51
|
Duncan JR. Current perspectives on the neurobiology of drug addiction: a focus on genetics and factors regulating gene expression. ISRN NEUROLOGY 2012; 2012:972607. [PMID: 23097719 PMCID: PMC3477671 DOI: 10.5402/2012/972607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Drug addiction is a chronic, relapsing disorder defined by cyclic patterns of compulsive drug seeking and taking interspersed with episodes of abstinence. While genetic variability may increase the risk of addictive behaviours in an individual, exposure to a drug results in neuroadaptations in interconnected brain circuits which, in susceptible individuals, are believed to underlie the transition to, and maintenance of, an addicted state. These adaptations can occur at the cellular, molecular, or (epi)genetic level and are associated with synaptic plasticity and altered gene expression, the latter being mediated via both factors affecting translation (epigenetics) and transcription (non coding microRNAs) of the DNA or RNA itself. New advances using techniques such as optogenetics have the potential to increase our understanding of the microcircuitry mediating addictive behaviours. However, the processes leading to addiction are complex and multifactorial and thus we face a major contemporary challenge to elucidate the factors implicated in the development and maintenance of an addicted state.
Collapse
Affiliation(s)
- Jhodie R Duncan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
52
|
Adolescent toluene inhalation in rats affects white matter maturation with the potential for recovery following abstinence. PLoS One 2012; 7:e44790. [PMID: 23028622 PMCID: PMC3445546 DOI: 10.1371/journal.pone.0044790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/13/2012] [Indexed: 12/16/2022] Open
Abstract
Inhalant misuse is common during adolescence, with ongoing chronic misuse associated with neurobiological and cognitive abnormalities. While human imaging studies consistently report white matter abnormalities among long-term inhalant users, longitudinal studies have been lacking with limited data available regarding the progressive nature of such abnormalities, including the potential for recovery following periods of sustained abstinence. We exposed adolescent male Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (3,000 ppm) for 1 hour/day, 3 times/week for 8 weeks to model abuse patterns observed in adolescent and young adult human users. This dosing regimen resulted in a significant retardation in weight gain during the exposure period (p<0.05). In parallel, we performed longitudinal magnetic resonance imaging (T₂-weighted) and diffusion tensor imaging prior to exposure, and after 4 and 8 weeks, to examine the integrity of white matter tracts, including the anterior commissure and corpus callosum. We also conducted imaging after 8 weeks of abstinence to assess for potential recovery. Chronic intermittent toluene exposure during adolescence and early adulthood resulted in white matter abnormalities, including a decrease in axial (p<0.05) and radial (p<0.05) diffusivity. These abnormalities appeared region-specific, occurring in the anterior commissure but not the corpus callosum and were not present until after at least 4 weeks of exposure. Toluene-induced effects on both body weight and white matter parameters recovered following abstinence. Behaviourally, we observed a progressive decrease in rearing activity following toluene exposure but no difference in motor function, suggesting cognitive function may be more sensitive to the effects of toluene. Furthermore, deficits in rearing were present by 4 weeks suggesting that toluene may affect behaviour prior to detectable white matter abnormalities. Consequently, exposure to inhalants that contain toluene during adolescence and early adulthood appear to differentially affect white matter maturation and behavioural outcomes, although recovery can occur following abstinence.
Collapse
|
53
|
Gmaz JM, Matthews BA, McKay BE. Toluene inhalation modulates dentate gyrus granule cell output in vivo. Neurotoxicol Teratol 2012; 34:403-12. [DOI: 10.1016/j.ntt.2012.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 01/10/2023]
|
54
|
Abstract
BACKGROUND This study investigates the association between inhalant use and information processing (IP) in adjudicated polysubstance users. Polysubstance users who used inhalants (n= 158) were compared with polysubstance users who did not use inhalants (n= 303). Hispanic Americans comprised 72% of the participants; European Americans, African Americans and Asian Americans comprised 28% of the participants. METHOD Standardized intelligence and achievement tests were used to assess information-processing constructs of working memory and processing speed. Psychosocial and substance abuse standardized surveys were used to assess drug use severity and psychosocial problems associated with substance use. RESULTS Polysubstance users who used inhalants (PSI users) were younger, used more drugs more frequently and had more psychiatric admissions than non-inhalant polysubstance users (PSO users). Statistical analysis also shows that PSI users performed worse on measures of IP selected tests in comparison with the PSO users. CONCLUSION Inhalant users begin abusing substances at a younger age and suffer from more verbal and non-verbal processing, behavioural, language and memory problems than non-inhalant users.
