and the anterior cingulate gyrus, as well as decreased white matter volume in the regions of the genu and body of the corpus callosum, anterior and superior corona radiata, anterior limb of the internal capsule and external capsule regions traversed by major white matter tracts of the anterior thalamic radiation, and the inferior fronto-occipital fasciculus. These results suggest that this genetic variant may mediate risk for schizophrenia, in part, through its effect on brain structure in these regions.
Collapse
Affiliation(s)
- Anna Barnes
- Department of Psychiatry, University of Cambridge, Box 189 Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Karlsgodt KH, Bachman P, Winkler AM, Bearden CE, Glahn DC. Genetic influence on the working memory circuitry: behavior, structure, function and extensions to illness. Behav Brain Res 2011; 225:610-22. [PMID: 21878355 DOI: 10.1016/j.bbr.2011.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
Abstract
Working memory is a highly heritable complex cognitive trait that is critical for a number of higher-level functions. However, the neural substrates of this behavioral phenotype are intricate and it is unknown through what precise biological mechanism variation in working memory is transmitted. In this review we explore different functional and structural components of the working memory circuitry, and the degree to which each of them is contributed to by genetic factors. Specifically, we consider dopaminergic function, glutamatergic function, white matter integrity and gray matter structure all of which provide potential mechanisms for the inheritance of working memory deficits. In addition to discussing the overall heritability of these measures we also address specific genes that may play a role. Each of these heritable components has the potential to uniquely contribute to the working memory deficits observed in genetic disorders, including 22q deletion syndrome, fragile X syndrome, phenylketonuria (PKU), and schizophrenia. By observing the individual contributions of disruptions in different components of the working memory circuitry to behavioral performance, we highlight the concept that there may be many routes to a working memory deficit; even though the same cognitive measure may be a valid endophenotype across different disorders, the underlying cause of, and treatment for, the deficit may differ. This has implications for our understanding of the transmission of working memory deficits in both healthy and disordered populations.
Collapse
Affiliation(s)
- Katherine H Karlsgodt
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
87
|
Sprooten E, Sussmann JE, Clugston A, Peel A, McKirdy J, Moorhead TWJ, Anderson S, Shand AJ, Giles S, Bastin ME, Hall J, Johnstone EC, Lawrie SM, McIntosh AM. White matter integrity in individuals at high genetic risk of bipolar disorder. Biol Psychiatry 2011; 70:350-6. [PMID: 21429475 DOI: 10.1016/j.biopsych.2011.01.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/22/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bipolar disorder is a familial psychiatric disorder associated with reduced white matter integrity, but it is not clear whether such abnormalities are present in young unaffected relatives and, if so, whether they have behavioral correlates. We investigated with whole brain diffusion tensor imaging whether increased genetic risk for bipolar disorder is associated with reductions in white matter integrity and whether these reductions are associated with cyclothymic temperament. METHODS Diffusion tensor imaging data of 117 healthy unaffected relatives of patients with bipolar disorder and 79 control subjects were acquired. Cyclothymic temperament was measured with the cyclothymia scale of the Temperament Evaluation of Memphis, Pisa and San Diego auto-questionnaire. Voxel-wise between-group comparisons of fractional anisotropy (FA) and regression of cyclothymic temperament were performed with tract-based spatial statistics. RESULTS Compared to the control group, unaffected relatives had reduced FA in one large widespread cluster. Cyclothymic temperament was inversely related to FA in the internal capsules bilaterally and in left temporal white matter, regions also found to be reduced in high-risk subjects. CONCLUSIONS These results show that widespread white matter integrity reductions are present in unaffected relatives of bipolar patients and that more localized reductions might underpin cyclothymic temperament. These findings suggest that white matter integrity is an endophenotype for bipolar disorder with important behavioral associations previously linked to the etiology of the condition.
