51
|
Dong Z, Qi J, Peng H, Liu J, Zhang JT. Spectrin domain of eukaryotic initiation factor 3a is the docking site for formation of the a:b:i:g subcomplex. J Biol Chem 2013; 288:27951-9. [PMID: 23921387 DOI: 10.1074/jbc.m113.483164] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
eIF3a (eukaryotic translation initiation factor 3a), one of the core subunits of the eIF3 complex, has been implicated in regulating translation of different mRNAs and in tumorigenesis. A subcomplex consisting of eIF3a, eIF3b, eIF3g, and eIF3i (eIF3(a:b:i:g)) has also been identified. However, how eIF3a participates in translational regulation and in formation of the eIF3(a:b:i:g) subcomplex remain to be solved. In this study, we used the tandem affinity purification approach in combination with tandem MS/MS and identified the spectrin domain of eIF3a as the docking site for the formation of eIF3(a:b:i:g) subcomplex. Although eIF3b and eIF3i bind concurrently to the spectrin domain of eIF3a within ∼10-15 amino acids apart, eIF3g binds to eIF3a indirectly via binding to the carboxyl-terminal domain of eIF3b. The binding of eIF3b to the spectrin domain of eIF3a occurs in its RNA recognition motif domain where eIF3j also binds in a mutually exclusive manner. Together, we conclude that the spectrin domain of eIF3a is responsible for the formation of eIF3(a:b:i:g) subcomplex and, because of mutually exclusive nature of bindings of eIF3a and eIF3j to eIF3b, different subcomplexes of eIF3 likely exist and may perform noncanonical functions in translational regulation.
Collapse
Affiliation(s)
- Zizheng Dong
- From the Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | | | | | | |
Collapse
|
52
|
Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 2013; 340:9-21. [PMID: 23830805 DOI: 10.1016/j.canlet.2013.06.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is a complicated process primarily regulated at the levels of gene transcription and mRNA translation. The latter involves four main steps: initiation, elongation, termination and recycling. Translation regulation is primarily achieved during initiation which is orchestrated by 12 currently known eukaryotic initiation factors (eIFs). Here, we review the current state of eIF research and present a concise summary of the various eIF subunits. As eIFs turned out to be critically implicated in different oncogenic processes the various eIF members and their contribution to onset and progression of cancer are featured.
Collapse
|
53
|
Wang H, Ru Y, Sanchez-Carbayo M, Wang X, Kieft JS, Theodorescu D. Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization. Clin Cancer Res 2013; 19:2850-60. [PMID: 23575475 DOI: 10.1158/1078-0432.ccr-12-3084] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Discovery transcriptomic analyses suggest eukaryotic initiation factor 3b (eIF3b) is elevated in human bladder and prostate cancer, yet its role as a prognostic factor or its requirement in the maintenance or progression of human cancer is not established. Here, we determine the therapeutic potential of eIF3b by examining the clinical relevance of its expression in human cancer tissues and its role in experimental tumor models. EXPERIMENTAL DESIGN We examined mRNA expression of eIF3b in bladder (N = 317) and prostate (N = 566) tissue samples and protein expression by immunohistochemistry in 143 bladder tumor samples as a function of clinicopathologic features. The impact of eIF3b depletion by siRNA in human cancer lines was evaluated in regard to in vitro cell growth, cell cycle, migration, in vivo subcutaneous tumor growth, and lung colonization. RESULTS eIF3b mRNA expression correlated to tumor grade, stage, and survival in human bladder and prostate cancer. eIF3b protein expression stratified survival in human bladder cancer. eIF3b depletion reduced in vitro cancer cell growth; inhibited G1-S cell-cycle transition by changing protein but not RNA expression of cyclin A, E, Rb, and p27Kip1; inhibited migration; and disrupted actin cytoskeleton and focal adhesions. These changes were associated with decreased protein expression of integrin α5. Integrin α5 depletion phenocopied effects observed with eIF3b. eIF3b-depleted bladder cancer cells formed fewer subcutaneous tumors that grew more slowly and had reduced lung colonization. CONCLUSION eIF3b expression relates to human bladder and prostate cancer prognosis, is required for tumor growth, and thus a candidate therapeutic target.