Collapse
Affiliation(s)
- K D Scott
- Department of Counseling Psychology, University of Texas at San Antonio, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA
| | | |
Collapse
|
55
|
Bikashvili TZ, Chilachava LR, Gelazonia LK, Japaridze NJ, Zhvania MG, Lordkipanidze TG, Okuneva VG. Effect of Chronic Inhalation of Toluene on Behavior of Rats of Various Age Groups in Multi-Branched Maze. Bull Exp Biol Med 2012; 152:587-9. [DOI: 10.1007/s10517-012-1582-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Zhvania MG, Chilachava LR, Japaridze NJ, Gelazonia LK, Lordkipanidze TG. Immediate and persisting effect of toluene chronic exposure on hippocampal cell loss in adolescent and adult rats. Brain Res Bull 2012; 87:187-92. [DOI: 10.1016/j.brainresbull.2011.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/26/2011] [Accepted: 10/30/2011] [Indexed: 01/13/2023]
|
57
|
Perit KE, Gmaz JM, Caleb Browne J, Matthews BA, Dunn MBF, Yang L, Raaphorst T, Mallet PE, McKay BE. Distribution of c-Fos immunoreactivity in the rat brain following abuse-like toluene vapor inhalation. Neurotoxicol Teratol 2012; 34:37-46. [DOI: 10.1016/j.ntt.2011.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022]
|
58
|
Inhalant abuse of computer cleaner manifested as angioedema. Am J Emerg Med 2012; 30:265.e3-5. [DOI: 10.1016/j.ajem.2010.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/10/2010] [Indexed: 11/19/2022] Open
|
59
|
The abused inhalant toluene differentially modulates excitatory and inhibitory synaptic transmission in deep-layer neurons of the medial prefrontal cortex. Neuropsychopharmacology 2011; 36:1531-42. [PMID: 21430649 PMCID: PMC3096820 DOI: 10.1038/npp.2011.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Volatile organic solvents such as toluene are voluntarily inhaled for their intoxicating effects. Solvent use is especially prevalent among adolescents, and is associated with deficits in a wide range of cognitive tasks including attention, behavioral control, and risk assessment. Despite these findings, little is known about the effects of toluene on brain areas mediating these behaviors. In this study, whole-cell patch-clamp recordings were used to determine the effect toluene on neurons within the medial PFC, a region critically involved in cognitive function. Toluene had no effect on measures of intrinsic excitability, but enhanced stimulus-evoked γ-amino butyric acid A-mediated inhibitory postsynaptic currents (IPSCs). In the presence of tetrodotoxin (TTX) to block action potentials, toluene increased the frequency and amplitude of miniature IPSCs. In contrast, toluene induced a delayed but persistent decrease in evoked or spontaneous AMPA-mediated excitatory postsynaptic currents (EPSCs). This effect was prevented by an intracellular calcium chelator or by the ryanodine receptor and SERCA inhibitors, dantrolene or thapsigargin, respectively, suggesting that toluene may mobilize intracellular calcium pools. The toluene-induced reduction in AMPA EPSCs was also prevented by a cannabinoid receptor (CB1R) antagonist, and was occluded by the CB1 agonist WIN 55,212-2 that itself induced a profound decrease in AMPA-mediated EPSCs. Toluene had no effect on the frequency or amplitude of miniature EPSCs recorded in the presence of TTX. Finally, toluene dose-dependently inhibited N-methyl-D-aspartate (NMDA)-mediated EPSCs and the magnitude and reversibility of this effect was CB1R sensitive indicating both direct and indirect actions of toluene on NMDA-mediated responses. Together, these results suggest that the effect of toluene on cognitive behaviors may result from its action on inhibitory and excitatory synaptic transmission of PFC neurons.
Collapse
|
60
|
Abstract
The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms that can be involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce nonexocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions about the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging.