Collapse
Affiliation(s)
- Emma Sprooten
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Sui J, Pearlson G, Caprihan A, Adali T, Kiehl KA, Liu J, Yamamoto J, Calhoun VD. Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model. Neuroimage 2011; 57:839-55. [PMID: 21640835 PMCID: PMC3129373 DOI: 10.1016/j.neuroimage.2011.05.055] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/26/2011] [Accepted: 05/17/2011] [Indexed: 11/22/2022] Open
Abstract
Diverse structural and functional brain alterations have been identified in both schizophrenia and bipolar disorder, but with variable replicability, significant overlap and often in limited number of subjects. In this paper, we aimed to clarify differences between bipolar disorder and schizophrenia by combining fMRI (collected during an auditory oddball task) and diffusion tensor imaging (DTI) data. We proposed a fusion method, "multimodal CCA+ joint ICA", which increases flexibility in statistical assumptions beyond existing approaches and can achieve higher estimation accuracy. The data collected from 164 participants (62 healthy controls, 54 schizophrenia and 48 bipolar) were extracted into "features" (contrast maps for fMRI and fractional anisotropy (FA) for DTI) and analyzed in multiple facets to investigate the group differences for each pair-wised groups and each modality. Specifically, both patient groups shared significant dysfunction in dorsolateral prefrontal cortex and thalamus, as well as reduced white matter (WM) integrity in anterior thalamic radiation and uncinate fasciculus. Schizophrenia and bipolar subjects were separated by functional differences in medial frontal and visual cortex, as well as WM tracts associated with occipital and frontal lobes. Both patients and controls showed similar spatial distributions in motor and parietal regions, but exhibited significant variations in temporal lobe. Furthermore, there were different group trends for age effects on loading parameters in motor cortex and multiple WM regions, suggesting that brain dysfunction and WM disruptions occurred in identified regions for both disorders. Most importantly, we can visualize an underlying function-structure network by evaluating the joint components with strong links between DTI and fMRI. Our findings suggest that although the two patient groups showed several distinct brain patterns from each other and healthy controls, they also shared common abnormalities in prefrontal thalamic WM integrity and in frontal brain mechanisms.
Collapse
Affiliation(s)
- Jing Sui
- The Mind Research Network, Albuquerque, NM 87106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Smyrnis N, Kattoulas E, Stefanis NC, Avramopoulos D, Stefanis CN, Evdokimidis I. Schizophrenia-related neuregulin-1 single-nucleotide polymorphisms lead to deficient smooth eye pursuit in a large sample of young men. Schizophr Bull 2011; 37:822-31. [PMID: 19965935 PMCID: PMC3122292 DOI: 10.1093/schbul/sbp150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neuregulin-1 (NRG1) variations have been shown to modulate schizophrenia candidate endophenotypes related to brain structure and function. The aim of this study was to determine the effect of NRG1 on several oculomotor schizophrenia endophenotypes. The effects of 5 core single-nucleotide polymorphisms (SNPs) within the NRG1 gene to oculomotor parameters in a battery of oculomotor tasks (saccade, antisaccade, smooth eye pursuit, fixation) were investigated in a sample of 2243 young male military conscripts. Additive regression models, bootstrap and permutation techniques, were used as well as structural equation modeling and haplotype analysis. A deficit in global smooth eye pursuit performance measured using the root-mean-square error (RMSE) was related to the risk allele of SNP8NRG243177, and a deficit in global smooth eye pursuit performance measured using the saccade frequency was related with the risk allele of SNP8NRG433E1006. Structural equation modeling confirmed a global effect of NRG1 genotype on smooth eye pursuit performance using the RMSE, while the effect on saccade frequency was not confirmed. Haplotype analysis further confirmed the prediction from the structural equation modeling that a combination of alleles corresponding to the Icelandic high-risk haplotype was related to a deficit in global pursuit performance. NRG1 genotype variations were related to smooth eye pursuit variations both at the SNP level and at the haplotype level adding to the validation of this gene as a candidate gene for the disorder.
Collapse
Affiliation(s)
- Nikolaos Smyrnis
- Psychiatry Department, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 72 Vas. Sofias Avenue, Athens, Greece.