Collapse
Affiliation(s)
- Hong Wang
- Department of Surgery (Urology), University of Colorado, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
54
|
Lane DJR, Saletta F, Suryo Rahmanto Y, Kovacevic Z, Richardson DR. N-myc downstream regulated 1 (NDRG1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion. PLoS One 2013; 8:e57273. [PMID: 23437357 PMCID: PMC3578820 DOI: 10.1371/journal.pone.0057273] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/18/2013] [Indexed: 01/23/2023] Open
Abstract
Iron is critical for cellular proliferation and its depletion leads to a suppression of both DNA synthesis and global translation. These observations suggest that iron depletion may trigger a cellular “stress response”. A canonical response of cells to stress is the formation of stress granules, which are dynamic cytoplasmic aggregates containing stalled pre-initiation complexes that function as mRNA triage centers. By differentially prioritizing mRNA translation, stress granules allow for the continued and selective translation of stress response proteins. Although the multi-subunit eukaryotic initiation factor 3 (eIF3) is required for translation initiation, its largest subunit, eIF3a, may not be essential for this activity. Instead, eIF3a is a vital constituent of stress granules and appears to act, in part, by differentially regulating specific mRNAs during iron depletion. Considering this, we investigated eIF3a’s role in modulating iron-regulated genes/proteins that are critically involved in proliferation and metastasis. In this study, eIF3a was down-regulated and recruited into stress granules by iron depletion as well as by the classical stress-inducers, hypoxia and tunicamycin. Iron depletion also increased expression of the metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), and a known downstream repressed target of eIF3a, namely the cyclin-dependent kinase inhibitor, p27kip1. To determine if eIF3a regulates NDRG1 expression, eIF3a was inducibly over-expressed or ablated. Importantly, eIF3a positively regulated NDRG1 expression and negatively regulated p27kip1 expression during iron depletion. This activity of eIF3a could be due to its recruitment to stress granules and/or its ability to differentially regulate mRNA translation during cellular stress. Additionally, eIF3a positively regulated proliferation, but negatively regulated cell motility and invasion, which may be due to the eIF3a-dependent changes in expression of NDRG1 and p27kip1 observed under these conditions.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
55
|
Yin JY, Dong ZZ, Liu RY, Chen J, Liu ZQ, Zhang JT. Translational regulation of RPA2 via internal ribosomal entry site and by eIF3a. Carcinogenesis 2013; 34:1224-31. [PMID: 23393223 DOI: 10.1093/carcin/bgt052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RPA2 is a subunit of a trimeric replication protein A (RPA) complex important for DNA repair and replication. Although it is known that RPA activity is regulated by post-translational modification, whether RPA expression is regulated and the mechanism therein is currently unknown. eIF3a, the largest subunit of eIF3, is an important player in translational control and has been suggested to regulate translation of a subset of messenger RNAs important for tumorigenesis, metastasis, cell cycle progression, drug response and DNA repair. In the present study, we show that RPA2 expression is regulated at translational level via internal ribosome entry site (IRES)-mediated initiation in response to DNA damage. We also found that eIF3a suppresses RPA2 synthesis and inhibits its cellular IRES activity by directly binding to the IRES element of RPA2 located at -50 to -150 bases upstream of the translation start site. Taken together, we conclude that RPA2 expression is translationally regulated via IRES and by eIF3a and that this regulation is partly accountable for cellular response to DNA damage and survival.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Department of Pharmacology/Toxicology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