Collapse
Affiliation(s)
- David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, Black 308, 650 W. 168 St., New York, NY 10032, USA.
| |
Collapse
|
61
|
Abstract
Toluene is an organic solvent that is widely used by industry and is ubiquitous in our environment. As a result, exposure to solvents like toluene in work-related settings (i.e., relatively constant, low-level exposures) or through inhalant abuse (i.e., relatively intermittent, high-level exposures) is increasing for many women of reproductive age. Evidence suggests that the risk for pregnancy problems, as well as developmental delays and neurobehavioral difficulties, is higher for the children of women who have been exposed to high concentrations of organic solvents during pregnancy than for those who have not. These risks appear to be higher in cases of abuse exposure to solvents such as toluene, particularly in comparison to the risk for teratogenic outcomes with occupational solvent exposure. Despite this, the reproductive toxicology and teratology following abuse of toluene and other inhalants remains under-investigated. This brief review describes the current state of our understanding of the reproductive and teratogenic risk of gestational toluene abuse. The data to date suggest that the high levels of toluene exposure typical with inhalant abuse are more detrimental to fetal development than typical occupational exposure, and preclinical paradigms can be beneficial for investigating the processes and risks of prenatal solvent exposure. While substantial research has been done on the reproductive effects of occupational exposures to organic solvents, more research is needed on the outcomes and mechanisms of exposures typical of inhalant abuse.
Collapse
Affiliation(s)
- John H Hannigan
- Merrill Palmer Skillman Institute, Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth & Development, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
62
|
Ro Y, Jung MH, Lee BC, Choi IG. Inhalant-induced hypokalemia: a case of delusions and hallucinations. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:429-30. [PMID: 20074613 DOI: 10.1016/j.pnpbp.2010.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/29/2009] [Accepted: 01/07/2010] [Indexed: 11/16/2022]
|
63
|
Licata SC, Renshaw PF. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci 2010; 1187:148-71. [PMID: 20201852 PMCID: PMC3040110 DOI: 10.1111/j.1749-6632.2009.05143.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H MRS) is a noninvasive imaging technique that permits measurement of particular compounds or metabolites within the tissue of interest. In the brain, (1)H MRS provides a snapshot of the neurochemical environment within a defined volume of interest. A search of the literature demonstrates the widespread utility of this technique for characterizing tumors, tracking the progress of neurodegenerative disease, and for understanding the neurobiological basis of psychiatric disorders. As of relatively recently, (1)H MRS has found its way into substance abuse research, and it is beginning to become recognized as a valuable complement in the brain imaging toolbox that also contains positron emission tomography, single-photon-emission computed tomography, and functional magnetic resonance imaging. Drug abuse studies using (1)H MRS have identified several biochemical changes in the brain. The most consistent alterations across drug class were reductions in N-acetylaspartate and elevations in myo-inositol, whereas changes in choline, creatine, and amino acid transmitters also were abundant. Together, the studies discussed herein provide evidence that drugs of abuse may have a profound effect on neuronal health, energy metabolism and maintenance, inflammatory processes, cell membrane turnover, and neurotransmission, and these biochemical changes may underlie the neuropathology within brain tissue that subsequently gives rise to the cognitive and behavioral impairments associated with drug addiction.
Collapse
Affiliation(s)
- Stephanie C Licata
- Behavioral Psychopharmacology Research Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts 02478, USA.
| | | |
Collapse
|
64
|
O'Leary-Moore SK, Galloway MP, McMechan AP, Irtenkauf S, Hannigan JH, Bowen SE. Neurochemical changes after acute binge toluene inhalation in adolescent and adult rats: a high-resolution magnetic resonance spectroscopy study. Neurotoxicol Teratol 2009; 31:382-9. [PMID: 19628036 PMCID: PMC2771649 DOI: 10.1016/j.ntt.2009.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/12/2009] [Accepted: 07/13/2009] [Indexed: 11/26/2022]
Abstract
Inhalant abuse in young people is a growing public health concern. We reported previously that acute toluene intoxication in young rats, using a pattern of exposures that approximate abuse patterns of inhalant use in humans, significantly altered neurochemical measures in select brain regions. In this study, adolescent and young adult rats were exposed similarly to an acute (2 x 15 min), high dose (8000-12,000 ppm) of toluene and high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H-MRS) was used to assess neurochemical profiles of tissue samples from a number of brain regions collected immediately following solvent exposure. The current investigation focused on N-acetyl-aspartate (NAA), choline-containing compounds, creatine, glutamate, GABA, and glutamine. Contrary to our predictions, no significant alterations were found in the levels of NAA, choline, creatine, glutamate, or glutamine in adolescent animals. In contrast to these minimal effects in adolescents, binge toluene exposure altered several neurochemical parameters in young adult rats, including decreased levels of choline and GABA in the frontal cortex and striatum and lowered glutamine and NAA levels in the frontal cortex. One of the more robust findings was a wide-ranging increase in lactate after toluene exposure in adult animals, an effect not observed in adolescents. These age-dependent effects of toluene are distinct from those reported previously in juvenile rats and suggest a developmental difference in vulnerability to the effects of inhalants. Specifically, the results suggest that the neurochemical response to toluene in adolescents is attenuated compared to adults, and imply an association between these neurochemical differences and age-influenced differences in solvent abuse in humans.