| | | | - Nicholas C. Stefanis
- University Mental Health Research Institute, Athens, Greece,Psychiatry Department
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University, Baltimore, MD
| | | | - Ioannis Evdokimidis
- Neurology Department, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
90
|
O'Connell G, Lawrie SM, McIntosh AM, Hall J. Schizophrenia risk genes: Implications for future drug development and discovery. Biochem Pharmacol 2011; 81:1367-73. [PMID: 21093417 DOI: 10.1016/j.bcp.2010.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 02/04/2023]
Abstract
Present-day development of improved treatments for schizophrenia is hindered by uncertain models of disease, inter-individual response variability in clinical trials and a paucity of sensitive measures of treatment effects. Findings from genetic research emphasize the potential for schizophrenia risk genes to help develop focused treatments, discover new drug targets and provide markers of clinical subtypes. Advances in genetic technologies also provide novel modes of drug discovery in schizophrenia such as transcriptomics, epigenetics and transgenic animal models. In this review, we discuss proven and proposed ways risk genes can be used to enhance the development and discovery of treatments for schizophrenia and highlight key studies in these approaches.
Collapse
Affiliation(s)
- Garret O'Connell
- Division of Psychiatry, University of Edinburgh, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
91
|
Li YO, Yang FG, Nguyen CT, Cooper SR, LaHue SC, Venugopal S, Mukherjee P. Independent component analysis of DTI reveals multivariate microstructural correlations of white matter in the human brain. Hum Brain Mapp 2011; 33:1431-51. [PMID: 21567660 DOI: 10.1002/hbm.21292] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/07/2022] Open
Abstract
It has recently been demonstrated that specific patterns of correlation exist in diffusion tensor imaging (DTI) parameters across white matter tracts in the normal human brain. These microstructural correlations are thought to reflect phylogenetic and functional similarities between different axonal fiber pathways. However, this earlier work was limited in three major respects: (1) the analysis was restricted to only a dozen selected tracts; (2) the DTI measurements were averaged across whole tracts, whereas metrics such as fractional anisotropy (FA) are known to vary considerably within single tracts; and (3) a univariate measure of correlation was used. In this investigation, we perform an automated multivariate whole-brain voxel-based study of white matter FA correlations using independent component analysis (ICA) of tract-based spatial statistics computed from 3T DTI in 53 healthy adult volunteers. The resulting spatial maps of the independent components show voxels for which the FA values within each map co-vary across individuals. The strongest FA correlations were found in anatomically recognizable tracts and tract segments, either singly or in homologous pairs. Hence, ICA of DTI provides an automated unsupervised decomposition of the normal human brain into multiple separable microstructurally correlated white matter regions, many of which correspond to anatomically familiar classes of white matter pathways. Further research is needed to determine whether whole-brain ICA of DTI represents a novel alternative to tractography for feature extraction in studying the normal microstructure of human white matter as well as the abnormal white matter microstructure found in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yi-Ou Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107-0946, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Yamamori H, Hashimoto R, Verrall L, Yasuda Y, Ohi K, Fukumoto M, Umeda-Yano S, Ito A, Takeda M. Dysbindin-1 and NRG-1 gene expression in immortalized lymphocytes from patients with schizophrenia. J Hum Genet 2011; 56:478-83. [PMID: 21512575 DOI: 10.1038/jhg.2011.40] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dysbindin-1 and neuregulin-1 (NRG-1) genes are related to schizophrenia. Expression studies in postmortem brains have revealed lower expression of dysbindin-1 and higher expression of NRG-1 in brain tissue from subjects with schizophrenia. In addition to the difficulty of sampling, the use of postmortem brain tissues is not ideal because these tissues are heterogeneous with respect to biochemical parameters, lifetime history of medications and physiological status at the time of death. In contrast, medication and environmental influences that could mask the genetic basis of differences in RNA expression are removed in immortalized lymphocytes by culturing. Only a few microarray analysis studies using immortalized lymphocytes in schizophrenia have been reported, and whether immortalized lymphocytes are an appropriate alternative to neuronal tissue remains controversial. In this study, we measured the mRNA expression levels of dysbindin-1, NRG-1 and two other genes (NPY1R and GNAO1) in immortalized lymphocytes from 45 patients with schizophrenia and 45 controls using real-time quantitative reverse transcriptase-PCR. No difference was observed between patients and controls with respect to the expression of dysbindin-1, NRG-1, NPY1R or GNAO1 gene. Our findings suggest that the gene expression profile of immortalized lymphocyte from schizophrenic patients is different from that in postmortem brain tissue at least with respect to the dysbindin-1 and NRG-1 genes.
