51
|
Kummer KK, Mitrić M, Kalpachidou T, Kress M. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain. Int J Mol Sci 2020; 21:E3440. [PMID: 32414089 PMCID: PMC7279227 DOI: 10.3390/ijms21103440] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pain patients frequently develop and suffer from mental comorbidities such as depressive mood, impaired cognition, and other significant constraints of daily life, which can only insufficiently be overcome by medication. The emotional and cognitive components of pain are processed by the medial prefrontal cortex, which comprises the anterior cingulate cortex, the prelimbic, and the infralimbic cortex. All three subregions are significantly affected by chronic pain: magnetic resonance imaging has revealed gray matter loss in all these areas in chronic pain conditions. While the anterior cingulate cortex appears hyperactive, prelimbic, and infralimbic regions show reduced activity. The medial prefrontal cortex receives ascending, nociceptive input, but also exerts important top-down control of pain sensation: its projections are the main cortical input of the periaqueductal gray, which is part of the descending inhibitory pain control system at the spinal level. A multitude of neurotransmitter systems contributes to the fine-tuning of the local circuitry, of which cholinergic and GABAergic signaling are particularly emerging as relevant components of affective pain processing within the prefrontal cortex. Accordingly, factors such as distraction, positive mood, and anticipation of pain relief such as placebo can ameliorate pain by affecting mPFC function, making this cortical area a promising target region for medical as well as psychosocial interventions for pain therapy.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.K.K.); (M.M.); (T.K.)
| |
Collapse
|
52
|
Bitanihirwe BKY, Woo TUW. A conceptualized model linking matrix metalloproteinase-9 to schizophrenia pathogenesis. Schizophr Res 2020; 218:28-35. [PMID: 32001079 DOI: 10.1016/j.schres.2019.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase 9 (MMP-9) is an extracellularly operating zinc-dependent endopeptidase that is commonly expressed in the brain, other tissues. It is synthesized in a latent zymogen form known as pro-MMP-9 that is subsequently converted to the active MMP-9 enzyme following cleavage of the pro-domain. Within the central nervous system, MMP-9 is localized and released from neurons, astrocytes and microglia where its expression levels are modulated by cytokines and growth factors during both normal and pathological conditions as well as by reactive oxygen species generated during oxidative stress. MMP-9 is involved in a number of key neurodevelopmental processes that are thought to be affected in schizophrenia, including maturation of the inhibitory neurons that contain the calcium-binding protein parvalbumin, developmental formation of the specialized extracellular matrix structure perineuronal net, synaptic pruning, and myelination. In this context, the present article provides a narrative synthesis of the existing evidence linking MMP-9 dysregulation to schizophrenia pathogenesis. We start by providing an overview of MMP-9 involvement in brain development and physiology. We then discuss the potential mechanisms through which MMP-9 dysregulation may affect neural circuitry maturation as well as how these anomalies may contribute to the disease process of schizophrenia. We conclude by articulating a comprehensive, cogent, and experimentally testable hypothesis linking MMP-9 to the developmental pathophysiologic cascade that triggers the onset and sustains the chronicity of the illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
53
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
54
|
The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia. Sci Rep 2019; 9:18525. [PMID: 31811155 PMCID: PMC6898379 DOI: 10.1038/s41598-019-53682-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.
Collapse
|
55
|
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109668. [PMID: 31207274 DOI: 10.1016/j.pnpbp.2019.109668] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence demonstrating that dysfunction of glutamatergic neurotransmission, particularly via N-methyl-d-aspartate (NMDA) receptors, is involved in the pathophysiology of major depressive disorder (MDD). Several studies have revealed an altered expression of NMDA receptor subtypes and impaired NMDA receptor-mediated intracellular signaling pathways in brain circuits of patients with MDD. Clinical studies have demonstrated that NMDA receptor antagonists, particularly ketamine, have rapid antidepressant effects in treatment-resistant depression, however, neurobiological mechanisms are not completely understood. Growing body of evidence suggest that signal transduction pathways involved in synaptic plasticity play critical role in molecular mechanisms underlying rapidly acting antidepressant properties of ketamine and other NMDAR antagonists in MDD. Discovering the molecular mechanisms underlying the unique antidepressant actions of ketamine will facilitate the development of novel fast acting antidepressants which lack undesirable effects of ketamine. This review provides a critical examination of the NMDA receptor involvement in the neurobiology of MDD including analyses of alterations in NMDA receptor subtypes and their interactive signaling cascades revealed by postmortem studies. Furthermore, to elucidate mechanisms underlying rapid-acting antidepressant properties of NMDA receptor antagonists we discussed their effects on the neuroplasticity, mostly based on signaling systems involved in synaptic plasticity of mood-related neurocircuitries.
Collapse
Affiliation(s)
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; New Jersey Institute of Technology, Newark, NJ, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; Department of Psychiatry, University Tuebingen, Germany
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
56
|
Corney BPA, Widnall CL, Rees DJ, Davies JS, Crunelli V, Carter DA. Regulatory Architecture of the Neuronal Cacng2/Tarpγ2 Gene Promoter: Multiple Repressive Domains, a Polymorphic Regulatory Short Tandem Repeat, and Bidirectional Organization with Co-regulated lncRNAs. J Mol Neurosci 2019; 67:282-294. [PMID: 30478755 PMCID: PMC6373327 DOI: 10.1007/s12031-018-1208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
CACNG2 (TARPγ2, Stargazin) is a multi-functional regulator of excitatory neurotransmission and has been implicated in the pathological processes of several brain diseases. Cacng2 function is dependent upon expression level, but currently, little is known about the molecular mechanisms that control expression of this gene. To address this deficit and investigate disease-related gene variants, we have cloned and characterized the rat Cacng2 promoter and have defined three major features: (i) multiple repressive domains that include an array of RE-1 silencing transcription factor (REST) elements, and a calcium regulatory element-binding factor (CaRF) element, (ii) a (poly-GA) short tandem repeat (STR), and (iii) bidirectional organization with expressed lncRNAs. Functional activity of the promoter was demonstrated in transfected neuronal cell lines (HT22 and PC12), but although selective removal of REST and CaRF domains was shown to enhance promoter-driven transcription, the enhanced Cacng2 promoter constructs were still about fivefold weaker than a comparable rat Synapsin-1 promoter sequence. Direct evidence of REST activity at the Cacng2 promoter was obtained through co-transfection with an established dominant-negative REST (DNR) construct. Investigation of the GA-repeat STR revealed polymorphism across both animal strains and species, and size variation was also observed in absence epilepsy disease model cohorts (Genetic Absence Epilepsy Rats, Strasbourg [GAERS] and non-epileptic control [NEC] rats). These data provide evidence of a genotype (STR)-phenotype correlation that may be unique with respect to proximal gene regulatory sequence in the demonstrated absence of other promoter, or 3' UTR variants in GAERS rats. However, although transcriptional regulatory activity of the STR was demonstrated in further transfection studies, we did not find a GAERS vs. NEC difference, indicating that this specific STR length variation may only be relevant in the context of other (Cacna1h and Kcnk9) gene variants in this disease model. Additional studies revealed further (bidirectional) complexity at the Cacng2 promoter, and we identified novel, co-regulated, antisense rat lncRNAs that are paired with Cacng2 mRNA. These studies have provided novel insights into the organization of a synaptic protein gene promoter, describing multiple repressive and modulatory domains that can mediate diverse regulatory inputs.
Collapse
Affiliation(s)
- B P A Corney
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - C L Widnall
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D J Rees
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - V Crunelli
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D A Carter
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK.
| |
Collapse
|
57
|
Fasipe OJ. The emergence of new antidepressants for clinical use: Agomelatine paradox versus other novel agents. IBRO Rep 2019; 6:95-110. [PMID: 31211282 PMCID: PMC6562183 DOI: 10.1016/j.ibror.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/05/2019] [Indexed: 01/12/2023] Open
Abstract
This study was designed with the rational aim of discussing the emerging antidepressant agents that are likely to bring positive landmark, tremendous improvement and significant impact to the management of patients with depression disorders. It also elaborates on the Agomelatine paradox vis-a-vis the other novel antidepressant agents. The emerging antidepressants are: selective monoamine oxidase inhibitors (MAOIs) such as bifemelane, pirlindole, toloxatone, selegiline, rasagiline and safinamide; serotonin-norepinephrine reuptake inhibitors (SNRIs) such as ansofaxine, nefopam and levomilnacipran; norepinephrine reuptake inhibitors (NRIs) such as Reboxetine, viloxazine, teniloxazine (also known as sulfoxazine or sufoxazine), and atomoxetine; Vilazodone (a serotonin 5-HT1A autoreceptor partial agonist with serotonin reuptake inhibition [SPARI]); Vortioxetine (a serotonin receptors antagonist with serotonin reuptake inhibition [SARI]); atypical antipsychotics such as olanzapine, quetiapine, risperidone, lurasidone, aripiprazole and brexpiprazole; N-methyl-d-aspartate (NMDA)-glutamatergic neurotransmission system blockers such as ketamine, CP-101,606 (traxoprodil), GLYX-13 (rapastinel), NRX-1074 (Apimostinel) and Riluzole. While Agomelatine (a melatonergic MT1 and MT2 receptors agonist and a selective serotonergic 5-HT2B and 5-HT2C receptors antagonist [MASSA]) remains a paradoxical agent that doesn't fit into any of the currently available classes of antidepressant agents and its pharmacological properties also deemed it unfit and inappropriate to be classified into another separate novel class of antidepressants contrary to the reports published in previous reference literatures. Lastly, this review remarkably advocates for the incorporation of the atypical antipsychotics and NMDA-glutamatergic ionoceptor blockers as new member classes of the antidepressant agents because of their clinically significant roles in the management of depression disorders.