Collapse
|
65
|
Lo PS, Wu CY, Sue HZ, Chen HH. Acute neurobehavioral effects of toluene: Involvement of dopamine and NMDA receptors. Toxicology 2009; 265:34-40. [DOI: 10.1016/j.tox.2009.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 12/25/2022]
|
66
|
Abstract
Abused inhalants are widely used, especially among school-age children and teenagers, and are 'gateway' drugs leading to the abuse of alcohol and other addictive substances. In spite of this widespread use, little is known about the effects produced by inhalants on the central nervous system. The similarity in behavioral effects produced by inhalants and inhaled anesthetics, together with their common chemical features, prompted this study of inhalant actions on a well-characterized anesthetic target, GABA synapses. Whole-cell patch clamp recordings were conducted on CA1 pyramidal neurons in rat hippocampal brain slices to measure effects on resting membrane properties, action potential discharge, and GABA-mediated inhibitory responses. Toluene, 1,1,1-trichloroethane, and trichloroethylene depressed CA1 excitability in a concentration-dependent and reversible manner. This depression appeared to involve enhanced GABA-mediated inhibition, evident in its reversal by a GABA receptor antagonist. Consistent with this, the abused inhalants increased inhibitory postsynaptic potentials produced using minimal stimulation of stratum radiatum inputs to CA1 neurons, in the presence of CNQX and APV to block excitatory synaptic responses and GGP to block GABA(B) responses. The enhanced inhibition appeared to come about by a presynaptic action on GABA nerve terminals, because spontaneous inhibitory postsynaptic current (IPSC) frequency was increased with no change in the amplitude of postsynaptic currents, both in the presence and absence of tetrodotoxin used to block interneuron action potentials and cadmium used to block calcium influx into nerve terminals. The toluene-induced increase in mIPSC frequency was blocked by dantrolene or ryanodine, indicating that the abused inhalant acted to increase the release of calcium from intracellular nerve terminal stores. This presynaptic action produced by abused inhalants is shared by inhaled anesthetics and would contribute to the altered behavioral effects produced by both classes of drugs, and could be especially important in the context of a disruption of learning and memory by abused inhalants.
Collapse
Affiliation(s)
- M Bruce MacIver
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305-5117, USA.
| |
Collapse
|
67
|
Dome P, Lazary J, Kalapos MP, Rihmer Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev 2009; 34:295-342. [PMID: 19665479 DOI: 10.1016/j.neubiorev.2009.07.013] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/23/2009] [Accepted: 07/30/2009] [Indexed: 12/20/2022]
Abstract
Tobacco smoking is an extremely addictive and harmful form of nicotine (NIC) consumption, but unfortunately also the most prevalent. Although disproportionately high frequencies of smoking and its health consequences among psychiatric patients are widely known, the neurobiological background of this epidemiological association is still obscure. The diverse neuroactive effects of NIC and some other major tobacco smoke constituents in the central nervous system may underlie this association. This present paper summarizes the pharmacology of NIC and its receptors (nAChR) based on a systematic review of the literature. The role of the brain's reward system(s) in NIC addiction and the results of functional and structural neuroimaging studies on smoking-related states and behaviors (i.e. dependence, craving, withdrawal) are also discussed. In addition, the epidemiological, neurobiological, and genetic aspects of smoking in several specific neuropsychiatric disorders are reviewed and the clinical relevance of smoking in these disease states addressed.
Collapse
Affiliation(s)
- Peter Dome
- Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, Faculty of Medicine, Kutvolgyi ut 4, 1125 Budapest, Hungary.