Collapse
Affiliation(s)
- Hidenaga Yamamori
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Papiol S, Begemann M, Rosenberger A, Friedrichs H, Ribbe K, Grube S, Schwab MH, Jahn H, Gunkel S, Benseler F, Nave KA, Ehrenreich H. A phenotype-based genetic association study reveals the contribution of neuregulin1 gene variants to age of onset and positive symptom severity in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:340-5. [PMID: 21234898 DOI: 10.1002/ajmg.b.31168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
By pure endpoint diagnosis of the disease, the risk of developing schizophrenia has been repeatedly associated with specific variants of the neuregulin1 (NRG1) gene. However, the role of NRG1 in the etiology of schizophrenia has remained unclear. Since Nrg1 serves vital functions in early brain development of mice, we hypothesized that human NRG1 alleles codetermine developmentally influenced readouts of the disease: age of onset and positive symptom severity. We analyzed 1,071 comprehensively phenotyped schizophrenic/schizoaffective patients, diagnosed according to DSM-IV-TR, from the GRAS (Göttingen Research Association for Schizophrenia) Data Collection for genetic variability in the Icelandic region of risk in the NRG1 gene. For the case-control analysis part of the study, we included 1,056 healthy individuals with comparable ethnicity. The phenotype-based genetic association study (PGAS) was performed on the GRAS sample. Instead of a risk constellation, we detected that several haplotypic variants of NRG1 were, unexpectedly, less frequent in the schizophrenic than in the control sample (mean OR=0.78, range between 0.68 and 0.85). In the PGAS we found that these "protective" NRG1 variants are specifically underrepresented in subgroups of schizophrenic subjects with early age of onset and high positive symptom load. The GRAS Data Collection as a prerequisite for PGAS has enabled us to associate protective NRG1 genotypes with later onset and milder course of schizophrenia.
Collapse
Affiliation(s)
- Sergi Papiol
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Roussos P, Giakoumaki SG, Adamaki E, Bitsios P. The influence of schizophrenia-related neuregulin-1 polymorphisms on sensorimotor gating in healthy males. Biol Psychiatry 2011; 69:479-86. [PMID: 21035784 DOI: 10.1016/j.biopsych.2010.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/10/2010] [Accepted: 09/06/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuregulin-1 (NRG1) variations have been shown to modulate schizophrenia candidate endophenotypes related to brain structure and function. The objective of this cross-sectional genetic association study was to determine the relationship of six core single-nucleotide polymorphisms within the NRG1 gene identified as promising schizophrenia risk genes (rs6994992, SNP8NRG221132, SNP8NRG241930, rs3924999, rs2439272 and rs10503929) to prepulse inhibition (PPI) of the acoustic startle reflex, a well validated schizophrenia endophenotype. METHODS PPI was tested in a highly homogeneous study entry cohort (n = 445) of carefully screened healthy, young male army conscripts originating from the Greek LOGOS project (Learning on Genetics of Schizophrenia Spectrum). The QTPHASE from the UNPHASED package was used for the association analysis of each single-nucleotide polymorphisms or haplotype data. RESULTS Reduced PPI, particularly at 75-dB_120-msec and 85-dB_60-msec trials, was related to the SNP8NRG241930 G allele and especially the rs6994992 T allele and rs2439272 C allele. Haplotype analysis followed up by risk versus no-risk groups Analysis of variance confirmed that the rs10503929 and rs3924999 SNPs were also associated with PPI reductions, when combined with rs2439272. CONCLUSIONS We provide solid evidence for a role of NRG1 risk genotype variations in PPI reductions in a large and demographically and genetically highly homogeneous cohort of healthy young males. These results further validate NRG1 as a candidate gene for the schizophrenia and spectrum disorders and improve our understanding of its functional mechanisms within the human brain because they suggest an influence of the gene in the neural substrate mediating sensorimotor gating.