56
|
Xu X, Han L, Yang H, Duan L, Zhou B, Zhao Y, Qu J, Ma R, Zhou H, Liu Z. The A/G allele of eIF3a rs3740556 predicts platinum-based chemotherapy resistance in lung cancer patients. Lung Cancer 2012; 79:65-72. [PMID: 23127338 DOI: 10.1016/j.lungcan.2012.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/11/2012] [Accepted: 10/05/2012] [Indexed: 12/20/2022]
Abstract
eIF3a is the largest subunit of eukaryotic translation initiation factor 3, which has been suggested to affect tumor progression and activity of nucleotide excision repair pathway contributing to platinum resistance. The purpose of this study was to investigate possible mutations in promoter and exon regions of eIF3a gene and to assess whether eIF3a mutation status have prognostic and predictive significance in platinum-based chemotherapeutic lung cancer patients. 771 lung cancer patients were enrolled and followed up. These patients were newly diagnosed with incident lung cancer, which was confirmed histologically or cytologically, and accepted platinum-based chemotherapy for at least two cycles. Three novel mutations of eIF3a were found, including 11279G>A in intron 6, Arg438Lys in exon 9, 29671G>A in intron 15, with minor allele frequency of 0.16, 0.18, 0.16, respectively. A-carrier patients of rs3740556 conferred a significantly better platinum-based chemotherapy response (p < 0.05) and seemed to live longer. eIF3a genetic polymorphisms can be considered as predictive tools for pretreatment evaluation of platinum-based chemotherapy. Lung cancer patients carrying rs3740556 A allele tended to have a favorable prognosis after treatment with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Xiaojing Xu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan Province 410078, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Wang Z, Chen J, Sun J, Cui Z, Wu H. RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells. World J Surg Oncol 2012; 10:119. [PMID: 22734884 PMCID: PMC3443437 DOI: 10.1186/1477-7819-10-119] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/26/2012] [Indexed: 02/06/2023] Open
Abstract
Background A key factor underlying the control of the cellular growth, size and proliferation involves the regulation of the total protein synthesis. Most often, the initial stages of mRNA translation are rate limiting, which involves a group of eukaryotic translation initiation factors (EIFs). Research advances focused on the inhibition of their expression and activity hold the key to the initiation and progression of tumor and tumor prognosis. Method We performed RNA interference (RNAi) with the lentivirus vector system to silence the EIF3B gene using the colon cancer cell strain SW1116. The negative control included the normal target cells infected with the negative control virus whereas the knockdown cells included the normal target cells transfected with the RNAi target virus. We tested the inhibition resulting from the decreased expression of EIF3B gene on the proliferation rate of SW1116 cells, including the cell cycle, apoptosis and clonability. Results Compared with the negative control, the impact of EIF3B gene expression in SW1116 cells on the levels of mRNA and protein in the knockdown group, was significantly inhibited (P <0.01). Furthermore, the cell proliferation rate and clonability were also significantly inhibited (P <0.01). The apoptosis rate increased significantly (P <0.05). A significant decrease in the number of cells in the G1 phase (P <0.01) and significant increases in S (P <0.01) and G2 phases (P <0.05) were observed. Conclusions The silencing of EIF3B gene expression inhibits the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Zheng Wang
- Department of General Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 145 Shandong Middle Road, Shanghai 200001, China.