Collapse
Affiliation(s)
- Olumuyiwa John Fasipe
- Medical Lecturer and Senior Physician, Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| |
Collapse
|
58
|
Fasipe O, Akhideno P, Owhin O, Ibiyemi-Fasipe O. Announcing the first novel class of rapid-onset antidepressants in clinical practice. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.4103/jmedsci.jmedsci_36_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
59
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
60
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
61
|
Yuan A, Veeranna, Sershen H, Basavarajappa BS, Smiley JF, Hashim A, Bleiwas C, Berg M, Guifoyle DN, Subbanna S, Darji S, Kumar A, Rao MV, Wilson DA, Julien JP, Javitt DC, Nixon RA. Neurofilament light interaction with GluN1 modulates neurotransmission and schizophrenia-associated behaviors. Transl Psychiatry 2018; 8:167. [PMID: 30143609 PMCID: PMC6109052 DOI: 10.1038/s41398-018-0194-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/08/2018] [Indexed: 01/28/2023] Open
Abstract
Neurofilament (NFL) proteins have recently been found to play unique roles in synapses. NFL is known to interact with the GluN1 subunit of N-methyl-D-aspartic acid (NMDAR) and be reduced in schizophrenia though functional consequences are unknown. Here we investigated whether the interaction of NFL with GluN1 modulates synaptic transmission and schizophrenia-associated behaviors. The interaction of NFL with GluN1 was assessed by means of molecular, pharmacological, electrophysiological, magnetic resonance spectroscopy (MRS), and schizophrenia-associated behavior analyses. NFL deficits cause an NMDAR hypofunction phenotype including abnormal hippocampal function, as seen in schizophrenia. NFL-/- deletion in mice reduces dendritic spines and GluN1 protein levels, elevates ubiquitin-dependent turnover of GluN1 and hippocampal glutamate measured by MRS, and depresses hippocampal long-term potentiation. NMDAR-related behaviors are also impaired, including pup retrieval, spatial and social memory, prepulse inhibition, night-time activity, and response to NMDAR antagonist, whereas motor deficits are minimal. Importantly, partially lowering NFL in NFL+/- mice to levels seen regionally in schizophrenia, induced similar but milder NMDAR-related synaptic and behavioral deficits. Our findings support an emerging view that central nervous system neurofilament subunits including NFL in the present report, serve distinctive, critical roles in synapses relevant to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.
| | - Veeranna
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Henry Sershen
- Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
- Neurochemistry Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Balapal S Basavarajappa
- Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
- Analytical Psychopharmacology Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - John F Smiley
- Neurochemistry Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Audrey Hashim
- Neurochemistry Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Cynthia Bleiwas
- Neurochemistry Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Martin Berg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - David N Guifoyle
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Shivakumar Subbanna
- Analytical Psychopharmacology Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Asok Kumar
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Jean-Pierre Julien
- Centre de Recherche du Centre Hospitalier de l'Université Laval, Département d'anatomie et physiologie de l'Université Laval, 2795 boul. Laurier, Québec, G1V 4G2, Canada
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Schizophrenia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
62
|
Zhao J, Liu X, Huo C, Zhao T, Ye H. Abnormalities in Prefrontal Cortical Gene Expression Profiles Relevant to Schizophrenia in MK-801-Exposed C57BL/6 Mice. Neuroscience 2018; 390:60-78. [PMID: 30102956 DOI: 10.1016/j.neuroscience.2018.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
MK-801, a non-competitive NMDA receptor (NMDAR) antagonist, disturbs NMDAR function in rodents and induces psychological and behavioral changes similar to schizophrenia (SCZ). However, the effects of MK-801 treatment on gene expression are largely unknown. Here we performed RNA-sequencing on the prefrontal cortex of MK-801-exposed male mice in order to analyze gene expression and co-expression patterns related to SCZ and to identify mechanisms that underlie the molecular etiology of this disorder. Transcriptome analysis revealed that the differentially expressed genes were more often associated with biological processes that included postsynaptic transmission, immune system process, response to external stimulus and hemostasis. In order to extract comprehensive biological information, we used an approach for biclustering, called FABIA, to simultaneously cluster transcriptomic data across genes and conditions. When combined with analyses using DAVID and STRING databases, we found that co-expression patterns were altered in synapse-related genes and genes central to the mitochondrial network. Abnormal co-expression of genes mediating synaptic vesicle cycling could disturb release, uptake and reuptake of glutamate, and the perturbation in co-expression patterns for mitochondrial respiratory chain complexes was extensive. Our study supports the hypothesis that research using MK-801-exposed male mice as an animal model of SCZ offers important insights into the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Jialu Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xu Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chunyue Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Yanjing Medical College, Capital Medical University, Beijing 100069, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
63
|
Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia. Mol Psychiatry 2018; 23:1606-1613. [PMID: 29112193 PMCID: PMC5938166 DOI: 10.1038/mp.2017.216] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction is manifest as cognitive deficits that appear to arise from disturbances in gamma frequency oscillations. These oscillations are generated in DLPFC layer 3 (L3) via reciprocal connections between pyramidal cells (PCs) and parvalbumin (PV)-containing interneurons. The density of cortical PV neurons is not altered in SZ, but expression levels of several transcripts involved in PV cell function, including PV, are lower in the disease. However, the transcriptome of PV cells has not been comprehensively assessed in a large cohort of subjects with SZ. In this study, we combined an immunohistochemical approach, laser microdissection, and microarray profiling to analyze the transcriptome of DLPFC L3 PV cells in 36 matched pairs of SZ and unaffected comparison subjects. Over 800 transcripts in PV neurons were identified as differentially expressed in SZ subjects; most of these alterations have not previously been reported. The altered transcripts were enriched for pathways involved in mitochondrial function and tight junction signaling. Comparison with the transcriptome of L3 PCs from the same subjects revealed both shared and distinct disease-related effects on gene expression between cell types. Furthermore, network structures of gene pathways differed across cell types and subject groups. These findings provide new insights into cell type-specific molecular alterations in SZ which may point toward novel strategies for identifying therapeutic targets.
Collapse
|
64
|
Alsaad HA, DeKorver NW, Mao Z, Dravid SM, Arikkath J, Monaghan DT. In the Telencephalon, GluN2C NMDA Receptor Subunit mRNA is Predominately Expressed in Glial Cells and GluN2D mRNA in Interneurons. Neurochem Res 2018; 44:61-77. [PMID: 29651654 DOI: 10.1007/s11064-018-2526-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the brain with high concentrations in the telencephalon where they modulate synaptic plasticity, working memory, and other functions. While the actions of the predominate GluN2 NMDAR subunits, GluN2A and GluN2B are relatively well understood, the function of GluN2C and GluN2D subunits in the telencephalon is largely unknown. To better understand the possible role of GluN2C subunits, we used fluorescence in situ hybridization (FISH) together with multiple cell markers to define the distribution and type of cells expressing GluN2C mRNA. Using a GluN2C-KO mouse as a negative control, GluN2C mRNA expression was only found in non-neuronal cells (NeuN-negative cells) in the hippocampus, striatum, amygdala, and cerebral cortex. For these regions, a significant fraction of GFAP-positive cells also expressed GluN2C mRNA. Overall, for the telencephalon, the globus pallidus and olfactory bulb were the only regions where GluN2C was expressed in neurons. In contrast to GluN2C, GluN2D subunit mRNA colocalized with neuronal and not astrocyte markers or GluN2C mRNA in the telencephalon (except for the globus pallidus). GluN2C mRNA did, however, colocalize with GluN2D in the thalamus where neuronal GluN2C expression is found. These findings strongly suggest that GluN2C has a very distinct function in the telencephalon compared to its role in other brain regions and compared to other GluN2-containing NMDARs. NMDARs containing GluN2C may have a specific role in regulating L-glutamate or D-serine release from astrocytes in response to L-glutamate spillover from synaptic activity.