Collapse
Affiliation(s)
- Panos Roussos
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece.
| | | | | | | |
Collapse
|
95
|
Zuliani R, Moorhead TWJ, Bastin ME, Johnstone EC, Lawrie SM, Brambilla P, O'Donovan MC, Owen MJ, Hall J, McIntosh AM. Genetic variants in the ErbB4 gene are associated with white matter integrity. Psychiatry Res 2011; 191:133-7. [PMID: 21232925 PMCID: PMC5372351 DOI: 10.1016/j.pscychresns.2010.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 09/29/2010] [Accepted: 11/01/2010] [Indexed: 12/15/2022]
Abstract
Variations in the signalling NRG1-ErbB4 pathway have been associated with genetic susceptibility for both bipolar disorder and schizophrenia, although the underlying neural mechanisms are still uncertain. Reduced integrity of the anterior limb of the internal capsule (ALIC) has been found in association with risk-associated genetic variation in the 5' region of the NRG1 gene. We hypothesised that variation in the gene encoding the NRG1 receptor, ErbB4, would also be associated with reduced ALIC integrity and with cognitive impairments characteristic of individuals with bipolar disorder and schizophrenia. Using diffusion tensor imaging (DTI), we examined the white matter integrity associations of the ErbB4 polymorphism rs4673628, which resides within intron 12 of the gene encoding ErbB4, in 36 healthy individuals. We also sought to clarify the cognitive effects of any findings. We found that genetic variation at the rs4673628 locus in the ErbB4 gene was significantly associated with ALIC white matter integrity which was also significantly and positively associated with mnemonic function. These findings provide further evidence to support a key role of NRG1-ErbB4 signalling in the pathophysiology of major mental disorders.
Collapse
Affiliation(s)
- Riccardo Zuliani
- Inter-University Centre for Behavioural Neurosciences, University of Udine, Udine, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S, Schnell K, Arnold C, Witt SH, Rietschel M, Cichon S, Walter H, Meyer-Lindenberg A. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 2011; 54:2514-23. [DOI: 10.1016/j.neuroimage.2010.10.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 09/13/2010] [Accepted: 10/04/2010] [Indexed: 11/17/2022] Open
|
97
|
Dennis EL, Jahanshad N, Rudie JD, Brown JA, Johnson K, McMahon KL, de Zubicaray GI, Montgomery G, Martin NG, Wright MJ, Bookheimer SY, Dapretto M, Toga AW, Thompson PM. Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connect 2011; 1:447-59. [PMID: 22500773 PMCID: PMC3420970 DOI: 10.1089/brain.2011.0064] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, carriers of a common variant in the autism risk gene, CNTNAP2, were found to have altered functional brain connectivity using functional MRI. Here, we scanned 328 young adults with high-field (4-Tesla) diffusion imaging, to test the hypothesis that carriers of this gene variant would have altered structural brain connectivity. All participants (209 women, 119 men, age: 23.4±2.17 SD years) were scanned with 105-gradient high-angular-resolution diffusion imaging (HARDI) at 4 Tesla. After performing a whole-brain fiber tractography using the full angular resolution of the diffusion scans, 70 cortical surface-based regions of interest were created from each individual's co-registered anatomical data to compute graph metrics for all pairs of cortical regions. In graph theory analyses, subjects homozygous for the risk allele (CC) had lower characteristic path length, greater small-worldness and global efficiency in whole-brain analyses, and lower [corrected] eccentricity (maximum path length) in 60 of the 70 nodes in regional analyses. These results were not reducible to differences in more commonly studied traits such as fiber density or fractional anisotropy. This is the first study that links graph theory metrics of brain structural connectivity to a common genetic variant linked with autism and will help us understand the neurobiology of the circuits implicated in the risk for autism.