| | | | | | | | | |
Collapse
|
58
|
Mills DR, Rozich RA, Flanagan DL, Brilliant KE, Yang D, Hixson DC. The cholangiocyte marker, BD. 1, forms a stable complex with CLIP170 and shares an identity with eIF3a, a multifunctional subunit of the eIF3 initiation complex. Exp Mol Pathol 2012; 93:250-60. [PMID: 22613460 DOI: 10.1016/j.yexmp.2012.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 11/26/2022]
Abstract
We have previously described the generation of a monoclonal antibody recognizing a novel cholangiocyte marker, designated BD.1, that is expressed by fetal and adult rat cholangiocytes but not hepatocytes or the hepatic progenitor cells known as oval cells. In the present report, we have undertaken a comprehensive examination of BD.1 expressed by long-term cultures of bile duct epithelial cells (BDEC) and prostate epithelial cells (PEC). We show that with continued passage, the levels of BD.1 expressed by BDEC and PEC drop significantly, a decrease that is temporally associated with transition from a diploid to an aneuploid karyotype. Cell cycle analysis revealed cell cycle dependent expression of BD.1 characterized by decreased BD.1 levels within the first 10 h after release from serum starvation followed by reacquisition as cells entered S phase. MAb BD.1 recognized a 170 kDa protein in Western blots and showed strong reactivity with a 170 kDa band in blots prepared from phosphoproteins isolated by metal affinity chromatography. Analysis by mass spectrometry of tryptic peptides generated from BD.1 purified by continuous elution electrophoresis identified the plus end microtubule-binding protein, CLIP170, in the fraction reactive with MAb BD.1. Double immunofluorescence with MAb BD.1 and a MAb specific for CLIP170 showed that both were reactive with intrahepatic bile ducts. However, overexpression or siRNA knockdown of CLIP170 in 293T cells did not significantly alter BD.1 levels, indicating that CLIP170 and BD.1 were distinct, co-migrating proteins. Immunoprecipitation analysis with MAb BD.1 and anti-CLIP170 antibodies showed that under microtubule depolymerizing conditions the two proteins could be co-precipitated with both antibodies, leading us to conclude they were capable of forming stable complexes. Two different protocols were devised to enrich for the CLIP170 binding protein recognized by MAb BD.1. Analysis of tryptic peptides by LC-ESI-MS/MS identified BD.1 as eIF3a, the largest subunit of the elongation initiation factor 3 (eIF3) complex. This identity was confirmed by the simultaneous knockdown of both BD.1 and eIF3a by eIF3a-specific siRNAs and by the strong reactivity of MAb BD.1 with the 170 kDa protein immunoprecipitated with the anti-eIF3a antibody, 5H10. Based on these findings, we concluded that the BD.1 antigen was identical to eIF3a, a multifunctional subunit of the eIf3 complex shown here to associate with microtubules through its interactions with CLIP170.
Collapse
Affiliation(s)
- David R Mills
- Department of Medicine, Division of Hematology and Oncology, Rhode Island Hospital/The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Overexpression of eIF3a in Squamous Cell Carcinoma of the Oral Cavity and Its Putative Relation to Chemotherapy Response. JOURNAL OF ONCOLOGY 2012; 2012:901956. [PMID: 22619676 PMCID: PMC3347757 DOI: 10.1155/2012/901956] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/10/2012] [Indexed: 01/23/2023]
Abstract
The eukaryotic translation initiation factor eIF3a is one of the core subunits of the translation initiation complex eIF3, responsible for ribosomal subunit joining and mRNA recruitment to the ribosome. It is known to play an important role in general translation initiation as well as in the specific translational regulation of various gene products, among which many influence tumour development, progression, and the therapeutically important pathways of DNA damage repair. Therefore, beyond its role in protein synthesis, eIF3a is emerging as regulator in tumour pathogenesis and therapy response and, therefore, a potential tumor marker. By means of a tissue microarray (TMA) for histopathological and statistical assessment, we here show eIF3a expression in 103 cases of squamous cell carcinoma of the oral cavity (OSCC), representing tissues from 103 independent patients. A subset of the study cohort was treated with platinum based therapy. Our results show that the 170 kDa protein is upregulated in OSCC and correlates with good overall survival. Overexpressing tumors respond better to platinum-based chemotherapy, suggesting eIF3a as a putative predictive as well as prognostic tumor marker in OSCC.