Collapse
Affiliation(s)
- Hassan A Alsaad
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Nicholas W DeKorver
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Zhihao Mao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | | | - Jyothi Arikkath
- Department of Developmental Neuroscience, Monroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA.
| |
Collapse
|
65
|
Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B. Anterior Cingulate Cortex Glutamatergic Metabolites and Mood Stabilizers in Euthymic Bipolar I Disorder Patients: A Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:985-991. [PMID: 29789269 DOI: 10.1016/j.bpsc.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Bipolar disorder is a chronic and recurrent illness characterized by depressive and manic episodes. Proton magnetic resonance spectroscopy (1H-MRS) studies have demonstrated glutamate (Glu) system abnormalities in BD, but it is unclear how Glu varies among mood states and how medications modulate it. The objective of this study was to investigate the influence of mood stabilizers on anterior cingulate cortex Glu levels using 1H-MRS during euthymia. METHODS One hundred twenty-eight bipolar I disorder (BDI) euthymic subjects and 80 healthy control subjects underwent 3T brain 1H-MRS imaging examination including acquisition of an anterior cingulate cortex single voxel (8 cm3) 1H-MRS, based on a point resolved spectroscopy (PRESS) sequence with an echo time of 80 ms and a repetition time of 1500 ms (BIPUSP MRS study). The Glu system was described by measuring Glu and the sum of Glu and glutamine (Glx) using creatine (Cre) as a reference. RESULTS Euthymic BDI subjects presented with higher ratios of Glu/Cre and Glx/Cre compared to healthy control subjects. Glu/Cre ratios were lower among patients using anticonvulsants, while Glx/Cre did not differ between the two groups. Lithium, antipsychotics, and antidepressants did not influence Glu/Cre or Glx/Cre. CONCLUSIONS We reported Glu/Cre and Glx abnormalities in the largest sample of euthymic BDI patients studied by 1H-MRS to date. Our data indicate that both Glu/Cre and Glx/Cre are elevated in BDI during euthymia regardless of medication effects, reinforcing the hypothesis of glutamatergic abnormalities in BD. Furthermore, we found an effect of anticonvulsants on Glu/Cre during euthymia, which might indicate a mechanism of mood stabilization in BD.
Collapse
Affiliation(s)
- Marcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Genetics and Pharmacogenetics Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | | | | | - Ricardo Alberto Moreno
- Mood Disorders Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Claudia Leite
- Laboratory of Magnetic Resonance, Department and Institute of Radiology, University of São Paulo, São Paulo, Brazil
| | - Beny Lafer
- Bipolar Disorders Program, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
66
|
Ravikrishnan A, Gandhi PJ, Shelkar GP, Liu J, Pavuluri R, Dravid SM. Region-specific Expression of NMDA Receptor GluN2C Subunit in Parvalbumin-Positive Neurons and Astrocytes: Analysis of GluN2C Expression using a Novel Reporter Model. Neuroscience 2018; 380:49-62. [PMID: 29559384 DOI: 10.1016/j.neuroscience.2018.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022]
Abstract
Hypofunction of NMDA receptors in parvalbumin (PV)-positive interneurons has been proposed as a potential mechanism for cortical abnormalities and symptoms in schizophrenia. GluN2C-containing receptors have been linked to this hypothesis due to the higher affinity of psychotomimetic doses of ketamine for GluN1/2C receptors. However, the precise cell-type expression of GluN2C subunit remains unknown. We describe the expression of the GluN2C subunit using a novel EGFP reporter model. We observed EGFP(GluN2C) localization in PV-positive neurons in the nucleus reticularis of the thalamus, globus pallidus externa and interna, ventral pallidum and substantia nigra. In contrast, EGFP(GluN2C)-expressing cells did not co-localize with PV-positive neurons in the cortex, striatum, hippocampus or amygdala. Instead, EGFP(GluN2C) expression in these regions co-localized with an astrocytic marker. We confirmed functional expression of GluN2C-containing receptors in the PV-neurons in substantia nigra and cortical astrocytes using electrophysiology. GluN2C was found to be enriched in several first-order and higher order thalamic nuclei. Interestingly, we found that a previous GluN2C β-gal reporter model excluded expression from PV-neurons and certain thalamic nuclei but exhibited expression in the retrosplenial cortex. GluN2C's unique distribution in neuronal and non-neuronal cells in a brain region-specific manner raises interesting questions regarding the role of GluN2C-containing receptors in the central nervous system.
Collapse
Affiliation(s)
| | - Pauravi J Gandhi
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | - Gajanan P Shelkar
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | | | - Shashank M Dravid
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
67
|
Smucny J, Lesh TA, Newton K, Niendam TA, Ragland JD, Carter CS. Levels of Cognitive Control: A Functional Magnetic Resonance Imaging-Based Test of an RDoC Domain Across Bipolar Disorder and Schizophrenia. Neuropsychopharmacology 2018; 43:598-606. [PMID: 28948978 PMCID: PMC5770769 DOI: 10.1038/npp.2017.233] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/25/2017] [Accepted: 09/21/2017] [Indexed: 11/09/2022]
Abstract
In recent years, the boundaries of psychopathology as defined by diagnostic categories have been criticized as inadequately 'carving nature at its joints' with respect to the neurobiology of major mental disorders. In 2010 the NIMH launched the Research Domain Criteria (RDoC) framework for understanding mental illnesses as brain circuit disorders that extend beyond DSM-defined diagnoses. In the present study we focus on cognitive dysfunction, a core feature of schizophrenia (SZ) and bipolar disorder (BPD), and use functional magnetic resonance imaging (fMRI) during a cognitive control (CC) task in recent onset patients to test the hypothesis that at a behavioral and underlying neural circuitry level these deficits exist on a continuum (as opposed to showing categorical differences) across the two disorders. In total, 53 healthy controls, 24 recent (<1 y) onset patients with BPD Type I with psychotic features, and 70 recent onset patients with SZ performed the AX-Continuous Performance Task while undergoing event-related fMRI at 1.5 T. In addition to behavior task-associated response was examined in frontoparietal regions-of-interest. In an a priori contrast-based analysis, significant deficits across patient groups (vs controls) were observed on CC-associated performance as well as frontoparietal response. These analyses further revealed a continuum of deficits in which BPD showed intermediate levels of CC relative to controls and SZ. Poor CC was associated with poverty and disorganization symptoms across patient groups. These results support the hypothesis that CC dysfunction in BPD and SZ reflects a continuum of deficits that cuts across traditional, DSM-based classification. Implications for the neurobiology of these diseases are discussed.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA
| | - Tyler A Lesh
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA
| | - Keith Newton
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tara A Niendam
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA
| | - J Daniel Ragland
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA
| | - Cameron S Carter
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
68
|
Hermens DF, Chitty KM, Kaur M. Mismatch negativity in bipolar disorder: A neurophysiological biomarker of intermediate effect? Schizophr Res 2018; 191:132-139. [PMID: 28450056 DOI: 10.1016/j.schres.2017.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 02/04/2023]
Abstract
The event-related potential, mismatch negativity (MMN), has been touted as a robust and specific neurophysiological biomarker of schizophrenia. Earlier studies often included bipolar disorder (BD) as a clinical comparator and reported that MMN was significantly impaired only in schizophrenia. However, with the increasing number of MMN studies of BD (with larger sample sizes), the literature is now providing somewhat consistent evidence of this biomarker also being perturbed in BD, albeit to a lesser degree than that observed in schizophrenia. Indeed, two meta-analyses have now shown that the effect sizes in BD samples suggest a moderate impairment in MMN, compared to the large effect sizes shown in schizophrenia. Pharmacologically, MMN is an extremely useful non-invasive probe of glutamatergic (more specifically, N-methyl-d-aspartate [NMDA] receptor) disturbances and this system has been implicated in the pathophysiology of both schizophrenia and BD. Therefore, it may be best to conceptualize/utilize MMN as an index of a psychopathology that is shared across psychotic and related disorders, rather than being a diagnosis-specific biomarker. More research is needed, particularly longitudinal designs including studies that assess MMN over an individual's life course and then examine NMDA receptor expression/binding post-mortem. At this point and despite a disproportionate amount of research, the current evidence suggests that with respect to BD, MMN is a neurophysiological biomarker of intermediate effect. With replication and validation of this effect, MMN may prove to be an important indicator of a common psychopathology shared by a significant proportion of individuals with schizophrenia and bipolar spectrum illnesses.
Collapse
Affiliation(s)
- Daniel F Hermens
- Youth Mental Health Team, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Kate M Chitty
- Translational Australian Clinical Toxicology (TACT) Research Group, Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Manreena Kaur
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, VIC, Australia
| |
Collapse
|
69
|
Li CT, Yang KC, Lin WC. Glutamatergic Dysfunction and Glutamatergic Compounds for Major Psychiatric Disorders: Evidence From Clinical Neuroimaging Studies. Front Psychiatry 2018; 9:767. [PMID: 30733690 PMCID: PMC6353824 DOI: 10.3389/fpsyt.2018.00767] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Excessive glutamate release has been linked to stress and many neurodegenerative diseases. Evidence indicates abnormalities of glutamatergic neurotransmission or glutamatergic dysfunction as playing an important role in the development of many major psychiatric disorders (e.g., schizophrenia, bipolar disorder, and major depressive disorder). Recently, ketamine, an N-methyl-d-aspartate antagonist, has been demonstrated to have promisingly rapid antidepressant efficacy for treatment-resistant depression. Many compounds that target the glutamate system have also become available that possess potential in the treatment of major psychiatric disorders. In this review, we update evidence from recent human studies that directly or indirectly measured glutamatergic neurotransmission and function in major psychiatric disorders using modalities such as magnetic resonance spectroscopy, positron emission tomography/single-photon emission computed tomography, and paired-pulse transcranial magnetic stimulation. The newer generation of antidepressants that target the glutamatergic system developed in human clinical studies is also reviewed.