| | | | | | | |
Collapse
|
68
|
Bowen SE. Time course of the ethanol-like discriminative stimulus effects of abused inhalants in mice. Pharmacol Biochem Behav 2009; 91:345-50. [PMID: 18722399 PMCID: PMC2752859 DOI: 10.1016/j.pbb.2008.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 12/19/2022]
Abstract
Abused solvents have effects similar to those of abused depressant drugs. This experiment evaluated the time course of the discriminative stimulus effects of toluene and 1,1,1-trichloroethane (TRI). Mice were trained to discriminate between i.p. injections of ethanol (EtOH; 1.25 g/kg) and saline in a two-lever operant task in which responding was under the control of a fixed-ratio 20 schedule. After 20-min inhalation exposures to toluene (500-6000 ppm) or TRI (1000-12,000 ppm), stimulus generalization was examined at 0, 5, 10, 20, and 40 min post-exposure. Ethanol doses>or=0.25 g/kg produced increases in EtOH-lever responding with full substitution occurring immediately after testing for doses between 1.25 and 2.5 g/kg. Toluene and TRI produced increased EtOH-lever responding at 0-10 min post-exposure with some EtOH-lever responding occurring up to 20-min post-exposure. Response rates were not decreased for any concentration of toluene or TRI immediately following inhalant exposure but several concentrations elevated rates from 5 to 40 min post-exposure. These results confirm and extend previous studies and show these solvents produce similar effects in EtOH-lever responding but with potency differences. The time-dependent differences in EtOH-lever responding suggest that as solvents are cleared from the body, the EtOH-like subjective effects also fade.
Collapse
Affiliation(s)
- Scott E Bowen
- Department of Psychology, Behavioral Pharmacology and Toxicology Laboratory, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
69
|
Kitanaka N, Kitanaka J, Hall FS, Tatsuta T, Morita Y, Takemura M, Wang XB, Uhl GR. Alterations in the levels of heterotrimeric G protein subunits induced by psychostimulants, opiates, barbiturates, and ethanol: Implications for drug dependence, tolerance, and withdrawal. Synapse 2008; 62:689-99. [PMID: 18566973 PMCID: PMC2644661 DOI: 10.1002/syn.20543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuronal adaptations have been found to occur in multiple brain regions after chronic intake of abused drugs, and are therefore thought to underlie drug dependence, tolerance, and withdrawal. Pathophysiological changes in drug responsiveness as well as behavioral sequelae of chronic drug exposure are thought to depend largely upon the altered state of heterotrimeric GTP binding protein (G protein)-coupled receptor (GPCR)-G protein interactions. Responsiveness of GPCR-related intracellular signaling systems to drugs of abuse is heterogeneous, depending on the types of intracellular effectors to which the specific Galpha protein subtypes are coupled and GPCR-G protein coupling efficiency, factors influenced by the class of drug, expression levels of G protein subunits, and drug treatment regimens. To enhance understanding of the molecular mechanisms that underlie the development of pathophysiological states resulting from chronic intake of abused drugs, this review focuses on alterations in the expression levels of G protein subunits induced by various drugs of abuse. Changes in these mechanisms appear to be specific to particular drugs of abuse, and specific conditions of drug treatment.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Lubman DI, Yücel M, Lawrence AJ. Inhalant abuse among adolescents: neurobiological considerations. Br J Pharmacol 2008; 154:316-26. [PMID: 18332858 PMCID: PMC2442441 DOI: 10.1038/bjp.2008.76] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/31/2008] [Accepted: 02/12/2008] [Indexed: 12/15/2022] Open
Abstract
Experimentation with volatile substances (inhalants) is common during early adolescence, yet limited work has been conducted examining the neurobiological impact of regular binge use during this key stage of development. Human studies consistently demonstrate that chronic use is associated with significant toxic effects, including neurological and neuropsychological impairment, as well as diffuse and subtle changes in white matter. However, most preclinical research has tended to focus on acute exposure, with limited work examining the neuropharmacological or toxicological mechanisms underpinning these changes or their potential reversibility with abstinence. Nevertheless, there is growing evidence that commonly abused inhalants share common cellular mechanisms, and have similar actions to other drugs of abuse. Indeed, the majority of acute behavioural effects appear to be underpinned by changes in receptor and/or ion channel activity (for example, GABA(A), glycine and 5HT(3) receptor activation, NMDA receptor inhibition), although nonspecific interactions can also arise at high concentrations. Recent studies examining the effects of toluene exposure during the early postnatal period are suggestive of long-term alterations in the function of NMDA and GABA(A) receptors, although limited work has been conducted investigating exposure during adolescence. Given the critical role of neurotransmitter systems in cognitive, emotional and brain development, future studies will need to take account of the substantial neuromaturational changes that are known to occur in the brain during childhood and adolescence, and to specifically investigate the neuropharmacological and toxicological profile of inhalant exposure during this period of development.
Collapse
Affiliation(s)
- D I Lubman
- ORYGEN Research Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
71
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|