Collapse
|
60
|
Siebke C, James TC, Cummins R, O’Grady T, Kay E, Bond U. Phage display biopanning identifies the translation initiation and elongation factors (IF1α-3 and eIF-3) as components of Hsp70-peptide complexes in breast tumour cells. Cell Stress Chaperones 2012; 17:145-56. [PMID: 22002548 PMCID: PMC3273561 DOI: 10.1007/s12192-011-0295-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 10/16/2022] Open
Abstract
The heat shock protein, HSP70, is over-expressed in many tumours and acts at the crossroads of key intracellular processes in its role as a molecular chaperone. HSP70 associates with a vast array of peptides, some of which are antigenic and can mount adaptive immune responses against the tumour from which they are derived. The pool of peptides associated with HSP70 represents a unique barcode of protein metabolism in tumour cells. With a view to identifying unique protein targets that may be developed as tumour biomarkers, we used purified HSP70 and its associated peptide pool (HSP70-peptide complexes, HSP70-PCs) from different human breast tumour cell lines as targets for phage display biopanning. Our results show that HSP70-PCs from each cell line interact with unique sets of peptides within the phage display library. One of the peptides, termed IST, enriched in the biopanning process, was used in a 'pull-down' assay to identify the original protein from which the HSP70-associated peptides may have been derived. The eukaryotic translation initiation factor 3 (eIF-3), a member of the elongation factor EF1α family, and the HSP GRP78, were pulled down by the IST peptide. All of these proteins are known to be up-regulated in cancer cells. Immunohistochemical staining of tumour tissue microarrays showed that the peptide co-localised with HSP70 in breast tumour tissue. The data indicate that the reservoir of peptides associated with HSP70 can act as a unique indicator of cellular protein activity and a novel source of potential tumour biomarkers.
Collapse
Affiliation(s)
- Christina Siebke
- Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Tharappel C. James
- Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Robert Cummins
- Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Tony O’Grady
- Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Elaine Kay
- Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Ursula Bond
- Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
61
|
Eukaryotic translation initiation factor 3, subunit a, regulates the extracellular signal-regulated kinase pathway. Mol Cell Biol 2011; 32:88-95. [PMID: 22025682 DOI: 10.1128/mcb.05770-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway participates in the control of numerous cellular processes, including cell proliferation. Since its activation kinetics are critical for to its biological effects, they are tightly regulated. We report that the protein translation factor, eukaryotic translation initiation factor 3, subunit a (eIF3a), binds to SHC and Raf-1, two components of the ERK pathway. The interaction of eIF3a with Raf-1 is increased by β-arrestin2 expression and transiently decreased by epidermal growth factor (EGF) stimulation in a concentration-dependent manner. The EGF-induced decrease in Raf-1-eIF3a association kinetically correlates with the time course of ERK activation. eIF3a interferes with Raf-1 activation and eIF3a downregulation by small interfering RNA enhances ERK activation, early gene expression, DNA synthesis, expression of neuronal differentiation markers in PC12 cells, and Ras-induced focus formation in NIH 3T3 cells. Thus, eIF3a is a negative modulator of ERK pathway activation and its biological effects.
Collapse
|
62
|
Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 2011; 31:1-15. [PMID: 20964625 DOI: 10.1042/bsr20100077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Translational control is one of primary regulation mechanisms of gene expression. Eukaryotic translational control mainly occurs at the initiation step, the speed-limiting step, which involves more than ten translation initiation factors [eIFs (eukaryotic initiation factors)]. Changing the level or function of these eIFs results in abnormal translation of specific mRNAs and consequently abnormal growth of cells that leads to human diseases, including cancer. Accumulating evidence from recent studies showed that the expression of many eIFs was associated with malignant transformation, cancer prognosis, as well as gene expression regulation. In the present paper, we perform a critical review of recent advances in understanding the role and mechanism of eIF action in translational control and cancer as well as the possibility of targeting eIFs for therapeutic development.