Collapse
Affiliation(s)
- Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | - Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
70
|
McNamara RK, Asch RH, Schurdak JD, Lindquist DM. Glutamate homeostasis in the adult rat prefrontal cortex is altered by cortical docosahexaenoic acid accrual during adolescence: An in vivo 1H MRS study. Psychiatry Res 2017; 270:39-45. [PMID: 29049903 PMCID: PMC5671887 DOI: 10.1016/j.pscychresns.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Major psychiatric disorders are associated with dysregulated glutamate homeostasis and deficits in the omega-3 fatty acid docosahexaenoic acid (DHA). This study determined the effects of dietary-induced alterations in brain DHA accrual on cortical glutamate homeostasis in the adult rat brain. Adolescent rats were fed a control diet (n = 20), a n-3 fatty acid-deficient diet (DEF, n = 20), or a fish oil-fortified diet containing preformed DHA (FO, n = 20). In adulthood 1H MRS scans were performed with voxels in the prefrontal cortex (PFC) and thalamus. Compared with controls, erythrocyte, PFC, and thalamus DHA levels were significantly lower in DEF rats and significantly higher in FO rats. In the PFC, but not the thalamus, glutamate was significantly elevated in DEF rats compared with controls and FO rats. Glutamine did not differ between groups and the glutamine/glutamate ratio was lower in DEF rats. No differences were observed for markers of excitotoxicity (NAA, GFAP), or astrocyte glutamate transporter (GLAST, GLT-1) or glutamine synthetase expression. Across diet groups, PFC DHA levels were inversely correlated with PFC glutamate levels and positively correlated with GLAST expression. Together these findings demonstrate that rat cortical DHA accrual during adolescence impacts glutamate homeostasis in the adult PFC.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Ruth H Asch
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jennifer D Schurdak
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Diana M Lindquist
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
71
|
Blacker CJ, Lewis CP, Frye MA, Veldic M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res 2017; 257:327-337. [PMID: 28800512 DOI: 10.1016/j.psychres.2017.07.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 01/03/2023]
Abstract
Glutamatergic dysregulation is implicated in the neuropathology of bipolar disorder (BD). There is increasing interest in investigating the role of metabotropic glutamate receptors (mGluRs) in BD and as a target for treatment intervention. Bipolar mGluR studies (published January 1992-April 2016) were identified via PubMed, Embase, Web of Science, and Scopus. Full-text screening, data extraction, and quality appraisal were conducted in duplicate, with strict inclusion and exclusion criteria. The initial literature search for mGluRs in BD, including non-bipolar mood disorders and primary psychotic disorders, identified 1544 articles. 61 abstracts were selected for relevance, 16 articles met full inclusion criteria, and three additional articles were found via citations. Despite limited literature, studies demonstrated: single nucleotide polymorphisms (SNPs) associated with BD, including a GRM3 SNP associated with greater likelihood of psychosis (rs6465084), mRNA binding protein Fragile X Mental Retardation Protein associated with altered mGluR1/5 activity in BD populations, and lithium decreasing mGluR5 expression and mGluR-mediated intracellular calcium signaling. Limited research has been performed on the role of mGluRs in BD, but results highlight the importance of ongoing study. Future directions for research of mGluRs in BD include GRM polymorphisms, epigenetic regulation, intracellular proteins, and pharmacologic interactions.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
72
|
Cardis R, Cabungcal JH, Dwir D, Do KQ, Steullet P. A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets. Neurobiol Dis 2017; 109:64-75. [PMID: 29024713 DOI: 10.1016/j.nbd.2017.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023] Open
Abstract
The GluN2A subunit of NMDA receptors (NMDARs) plays a critical role during postnatal brain development as its expression increases while Glun2B expression decreases. Mutations and polymorphisms in GRIN2A gene, coding for GluN2A, are linked to developmental brain disorders such as mental retardation, epilepsy, schizophrenia. Published data suggest that GluN2A is involved in maturation and phenotypic maintenance of parvalbumin interneurons (PVIs), and these interneurons suffer from a deficient glutamatergic neurotransmission via GluN2A-containing NMDARs in schizophrenia. In the present study, we find that although PVIs and their associated perineuronal nets (PNNs) appear normal in anterior cingulate cortex of late adolescent/young adult GRIN2A KO mice, a lack of GluN2A delays PNN maturation. GRIN2A KO mice display a susceptibility to redox dysregulation as sub-threshold oxidative stress and subtle alterations in antioxidant systems are observed in their prefrontal cortex. Consequently, an oxidative insult applied during early postnatal development increases oxidative stress, decreases the number of parvalbumin-immunoreactive cells, and weakens the PNNs in KO but not WT mice. These effects are long-lasting, but preventable by the antioxidant, N-acetylcysteine. The persisting oxidative stress, deficit in PVIs and PNNs, and reduced local high-frequency neuronal synchrony in anterior cingulate of late adolescent/young adult KO mice, which have been challenged by an early-life oxidative insult, is accompanied with microglia activation. Altogether, these indicate that a lack of GluN2A-containing NMDARs alters the fine control of redox status, leading to a delayed maturation of PNNs, and conferring vulnerability for long-term oxidative stress, microglial activation, and PVI network dysfunction.
Collapse
Affiliation(s)
- Romain Cardis
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland.
| |
Collapse
|
73
|
Gulchina Y, Xu SJ, Snyder MA, Elefant F, Gao WJ. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J Neurochem 2017. [PMID: 28628228 DOI: 10.1111/jnc.14101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SCZ) is characterized not only by psychosis, but also by working memory and executive functioning deficiencies, processes that rely on the prefrontal cortex (PFC). Because these cognitive impairments emerge prior to psychosis onset, we investigated synaptic function during development in the neurodevelopmental methylazoxymethanol (MAM) model for SCZ. Specifically, we hypothesize that N-methyl-D-aspartate receptor (NMDAR) hypofunction is attributable to reductions in the NR2B subunit through aberrant epigenetic regulation of gene expression, resulting in deficient synaptic physiology and PFC-dependent cognitive dysfunction, a hallmark of SCZ. Using western blot and whole-cell patch-clamp electrophysiology, we found that the levels of synaptic NR2B protein are significantly decreased in juvenile MAM animals, and the function of NMDARs is substantially compromised. Both NMDA-mEPSCs and synaptic NMDA-eEPSCs are significantly reduced in prelimbic PFC (plPFC). This protein loss during the juvenile period is correlated with an aberrant increase in enrichment of the epigenetic transcriptional repressor RE1-silencing transcription factor (REST) and the repressive histone marker H3K27me3 at the Grin2b promoter, as assayed by ChIP-quantitative polymerase chain reaction. Glutamate hypofunction has been a prominent hypothesis in the understanding of SCZ pathology; however, little attention has been given to the NMDAR system in the developing PFC in models for SCZ. Our work is the first to confirm that NMDAR hypofunction is a feature of early postnatal development, with epigenetic hyper-repression of the Grin2b promoter being a contributing factor. The selective loss of NR2B protein and subsequent synaptic dysfunction weakens plPFC function during development and may underlie early cognitive impairments in SCZ models and patients. Read the Editorial Highlight for this article on page 264.