Collapse
Affiliation(s)
- Emily L. Dennis
- Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, California
| | - Neda Jahanshad
- Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, California
| | - Jeffrey D. Rudie
- Ahmanson Lovelace Brain Mapping Center, UCLA, Los Angeles, California
| | - Jesse A. Brown
- Center for Cognitive Neuroscience, UCLA, Los Angeles, California
| | - Kori Johnson
- Center for Advanced Imaging, University of Queensland, Brisbane, Australia
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Katie L. McMahon
- Center for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | | | | | - Margaret J. Wright
- Queensland Institute of Medical Research, Brisbane, Australia
- School of Psychology, University of Queensland, Brisbane, Australia
| | | | - Mirella Dapretto
- Ahmanson Lovelace Brain Mapping Center, UCLA, Los Angeles, California
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, California
| | - Paul M. Thompson
- Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
98
|
Balu DT, Coyle JT. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2011; 35:848-70. [PMID: 20951727 PMCID: PMC3005823 DOI: 10.1016/j.neubiorev.2010.10.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/06/2010] [Accepted: 10/10/2010] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world's population. One of the cardinal pathological features of schizophrenia is perturbation in synaptic connectivity. Although the etiology of schizophrenia is unknown, it appears to be a developmental disorder involving the interaction of a potentially large number of risk genes, with no one gene producing a strong effect except rare, highly penetrant copy number variants. The purpose of this review is to detail how putative schizophrenia risk genes (DISC-1, neuregulin/ErbB4, dysbindin, Akt1, BDNF, and the NMDA receptor) are involved in regulating neuroplasticity and how alterations in their expression may contribute to the disconnectivity observed in schizophrenia. Moreover, this review highlights how many of these risk genes converge to regulate common neurotransmitter systems and signaling pathways. Future studies aimed at elucidating the functions of these risk genes will provide new insights into the pathophysiology of schizophrenia and will likely lead to the nomination of novel therapeutic targets for restoring proper synaptic connectivity in the brain in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | | |
Collapse
|
99
|
Johnstone M, Thomson PA, Hall J, McIntosh AM, Lawrie SM, Porteous DJ. DISC1 in schizophrenia: genetic mouse models and human genomic imaging. Schizophr Bull 2011; 37:14-20. [PMID: 21149852 PMCID: PMC3004186 DOI: 10.1093/schbul/sbq135] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Schizophrenia and related disorders have a major genetic component. Several large-scale studies have uncovered a number of possible candidate genes, but these have yet to be consistently replicated and their underlying biological function remains elusive. One exception is 'Disrupted in schizophrenia 1' (DISC1), a gene locus originally identified in a large Scottish family, showing a heavy burden of major mental illnesses associated with a balanced t(1;11)(q42.1;q14.3) chromosome translocation. Substantial genetic and biological research on DISC1 has been reported in the intervening 10 years: DISC1 is now recognized as a genetic risk factor for a spectrum of psychiatric disorders and DISC1 impacts on many aspects of central nervous system (CNS) function, including neurodevelopment, neurosignaling, and synaptic functioning. Evidence has emerged from genetic studies showing a relationship between DISC1 and quantitative traits, including working memory, cognitive aging, gray matter volume in the prefrontal cortex, and abnormalities in hippocampal structures and function. DISC1 interacts with numerous proteins also involved in neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction, some of which have been reported as independent genetic susceptibility factors for psychiatric morbidity. Here, we focus on the growing literature relating genetic variation in the DISC1 pathway to functional and structural studies of the brain in humans and in the mouse.
Collapse
Affiliation(s)
- Mandy Johnstone
- Department of Psychiatry, The Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5HF, UK
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pippa A. Thomson
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Jeremy Hall
- Department of Psychiatry, The Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5HF, UK
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Andrew M. McIntosh
- Department of Psychiatry, The Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5HF, UK
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Stephen M. Lawrie
- Department of Psychiatry, The Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5HF, UK
| | - David J. Porteous
- Medical Genetics Section, Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
100
|
Schmitt A, Hasan A, Gruber O, Falkai P. Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 2011; 261 Suppl 2:S150-4. [PMID: 21866371 PMCID: PMC3207137 DOI: 10.1007/s00406-011-0242-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/01/2011] [Indexed: 01/17/2023]
Abstract
Schizophrenia is considered as a neurodevelopmental disorder with genetic and environmental factors playing a role. Animal models show that developmental hippocampal lesions are causing disconnectivity of the prefrontal cortex. Magnetic resonance imaging and postmortem investigations revealed deficits in the temporoprefrontal neuronal circuit. Decreased oligodendrocyte numbers and expression of oligodendrocyte genes and synaptic proteins may contribute to disturbances of micro- and macro-circuitry in the pathophysiology of the disease. Functional connectivity between cortical areas can be investigated with high temporal resolution using transcranial magnetic stimulation (TMS), electroencephalography (EEG), and magnetoencephalography (MEG). In this review, disconnectivity between different cortical areas in schizophrenia patients is described. The specificity and the neurobiological origin of these connectivity deficits and the relation to the symptom complex of schizophrenia and the glutamatergic and GABAergic system are discussed.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|