Collapse
|
63
|
Yin JY, Shen J, Dong ZZ, Huang Q, Zhong MZ, Feng DY, Zhou HH, Zhang JT, Liu ZQ. Effect of eIF3a on response of lung cancer patients to platinum-based chemotherapy by regulating DNA repair. Clin Cancer Res 2011; 17:4600-9. [PMID: 21610145 PMCID: PMC11531068 DOI: 10.1158/1078-0432.ccr-10-2591] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study is to test the hypothesis that eIF3a may regulate the expression of DNA repair proteins which, in turn, affects response of lung cancer patients to treatments by DNA-damaging anticancer drugs. EXPERIMENTAL DESIGN Immunohistochemistry was used to determine the expression of eIF3a in 211 human lung cancer tissues followed by association analysis of eIF3a expression with patient's response to platinum-based chemotherapy. Ectopic overexpression and RNA interference knockdown of eIF3a were carried out in NIH3T3 and H1299 cell lines, respectively, to determine the effect of altered eIF3a expression on cellular response to cisplatin, doxorubicine, etoposide (VP-16), vincristine, and vinblastine by using MTT assay. The DNA repair capacity of these cells was evaluated by using host-cell reactivation assay. Real-time reverse transcriptase PCR and Western Blot analyses were carried out to determine the effect of eIF3a on the DNA repair genes by using cells with altered eIF3a expression. RESULTS eIF3a expression associates with response of lung cancer patients to platinum-based chemotherapy. eIF3a knockdown or overexpression, respectively, increased and decreased the cellular resistance to cisplatin and anthrocycline anticancer drugs, DNA repair activity, and expression of DNA repair proteins. CONCLUSIONS eIF3a plays an important role in regulating the expression of DNA repair proteins which, in turn, contributes to cellular response to DNA-damaging anticancer drugs and patients' response to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P. R. China
- Department of Pharmacology/Toxicology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jie Shen
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P. R. China
| | - Zi-Zheng Dong
- Department of Pharmacology/Toxicology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Qiong Huang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P. R. China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry, Hefei, Anhui 230032, P. R. China
| | - Mei-Zuo Zhong
- Department of Oncology, Xiang-Ya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - De-Yun Feng
- Department of Pathology, Xiang-Ya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Hong-Hao Zhou
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P. R. China
| | - Jian-Ting Zhang
- Department of Pharmacology/Toxicology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Zhao-Qian Liu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P. R. China
| |
Collapse
|
64
|
Role of eIF3a in regulating cisplatin sensitivity and in translational control of nucleotide excision repair of nasopharyngeal carcinoma. Oncogene 2011; 30:4814-23. [PMID: 21625209 PMCID: PMC3165083 DOI: 10.1038/onc.2011.189] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Translational control at the initiation step has been recognized as a major and important regulatory mechanism of gene expression. eIF3a, a putative subunit of eIF3 complex, has recently been shown to play an important role in regulating translation of a subset of mRNAs and found to correlate with prognosis of cancers. In this study, using nasopharyngeal carcinoma (NPC) cells as a model system we tested the hypothesis that eIF3a negatively regulates synthesis of nucleotide excision repair (NER) proteins and, thus, NER activities and cellular response to treatments with DNA damaging agents such as cisplatin. We found that a cisplatin-sensitive subclone S16 isolated from a NPC cell line CNE2 via limited dilution has increased eIF3a expression. Knocking down its expression in S16 cells increased cellular resistance to cisplatin, NER activity, and synthesis of NER proteins XPA, XPC, RAD23B, and RPA32. Altering eIF3a expression also changed cellular response to cisplatin and UV treatment in other NPC cell lines. Taken together, we conclude that eIF3a plays an important role in cisplatin response and NER activity of nasopharyngeal carcinomas by suppressing synthesis of NER proteins.