Collapse
Affiliation(s)
- Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Song-Jun Xu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
74
|
Forsyth JK, Bachman P, Mathalon DH, Roach BJ, Ye E, Asarnow RF. Effects of Augmenting N-Methyl-D-Aspartate Receptor Signaling on Working Memory and Experience-Dependent Plasticity in Schizophrenia: An Exploratory Study Using Acute d-cycloserine. Schizophr Bull 2017; 43:1123-1133. [PMID: 28338977 PMCID: PMC5581900 DOI: 10.1093/schbul/sbw193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cognitive deficits in schizophrenia have been hypothesized to reflect N-methyl-D-aspartate receptor (NMDAR) dysfunction. However, the mechanisms through which the NMDAR contributes to individual cognitive functions differ. To explore how NMDAR signaling relates to specific cognitive deficits in schizophrenia, we tested the effects of enhancing NMDAR signaling on working memory and experience-dependent plasticity using d-cycloserine (DCS). Plasticity was assessed using an EEG paradigm that utilizes high-frequency visual stimulation (HFvS) to induce neural potentiation, and 2 learning tasks, the information integration (IIT) and weather prediction (WPT) tasks. Working memory was assessed using an N-back task. Forty-five schizophrenia patients were randomized to receive a single 100 mg DCS dose (SZ-DCS; n = 24) or placebo (SZ-PLC; n = 21) in a double-blind, between-groups design. Testing occurred on a single day after placebo or DCS administration; baseline values were not obtained. DCS did not affect plasticity, as indicated by similar neural potentiation, and similar IIT and WPT learning between groups. However, among patients who successfully engaged in the working memory task (ie, performed above chance), SZ-DCS (n = 17) showed superior 2-back performance compared to SZ-PLC (n = 16). Interestingly, SZ-DCS also showed larger pre-HFvS neural responses during the LTP task. Notably, this pattern of DCS effects is the opposite of those found in our prior study of healthy adults. Results are consistent with target engagement of the NMDAR by DCS, but suggest that NMDAR signaling was not translated into synaptic plasticity changes in schizophrenia. Results highlight the importance of considering how distinct NMDAR-associated processes contribute to individual cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Daniel H Mathalon
- Department of Psychiatry and Biomedical Sciences, University of California, San Francisco, San Francisco, CA;,San Francisco Veterans Affairs Medical Center, San Francisco, CA
| | - Brian J Roach
- San Francisco Veterans Affairs Medical Center, San Francisco, CA
| | - Elissa Ye
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Robert F Asarnow
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA;,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA,To whom correspondence should be addressed; Department of Psychology, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095; tel: (310) 825-0394, fax: (310) 206-4446, e-mail:
| |
Collapse
|
75
|
Ghasemi M, Phillips C, Fahimi A, McNerney MW, Salehi A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci Biobehav Rev 2017; 80:555-572. [DOI: 10.1016/j.neubiorev.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/23/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
|
76
|
Lee J, Hudson MR, O'Brien TJ, Nithianantharajah J, Jones NC. Local NMDA receptor hypofunction evokes generalized effects on gamma and high-frequency oscillations and behavior. Neuroscience 2017; 358:124-136. [DOI: 10.1016/j.neuroscience.2017.06.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
|
77
|
Antioxidant Treatment in Male Mice Prevents Mitochondrial and Synaptic Changes in an NMDA Receptor Dysfunction Model of Schizophrenia. eNeuro 2017; 4:eN-NWR-0081-17. [PMID: 28819639 PMCID: PMC5559903 DOI: 10.1523/eneuro.0081-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 01/09/2023] Open
Abstract
Glutamate theories of schizophrenia suggest that the disease is associated with a loss of NMDA receptors, specifically on GABAergic parvalbumin-expressing interneurons (PVIs), leading to changes in the excitation-inhibition balance in the prefrontal cortex (PFC). Oxidative stress contributes to the loss of PVI and the development of schizophrenia. Here, we investigated whether the glutathione precursor N-acetyl cysteine (NAC) can prevent changes in synaptic transmission at pyramidal cells and PVIs that result from developmental NMDAR blockade and how these changes are related to mitochondrial dysfunction in the PFCs of mice. Perinatal treatment with ketamine induced persistent changes in the reduced glutathione/oxidized glutathione (glutathione disulfide) ratio in the medial PFC, indicating long-lasting increases in oxidative stress. Perinatal ketamine treatment also reduced parvalbumin expression, and it induced a decline in mitochondrial membrane potential, as well as elevations in mitochondrial superoxide levels. At the level of synaptic function ketamine reduced inhibition onto layer 2/3 pyramidal cells and increased excitatory drive onto PVI, indicating long-lasting disruptions in the excitation-inhibition balance. These changes were accompanied by layer-specific alterations in NMDAR function in PVIs. All of these changes were mitigated by coadministration of NAC. In addition, NAC given only during late adolescence was also able to restore normal mitochondria function and inhibition at pyramidal cells. These results show that ketamine-induced alterations in PFC physiology correlate with cell type-specific changes in mitochondria function. The ability of NAC to prevent or restore these changes supports the usefulness of antioxidant supplementation in the treatment of schizophrenia.
Collapse
|
78
|
Forsyth JK, Lewis DA. Mapping the Consequences of Impaired Synaptic Plasticity in Schizophrenia through Development: An Integrative Model for Diverse Clinical Features. Trends Cogn Sci 2017; 21:760-778. [PMID: 28754595 DOI: 10.1016/j.tics.2017.06.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/13/2017] [Accepted: 06/09/2017] [Indexed: 01/19/2023]
Abstract
Schizophrenia is associated with alterations in sensory, motor, and cognitive functions that emerge before psychosis onset; identifying pathogenic processes that can account for this multi-faceted phenotype remains a challenge. Accumulating evidence suggests that synaptic plasticity is impaired in schizophrenia. Given the role of synaptic plasticity in learning, memory, and neural circuit maturation, impaired plasticity may underlie many features of the schizophrenia syndrome. Here, we summarize the neurobiology of synaptic plasticity, review evidence that plasticity is impaired in schizophrenia, and explore a framework in which impaired synaptic plasticity interacts with brain maturation to yield the emergence of sensory, motor, cognitive, and psychotic features at different times during development in schizophrenia. Key gaps in the literature and future directions for testing this framework are discussed.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
79
|
Funk AJ, Mielnik CA, Koene R, Newburn E, Ramsey AJ, Lipska BK, McCullumsmith RE. Postsynaptic Density-95 Isoform Abnormalities in Schizophrenia. Schizophr Bull 2017; 43:891-899. [PMID: 28126896 PMCID: PMC5472126 DOI: 10.1093/schbul/sbw173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Postsynaptic density-95 (PSD-95) protein expression is dysregulated in schizophrenia in a variety of brain regions. We have designed experiments to examine PSD-95 mRNA splice variant expression in the dorsolateral prefrontal cortex from subjects with schizophrenia. METHODS We performed quantitative PCR and western blot analysis to measure PSD-95 expression in schizophrenia vs control subjects, rodent haloperidol treatment studies, rodent postmortem interval studies, and GluN1 knockdown (KD) mice vs controls. RESULTS We found decreased mRNA expression of beta (t = 4.506, df = 383, P < .0001) and truncated (t = 3.378, df = 383, P = .0008) isoforms of PSD-95, whereas alpha was unchanged. Additionally, we found decreased PSD-95 protein expression in schizophrenia (t = 2.746, df = 71, P = .0076). We found no correlation between PSD-95 protein and alpha, beta, or truncated mRNA isoforms in schizophrenia. PSD-95 beta transcript was increased (t = 3.346, df = 14, P < .05) in the GluN1 KD mouse model of schizophrenia. There was an increase in PSD-95 alpha mRNA expression (t = 2.905, df = 16, P < .05) in rats following long-term haloperidol administration. CONCLUSIONS Our findings describe a unique pathophysiology of specific PSD-95 isoform dysregulation in schizophrenia, chronic neuroleptic treatment, and a genetic lesion mouse model of drastically reduced N-methyl-d-aspartate receptor (NMDAR) complex expression. These data indicate that regulation of PSD-95 is multifaceted, may be isoform specific, and biologically relevant for synaptic signaling function. Specifically, NMDAR-mediated synaptic remodeling, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking and interaction may be impaired in schizophrenia by decreased PSD-95 beta and truncated expression (respectively). Further, increased PSD-95 beta transcript in the GluN1 KD mouse model poses a potential compensatory rescue of NMDAR-mediated function via increased postsynaptic throughput of the severely reduced GluN1 signal. Together, these data propose that disruption of excitatory signaling complexes through genetic (GluN1 KD), pharmacologic (antipsychotics), or disease (schizophrenia) mechanisms specifically dysregulates PSD-95 expression.
Collapse
Affiliation(s)
- Adam J. Funk
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Catharine A. Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Rachael Koene
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Amy J. Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Barbara K. Lipska
- Human Brain Collection Core, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD,Co-senior authors
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH;,Co-senior authors
| |
Collapse
|
80
|
Veldman ER, Svedberg MM, Svenningsson P, Lundberg J. Distribution and levels of 5-HT 1B receptors in anterior cingulate cortex of patients with bipolar disorder, major depressive disorder and schizophrenia - An autoradiography study. Eur Neuropsychopharmacol 2017; 27:504-514. [PMID: 28318898 DOI: 10.1016/j.euroneuro.2017.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
The serotonin 1B receptor has recently received more interest as a possible new target for pharmacological treatment of psychiatric disorders. However, the exact mechanisms of action remain unclear. This study aimed to examine the binding distribution and levels of the serotonin 1B receptor in-depth in the anterior cingulate cortex (ACC) and provide more insight in its functional role in bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia (SZ). Serotonin 1B receptor binding distribution was visualized with high resolution autoradiography (ARG), using the radioligand [3H]AZ10419369, in postmortem ACC tissue from patients diagnosed with BD (n=14), MDD (n=12), SZ (n=13) and healthy subjects (n=13). Moreover, a quantification of receptor binding was made with ARG, in relation to patient group, age and gender. In all subject groups a significantly higher specific binding of serotonin 1B receptor was measured in the outer ACC layers compared to the inner ACC layers. Correlation analysis with ARG binding patterns of several radioligands resulted in a significant correlation with glutamatergic N-methyl-D-aspartate receptor binding in the outer layers. No significant difference was found between subject groups in binding levels and distribution. In female subjects a significantly lower receptor binding was found than in male subjects, which was most profound in patients diagnosed with MDD. The binding distribution of the serotonin 1B receptor found in this study supports a role in glutamate transmission in the ACC and was not shown to be significantly altered in BD, MDD or SZ. A gender difference in serotonin 1B receptor binding was found.