Collapse
|
65
|
Hershey JWB. Regulation of protein synthesis and the role of eIF3 in cancer. Braz J Med Biol Res 2010; 43:920-30. [PMID: 20922269 DOI: 10.1590/s0100-879x2010007500098] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/08/2010] [Indexed: 02/06/2023] Open
Abstract
Maintenance of cell homeostasis and regulation of cell proliferation depend importantly on regulating the process of protein synthesis. Many disease states arise when disregulation of protein synthesis occurs. This review focuses on mechanisms of translational control and how disregulation results in cell malignancy. Most translational controls occur during the initiation phase of protein synthesis, with the initiation factors being the major target of regulation through their phosphorylation. In particular, the recruitment of mRNAs through the m⁷G-cap structure and the binding of the initiator methionyl-tRNA(i) are frequent targets. However, translation, especially of specific mRNAs, may also be regulated by sequestration into processing bodies or stress granules, by trans-acting proteins or by microRNAs. When the process of protein synthesis is hyper-activated, weak mRNAs are translated relatively more efficiently, leading to an imbalance of cellular proteins that promotes cell proliferation and malignant transformation. This occurs, for example, when the cap-binding protein, eIF4E, is overexpressed, or when the methionyl-tRNA(i)-binding factor, eIF2, is too active. In addition, enhanced activity of eIF3 contributes to oncogenesis. The importance of the translation initiation factors as regulators of protein synthesis and cell proliferation makes them potential therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- John W B Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 95616, USA.
| |
Collapse
|
66
|
Saletta F, Suryo Rahmanto Y, Richardson DR. The translational regulator eIF3a: the tricky eIF3 subunit! Biochim Biophys Acta Rev Cancer 2010; 1806:275-86. [PMID: 20647036 DOI: 10.1016/j.bbcan.2010.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/07/2010] [Accepted: 07/11/2010] [Indexed: 01/10/2023]
Abstract
Regulation of gene expression is a fundamental step in cellular physiology as abnormalities in this process may lead to de-regulated growth and cancer. Translation of mRNA is mainly regulated at the rate-limiting initiation step, where many eukaryotic initiation factors (eIFs) are involved. The largest and most complex initiation factor is eIF3 which plays a role in translational regulation, cell growth and cancer. The largest subunit of eIF3 is eIF3a, although it is not required for the general function of eIF3 in translation initiation. However, eIF3a may play a role as a regulator of a subset of mRNAs and has been demonstrated to regulate the expression of p27(kip1), tyrosinated α-tubulin and ribonucleotide reductase M2 subunit. These molecules have a pivotal role in the regulation of the cell cycle. Moreover, the eIF3a mRNA is ubiquitously expressed in all tissues at different levels and is found elevated in a number of cancer types. eIF3a can modulate the cell cycle and may be a translational regulator for proteins important for entrance into S phase. The expression of eIF3a is decreased in differentiated cells in culture and the suppression of eIF3a expression can reverse the malignant phenotype and change the sensitivity of cells to cell cycle modulators. However, the role of eIF3a in cancer is still unclear. In fact, some studies have identified eIF3a to be involved in cancer development, while other results indicate that it could provide protection against evolution into higher malignancy. Together, these findings highlight the "tricky" and interesting nature of eIF3a.
Collapse
Affiliation(s)
- Federica Saletta
- Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales, 2006 Australia
| | | | | |
Collapse
|
67
|
Higareda-Mendoza AE, Pardo-Galván MA. Expression of human eukaryotic initiation factor 3f oscillates with cell cycle in A549 cells and is essential for cell viability. Cell Div 2010; 5:10. [PMID: 20462454 PMCID: PMC2877012 DOI: 10.1186/1747-1028-5-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 05/13/2010] [Indexed: 11/10/2022] Open
Abstract
Background Transcriptional and postranslational regulation of the cell cycle has been widely studied. However, there is scarce knowledge concerning translational control of this process. Several mammalian eukaryotic initiation factors (eIFs) seem to be implicated in controlling cell proliferation. In this work, we investigated if the human eIF3f expression and function is cell cycle related. Results The human eIF3f expression has been found to be upregulated in growth-stimulated A549 cells and downregulated in G0. Western blot analysis and eIF3f promotor-luciferase fusions revealed that eIF3f expression peaks twice in the cell cycle: in the S and the M phases. Deregulation of eIF3f expression negatively affects cell viability and induces apoptosis. Conclusions The expression pattern of human eIF3f during the cell cycle confirms that this gene is cell division related. The fact that eIF3f expression peaks in two cell cycle phases raises the possibility that this gene may exert a differential function in the S and M phases. Our results strongly suggest that eIF3f is essential for cell proliferation.