Collapse
Affiliation(s)
- Emma R Veldman
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
| | - Marie M Svedberg
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan Lundberg
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
81
|
Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder. Neuropsychopharmacology 2017; 42:864-875. [PMID: 27577603 PMCID: PMC5312059 DOI: 10.1038/npp.2016.175] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is predicted to be the second leading cause of global disease burden by 2030. A large number of MDD patients do not respond to the currently available medication because of its poorly understood etiology. Recently, studies of microRNAs (miRNAs), which act as a molecular switch of gene expression, have shown promise in identifying a molecular network that could provide significant clues to various psychiatric illnesses. Using an in vitro system, a rodent depression model, and a human postmortem brain, we investigated the role of a brain-enriched, neuron-specific miRNA, miR-124-3p, whose expression is highly dysregulated in stressed rodents, and identified a set of target genes involved in stress response and neural plasticity. We also found that miR-124-3p is epigenetically regulated and its interaction with the RNA-induced silencing complex (RISC) is compromised in MDD. Using blood serum, we found similar dysregulation of miR-124-3p in antidepressant-free MDD subjects. Altogether, our study demonstrates potential contribution of miR-124-3p in the pathophysiology of MDD and suggests that this miRNA may serve as a novel target for drug development and a biomarker for MDD pathogenesis.
Collapse
|
82
|
Goff DC. D-cycloserine in Schizophrenia: New Strategies for Improving Clinical Outcomes by Enhancing Plasticity. Curr Neuropharmacol 2017; 15:21-34. [PMID: 26915421 PMCID: PMC5327448 DOI: 10.2174/1570159x14666160225154812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/13/2015] [Accepted: 01/30/2016] [Indexed: 12/25/2022] Open
Abstract
Background Dysregulation of N-methyl D-aspartate (NMDA) receptor signaling is strongly implicated in schizophrenia. Based on the ketamine model of NMDA receptor hypoactivity, therapeutic approaches designed to maintain a sustained increase in agonist activity at the glycine site of the NMDA receptor have produced promising, although inconsistent, efficacy for negative symptoms. Methods A review of the published literature on D-cycloserine (DCS) pharmacology in animal models and in clinical studies was performed. Findings relevant to DCS effects on memory and plasticity and their potential clinical application to schizophrenia were summarized. Results Studies in animals and clinical trials in patients with anxiety disorders have demonstrated that single or intermittent dosing with DCS enhances memory consolidation. Preliminary trials in patients with schizophrenia suggest that intermittent dosing with DCS may produce persistent improvement of negative symptoms and enhance learning when combined with cognitive behavioral therapy for delusions or with cognitive remediation. The pharmacology of DCS is complex, since it acts as a “super agonist” at NMDA receptors containing GluN2C subunits and, under certain conditions, it may act as an antagonist at NMDA receptors containing GluN2B subunits. Conclusions There are preliminary findings that support a role for D-cycloserine in schizophrenia as a strategy to enhance neuroplasticity and memory. However, additional studies with DCS are needed to confirm these findings. In addition, clinical trials with positive and negative allosteric modulators with greater specificity for NMDA receptor subtypes are needed to identify the optimal strategy for enhancing neuroplasticity in schizophrenia.
Collapse
Affiliation(s)
- Donald C Goff
- Nathan Kline Institute for Psychiatric Research, NYU School of Medicine, USA
| |
Collapse
|
83
|
Nakazawa K, Jeevakumar V, Nakao K. Spatial and temporal boundaries of NMDA receptor hypofunction leading to schizophrenia. NPJ SCHIZOPHRENIA 2017; 3:7. [PMID: 28560253 PMCID: PMC5441533 DOI: 10.1038/s41537-016-0003-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
The N-methyl-d-aspartate receptor hypofunction is one of the most prevalent models of schizophrenia. For example, healthy subjects treated with uncompetitive N-methyl-d-aspartate receptor antagonists elicit positive, negative, and cognitive-like symptoms of schizophrenia. Patients with anti-N-methyl-d-aspartate receptor encephalitis, which is likely caused by autoantibody-mediated down-regulation of cell surface N-methyl-d-aspartate receptors, often experience psychiatric symptoms similar to schizophrenia initially. However, where and when N-methyl-d-aspartate receptor hypofunction occurs in the brain of schizophrenic patients is poorly understood. Here we review the findings from N-methyl-d-aspartate receptor antagonist and autoantibody models, postmortem studies on N-methyl-d-aspartate receptor subunits, as well as the global and cell-type-specific knockout mouse models of subunit GluN1. We compare various conditional GluN1 knockout mouse strains, focusing on the onset of N-methyl-d-aspartate receptor deletion and on the cortical cell-types. Based on these results, we hypothesize that N-methyl-d-aspartate receptor hypofunction initially occurs in cortical GABAergic neurons during early postnatal development. The resulting GABA neuron maturation deficit may cause reduction of intrinsic excitability and GABA release, leading to disinhibition of pyramidal neurons. The cortical disinhibition in turn could elicit glutamate spillover and subsequent homeostatic down regulation of N-methyl-d-aspartate receptor function in pyramidal neurons in prodromal stage. These two temporally-distinct N-methyl-d-aspartate receptor hypofunctions may be complimentary, as neither alone may not be able to fully explain the entire schizophrenia pathophysiology. Potential underlying mechanisms for N-methyl-d-aspartate receptor hypofunction in cortical GABA neurons are also discussed, based on studies of naturally-occurring N-methyl-d-aspartate receptor antagonists, neuregulin/ErbB4 signaling pathway, and theoretical analysis of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Kazu Nakazawa
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Vivek Jeevakumar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Kazuhito Nakao
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
84
|
Mazinani R, Nejati S, Khodaei M. Effects of memantine added to risperidone on the symptoms of schizophrenia: A randomized double-blind, placebo-controlled clinical trial. Psychiatry Res 2017; 247:291-295. [PMID: 27940324 DOI: 10.1016/j.psychres.2016.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023]
Abstract
The "glutamate hypothesis of schizophrenia" has changed attitudes in the development of new medications. This study aimed to evaluate the effects of 20mg of memantine per day (as a NMDA receptor antagonist) added to risperidone among male patients with schizophrenia. In a randomized placebo-controlled, double-blind clinical trial, 46 adult male patients with schizophrenia were evaluated in both intervention and control groups at weeks 0, 6 and 12. The positive and negative symptoms scale and the mini mental status examination were used to assess positive, negative and cognitive symptoms and general psychopathology. The mean age of the patients was 44.8 for the intervention group and 45.3 for the control group, and the mean times since diagnosis were 23.5 and 25.7 years in the intervention and the control group, respectively. Positive and general psychopathologic symptoms showed no significant differences between the two groups at baseline or after treatment; while negative symptoms improved significantly in the intervention group at week 12. Cognitive function was also significantly improved in the intervention group at weeks 6 and 12. Memantine is supported as an effective adjunct treatment to improve negative and cognitive symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Robabeh Mazinani
- Department of Psychiatry, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Somayeh Nejati
- Department of Psychiatry, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran; Substance Abuse and Dependence Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Mohammadreza Khodaei
- Department of Psychiatry, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
85
|
The NMDA receptor GluN2C subunit controls cortical excitatory-inhibitory balance, neuronal oscillations and cognitive function. Sci Rep 2016; 6:38321. [PMID: 27922130 PMCID: PMC5138829 DOI: 10.1038/srep38321] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/09/2016] [Indexed: 01/11/2023] Open
Abstract
Despite strong evidence for NMDA receptor (NMDAR) hypofunction as an underlying factor for cognitive disorders, the precise roles of various NMDAR subtypes remains unknown. The GluN2C-containing NMDARs exhibit unique biophysical properties and expression pattern, and lower expression of GluN2C subunit has been reported in postmortem brains from schizophrenia patients. We found that loss of GluN2C subunit leads to a shift in cortical excitatory-inhibitory balance towards greater inhibition. Specifically, pyramidal neurons in the medial prefrontal cortex (mPFC) of GluN2C knockout mice have reduced mEPSC frequency and dendritic spine density and a contrasting higher frequency of mIPSCs. In addition a greater number of perisomatic GAD67 puncta was observed suggesting a potential increase in parvalbumin interneuron inputs. At a network level the GluN2C knockout mice were found to have a more robust increase in power of oscillations in response to NMDAR blocker MK-801. Furthermore, GluN2C heterozygous and knockout mice exhibited abnormalities in cognition and sensorimotor gating. Our results demonstrate that loss of GluN2C subunit leads to cortical excitatory-inhibitory imbalance and abnormal neuronal oscillations associated with neurodevelopmental disorders.
Collapse
|
86
|
Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: Effect of ketamine. Synapse 2016; 71:37-45. [PMID: 27589698 DOI: 10.1002/syn.21940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is associated with dysfunctional serotonergic and glutamatergic neurotransmission, and the genetic animal model of depression Flinders Sensitive Line (FSL) rats display alterations in these systems relatively to their control strain Flinders Resistant Line (FRL). However, changes on transcript level related to serotonergic and glutamatergic signaling have only been sparsely studied in this model. The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has fast-onset antidepressant properties, and recent data implicate serotonergic neurotransmission in ketamine's antidepressant-like activities in rodents. Here, we investigated the transcript levels of 40 genes involved in serotonergic and glutamatergic neurotransmission in FSL and FRL rats in response to a single dose of ketamine (15 mg/kg; 90 min prior to euthanization). Using real-time quantitative polymerase chain reaction, we studied the effect of ketamine in the hippocampus, whereas strain differences were investigated in both hippocampus and frontal cortex. The expression of genes involved in serotonergic and glutamatergic neurotransmission were unaffected by a single dose of ketamine in the hippocampus. Relative to FRL rats, FSL rats displayed enhanced hippocampal transcript levels of 5-ht2c , and P11, whereas the expression was reduced for 5-ht2a , Nr2a, and Mglur2. In the frontal cortex, we found higher transcript levels of 5-ht2c and Mglur2, whereas the expression of 5-ht2a was reduced in FSL rats. Thus, ketamine is not associated with hippocampal alterations in serotonergic or glutamatergic genes at 90 min after an antidepressant dose. Furthermore, FSL rats display serotonergic and glutamatergic abnormalities on gene expression level that partly may resemble findings in MDD patients.
Collapse
Affiliation(s)
- Kristian Gaarn Du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark.,Lundbeck US LLC, 215 College Rd, Paramus, New Jersey
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
87
|
Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry 2016; 6:e946. [PMID: 27824355 PMCID: PMC5314124 DOI: 10.1038/tp.2016.212] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/08/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022] Open
Abstract
A proportion of cases with mood disorders have elevated inflammatory markers in the blood that conceivably may result from stress, infection and/or autoimmunity. However, it is not yet clear whether depression is a neuroinflammatory disease. Multiple histopathological and molecular abnormalities have been found postmortem but the etiology of these abnormalities is unknown. Here, we take an immunological perspective of this literature. Increases in activated microglia or perivascular macrophages in suicide victims have been reported in the parenchyma. In contrast, astrocytic markers generally are downregulated in mood disorders. Impairment of astrocytic function likely compromises the reuptake of glutamate potentially leading to excitotoxicity. Inflammatory cytokines and microglia/macrophage-derived quinolinic acid (QA) downregulate the excitatory amino acid transporters responsible for this reuptake, while QA has the additional effect of inhibiting astroglial glutamine synthetase, which converts glutamate to glutamine. Given that oligodendroglia are particularly vulnerable to inflammation, it is noteworthy that reductions in numbers or density of oligodendrocyte cells are one of the most prominent findings in depression. Structural and/or functional changes to GABAergic interneurons also are salient in postmortem brain samples, and may conceivably be related to early inflammatory insults. Although the postmortem data are consistent with a neuroimmune etiology in a subgroup of depressed individuals, we do not argue that all depression-associated abnormalities are reflective of a neuroinflammatory process or even that all immunological activity in the brain is deleterious. Rather, we highlight the pervasive role of immune signaling pathways in brain function and provide an alternative perspective on the current postmortem literature.
Collapse
|
88
|
Monkey Prefrontal Neurons Reflect Logical Operations for Cognitive Control in a Variant of the AX Continuous Performance Task (AX-CPT). J Neurosci 2016; 36:4067-79. [PMID: 27053213 DOI: 10.1523/jneurosci.3578-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/15/2016] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Cognitive control is the ability to modify the behavioral response to a stimulus based on internal representations of goals or rules. We sought to characterize neural mechanisms in prefrontal cortex associated with cognitive control in a context that would maximize the potential for future translational relevance to human neuropsychiatric disease. To that end, we trained monkeys to perform a dot-pattern variant of the AX continuous performance task that is used to measure cognitive control impairment in patients with schizophrenia (MacDonald, 2008;Jones et al., 2010). Here we describe how information processing for cognitive control in this task is related to neural activity patterns in prefrontal cortex of monkeys, to advance our understanding of how behavioral flexibility is implemented by prefrontal neurons in general, and to model neural signals in the healthy brain that may be disrupted to produce cognitive control deficits in schizophrenia. We found that the neural representation of stimuli in prefrontal cortex is strongly biased toward stimuli that inhibit prepotent or automatic responses. We also found that population signals encoding different stimuli were modulated to overlap in time specifically in the case that information from multiple stimuli had to be integrated to select a conditional response. Finally, population signals relating to the motor response were biased toward less frequent and therefore less automatic actions. These data relate neuronal activity patterns in prefrontal cortex to logical information processing operations required for cognitive control, and they characterize neural events that may be disrupted in schizophrenia. SIGNIFICANCE STATEMENT Functional imaging studies have demonstrated that cognitive control deficits in schizophrenia are associated with reduced activation of the dorsolateral prefrontal cortex (MacDonald et al., 2005). However, these data do not reveal how the disease has disrupted the function of prefrontal neurons to produce the observed deficits in cognitive control. Relating cognitive control to neurophysiological signals at a cellular level in prefrontal cortex is a necessary first step toward understanding how disruption of these signals could lead to cognitive control failure in neuropsychiatric disease. To that end, we translated a task that measures cognitive control deficits in patients with schizophrenia to monkeys and describe here how neural signals in prefrontal cortex relate to performance.
Collapse
|
89
|
Molecular evidence of synaptic pathology in the CA1 region in schizophrenia. NPJ SCHIZOPHRENIA 2016; 2:16022. [PMID: 27430010 PMCID: PMC4944906 DOI: 10.1038/npjschz.2016.22] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022]
Abstract
Alterations of postsynaptic density (PSD)95-complex proteins in schizophrenia ostensibly induce deficits in synaptic plasticity, the molecular process underlying cognitive functions. Although some PSD95-complex proteins have been previously examined in the hippocampus in schizophrenia, the status of other equally important molecules is unclear. This is especially true in the cornu ammonis (CA)1 hippocampal subfield, a region that is critically involved in the pathophysiology of the illness. We thus performed a quantitative immunoblot experiment to examine PSD95 and several of its associated proteins in the CA1 region, using post mortem brain samples derived from schizophrenia subjects with age-, sex-, and post mortem interval-matched controls (n=20/group). Our results indicate a substantial reduction in PSD95 protein expression (-61.8%). Further analysis showed additional alterations to the scaffold protein Homer1 (Homer1a: +42.9%, Homer1b/c: -24.6%), with a twofold reduction in the ratio of Homer1b/c:Homer1a isoforms (P=0.011). Metabotropic glutamate receptor 1 (mGluR1) protein levels were significantly reduced (-32.7%), and Preso, a protein that supports interactions between Homer1 or PSD95 with mGluR1, was elevated (+83.3%). Significant reduction in synaptophysin (-27.8%) was also detected, which is a validated marker of synaptic density. These findings support the presence of extensive molecular abnormalities to PSD95 and several of its associated proteins in the CA1 region in schizophrenia, offering a small but significant step toward understanding how proteins in the PSD are altered in the schizophrenia brain, and their relevance to overall hippocampal and cognitive dysfunction in the illness.
Collapse
|
90
|
Ultimate Translation: Developing Therapeutics Targeting on N-Methyl-d-Aspartate Receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:257-309. [PMID: 27288080 DOI: 10.1016/bs.apha.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are broadly distributed in the central nervous system (CNS), where they mediate excitatory signaling. NMDAR-mediated neurotransmission (NMDARMN) is the molecular engine of learning, memory and cognition, which are the basis for high cortical function. NMDARMN is also critically involved in the development and plasticity of CNS. Due to its essential and critical role, either over- or under-activation of NMDARMN can contribute substantially to the development of CNS disorders. The involvement of NMDARMN has been demonstrated in a variety of CNS disorders, including schizophrenia, depression, posttraumatic stress disorder, aging, mild cognitive impairment and Alzheimer's dementia, amyotrophic lateral sclerosis, and anti-NMDAR encephalitis. Several targets to "correct" or "reset" the NMDARMN in these CNS disorders have been identified and confirmed. With analogy to aminergic treatments, these targets include the glycine/d-serine co-agonist site, channel ionophore, glycine transporter-1, and d-amino acid oxidase. It is still early days in terms of developing novel therapeutics targeting the NMDAR. However, agents modulating NMDARMN hold promise as the next generation of CNS therapeutics.
Collapse
|
91
|
Shukla AA, Jha M, Birchfield T, Mukherjee S, Gleason K, Abdisalaam S, Asaithamby A, Adams-Huet B, Tamminga CA, Ghose S. COMT val158met polymorphism and molecular alterations in the human dorsolateral prefrontal cortex: Differences in controls and in schizophrenia. Schizophr Res 2016; 173:94-100. [PMID: 27021555 PMCID: PMC4836991 DOI: 10.1016/j.schres.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
The single nucleotide val158met polymorphism in catechol o-methyltransferase (COMT) influences prefrontal cortex function. Working memory, dependent on the dorsolateral prefrontal cortex (DLPFC), has been repeatedly shown to be influenced by this COMT polymorphism. The high activity COMT val isoform is associated with lower synaptic dopamine levels. Altered synaptic dopamine levels are expected to lead to molecular adaptations within the synapse and within DLPFC neural circuitry. In this human post mortem study using high quality DLPFC tissue, we first examined the influence of the COMT val158met polymorphism on markers of dopamine neurotransmission, N-methyl-d-aspartate (NMDA) receptor subunits and glutamatic acid decarboxylase 67 (GAD67), all known to be critical to DLPFC circuitry and function. Next, we compared target gene expression profiles in a cohort of control and schizophrenia cases, each characterized by COMT genotype. We find that the COMT val allele in control subjects is associated with significant upregulation of GluN2A and GAD67 mRNA levels compared to met carriers. Comparisons between control and schizophrenia groups reveal that GluN2A, GAD67 and DRD2 are differentially regulated between diagnostic groups in a genotype specific manner. Chronic antipsychotic treatment in rodents did not explain these differences. These data demonstrate an association between COMTval158met genotype and gene expression profile in the DLPFC of controls, possibly adaptations to maintain DLPFC function. In schizophrenia val homozygotes, these adaptations are not seen and could reflect pathophysiologic mechanisms related to the known poorer performance of these subjects on DLPFC-dependent tasks.
Collapse
Affiliation(s)
- Abhay A. Shukla
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Manish Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Thomas Birchfield
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Shibani Mukherjee
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Salim Abdisalaam
- Department of Radiation Oncology/Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Aroumougame Asaithamby
- Department of Radiation Oncology/Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Beverley Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| |
Collapse
|
92
|
Harms L. Mismatch responses and deviance detection in N-methyl-D-aspartate (NMDA) receptor hypofunction and developmental models of schizophrenia. Biol Psychol 2016; 116:75-81. [DOI: 10.1016/j.biopsycho.2015.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 01/03/2023]
|
93
|
Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol 2016; 116:57-67. [DOI: 10.1016/j.biopsycho.2015.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/19/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023]
|
94
|
Goff D. The Therapeutic Role of d-Cycloserine in Schizophrenia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:39-66. [PMID: 27288073 DOI: 10.1016/bs.apha.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ketamine model for schizophrenia has led to several therapeutic strategies for enhancing N-methyl d-aspartate (NMDA) receptor activity, including agonists directed at the glycine receptor site and inhibitors of glycine reuptake. Because ketamine may primarily block NMDA receptors on inhibitory interneurons, drugs that reduce glutamate release have also been investigated as a means of countering a deficit in inhibitory input. These approaches have met with some success for the treatment of negative and positive symptoms, but results have not been consistent. An emerging approach with the NMDA partial agonist, d-cycloserine (DCS), aims to enhance plasticity by intermittent treatment. Early trials have demonstrated benefit with intermittent DCS dosing for negative symptoms and memory. When combined with cognitive remediation, intermittent DCS treatment enhanced learning on a practiced auditory discrimination task and when added to cognitive behavioral therapy, DCS improved delusional severity in subjects who received DCS with the first CBT session. These studies require replication, but point toward a promising strategy for the treatment of schizophrenia and other disorders of plasticity.
Collapse
Affiliation(s)
- D Goff
- NYU School of Medicine, New York, United States.
| |
Collapse
|
95
|
Kimoto S, Glausier JR, Fish KN, Volk DW, Bazmi HH, Arion D, Datta D, Lewis DA. Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophr Bull 2016; 42:396-405. [PMID: 26424323 PMCID: PMC4753606 DOI: 10.1093/schbul/sbv139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-methyl-d-aspartate receptor (NMDAR) hypofunction in the dorsolateral prefrontal cortex (DLPFC) has been implicated in the pathology of schizophrenia. NMDAR activity is negatively regulated by some G protein-coupled receptors (GPCRs). Signaling through these GPCRs is reduced by Regulator of G protein Signaling 4 (RGS4). Thus, lower levels of RGS4 would enhance GPCR-mediated reductions in NMDAR activity and could contribute to NMDAR hypofunction in schizophrenia. In this study, we quantified RGS4 mRNA and protein levels at several levels of resolution in the DLPFC from subjects with schizophrenia and matched healthy comparison subjects. To investigate molecular mechanisms that could contribute to altered RGS4 levels, we quantified levels of small noncoding RNAs, known as microRNAs (miRs), which regulate RGS4 mRNA integrity after transcription. RGS4 mRNA and protein levels were significantly lower in schizophrenia subjects and were positively correlated across all subjects. The RGS4 mRNA deficit was present in pyramidal neurons of DLPFC layers 3 and 5 of the schizophrenia subjects. In contrast, levels of miR16 were significantly higher in the DLPFC of schizophrenia subjects, and higher miR16 levels predicted lower RGS4 mRNA levels. These findings provide convergent evidence of lower RGS4 mRNA and protein levels in schizophrenia that may result from increased expression of miR16. Given the role of RGS4 in regulating GPCRs, and consequently the strength of NMDAR signaling, these findings could contribute to the molecular substrate for NMDAR hypofunction in DLPFC pyramidal cells in schizophrenia.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA; Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David W Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - H Holly Bazmi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Dibyadeep Datta
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
96
|
Dean B, Gibbons AS, Boer S, Uezato A, Meador-Woodruff J, Scarr E, McCullumsmith RE. Changes in cortical N-methyl- d-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Aust N Z J Psychiatry 2016; 50:275-83. [PMID: 26013316 PMCID: PMC7683009 DOI: 10.1177/0004867415586601] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. METHOD We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. RESULTS Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p < 0.01) and GRIN2C mRNA (laminae I-VI; -27%, p < 0.05) were lower in the anterior cingulate cortex and NMDAR binding was lower in the outer lamina IV of the dorsolateral prefrontal cortex (-19%, p < 0.01). In major depressive disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p < 0.05). In suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p < 0.01) but lower (-35%, p = 0.02) in dorsolateral prefrontal cortex while post-synaptic density protein 95 was higher (+26%, p < 0.05) in anterior cingulate cortex. CONCLUSION These data suggest that differences in cortical NMDAR expression and post-synaptic density protein 95 are present in psychiatric disorders and suicide completion and may contribute to different responses to ketamine.
Collapse
Affiliation(s)
- Brian Dean
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Andrew S Gibbons
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Simone Boer
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Akihito Uezato
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Elizabeth Scarr
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
97
|
Yamamoto H, Hagino Y, Kasai S, Ikeda K. Specific Roles of NMDA Receptor Subunits in Mental Disorders. Curr Mol Med 2016; 15:193-205. [PMID: 25817860 PMCID: PMC5384360 DOI: 10.2174/1566524015666150330142807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/28/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.
Collapse
Affiliation(s)
| | | | | | - K Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
98
|
Akula N, Wendland JR, Choi KH, McMahon FJ. An Integrative Genomic Study Implicates the Postsynaptic Density in the Pathogenesis of Bipolar Disorder. Neuropsychopharmacology 2016; 41. [PMID: 26211730 PMCID: PMC4707835 DOI: 10.1038/npp.2015.218] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genome-wide association studies (GWAS) have identified several common variants associated with bipolar disorder (BD), but the biological meaning of these findings remains unclear. Integrative genomics-the integration of GWAS signals with gene expression data-may illuminate genes and gene networks that have key roles in the pathogenesis of BD. We applied weighted gene co-expression network analysis (WGCNA), which exploits patterns of co-expression among genes, to brain transcriptome data obtained by sequencing of poly-A RNA derived from postmortem dorsolateral prefrontal cortex from people with BD, along with age- and sex-matched controls. WGCNA identified 33 gene modules. Many of the modules corresponded closely to those previously reported in human cortex. Three modules were associated with BD, enriched for genes differentially expressed in BD, and also enriched for signals in prior GWAS of BD. Functional analysis of genes within these modules revealed significant enrichment of several functionally related sets of genes, especially those involved in the postsynaptic density (PSD). These results provide convergent support for the hypothesis that dysregulation of genes involved in the PSD is a key factor in the pathogenesis of BD. If replicated in larger samples, these findings could point toward new therapeutic targets for BD.
Collapse
Affiliation(s)
- Nirmala Akula
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA,Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), National Institutes of Health, US Department of Health and Human Services, Building 35, Room 1A-100, 35 Convent Drive, Bethesda, MD 20892, USA, Tel: +1 301 451 4258, Fax: +1 301 402 7094, E-mail:
| | - Jens R Wendland
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Kwang H Choi
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
99
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
100
|
Parekh PK, McClung CA. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity. Front Psychiatry 2016; 6:187. [PMID: 26793129 PMCID: PMC4709415 DOI: 10.3389/fpsyt.2015.00187] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022] Open
Abstract
Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward-related behavior.
Collapse
Affiliation(s)
- Puja K. Parekh
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A. McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|