Collapse
Affiliation(s)
- Ana E Higareda-Mendoza
- Departmento de Biología Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
| | | |
Collapse
|
68
|
Abstract
Remarkable progress has been made in defining a new understanding of the role of mRNA translation and protein synthesis in human cancer. Translational control is a crucial component of cancer development and progression, directing both global control of protein synthesis and selective translation of specific mRNAs that promote tumour cell survival, angiogenesis, transformation, invasion and metastasis. Translational control of cancer is multifaceted, involving alterations in translation factor levels and activities unique to different types of cancers, disease stages and the tumour microenvironment. Several clinical efforts are underway to target specific components of the translation apparatus or unique mRNA translation elements for cancer therapeutics.
Collapse
|
69
|
Cuesta R, Gupta M, Schneider RJ. The regulation of protein synthesis in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:255-92. [PMID: 20374744 DOI: 10.1016/s1877-1173(09)90007-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translational control of cancer is a multifaceted process, involving alterations in translation factor levels and activities that are unique to the different types of cancers and the different stages of disease. Translational alterations in cancer include adaptations of the tumor itself, of the tumor microenvironment, an integral component in disease, and adaptations that occur as cancer progresses from development to local disease and ultimately to metastatic disease. Adaptations include the overexpression and increased activity of specific translation factors, the physical or functional loss of translation regulatory components, increased production of ribosomes, selective mRNA translation, and alteration of signal transduction pathways to permit unfettered activation of protein synthesis. There is intense clinical interest to capitalize on the emerging new understanding of translational control in cancer by targeting specific components of the translation apparatus that are altered in disease for the development of specific cancer therapeutics. Clinical trial data are nascent but encouraging, suggesting that translational control constitutes an important new area for drug development in human cancer.
Collapse
Affiliation(s)
- Rafael Cuesta
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
70
|
Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals. Mol Cell Biol 2009; 29:2865-75. [PMID: 19289497 DOI: 10.1128/mcb.01537-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the roles of Jak-Stat pathways in type I and II interferon (IFN)-dependent transcriptional regulation are well established, the precise mechanisms of mRNA translation for IFN-sensitive genes remain to be defined. We examined the effects of IFNs on the phosphorylation/activation of eukaryotic translation initiation factor 4B (eIF4B). Our data show that eIF4B is phosphorylated on Ser422 during treatment of sensitive cells with alpha IFN (IFN-alpha) or IFN-gamma. Such phosphorylation is regulated, in a cell type-specific manner, by either the p70 S6 kinase (S6K) or the p90 ribosomal protein S6K (RSK) and results in enhanced interaction of the protein with eIF3A (p170/eIF3A) and increased associated ATPase activity. Our data also demonstrate that IFN-inducible eIF4B activity and IFN-stimulated gene 15 protein (ISG15) or IFN-gamma-inducible chemokine CXCL-10 protein expression are diminished in S6k1/S6k2 double-knockout mouse embryonic fibroblasts. In addition, IFN-alpha-inducible ISG15 protein expression is blocked by eIF4B or eIF3A knockdown, establishing a requirement for these proteins in mRNA translation/protein expression by IFNs. Importantly, the generation of IFN-dependent growth inhibitory effects on primitive leukemic progenitors is dependent on activation of the S6K/eIF4B or RSK/eIF4B pathway. Taken together, our findings establish critical roles for S6K and RSK in the induction of IFN-dependent biological effects and define a key regulatory role for eIF4B as a common mediator and integrator of IFN-generated signals from these kinases.
Collapse
|
71
|
Ding XC, Slack FJ, Großhans H. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle 2008; 7:3083-90. [PMID: 18818519 PMCID: PMC2887667 DOI: 10.4161/cc.7.19.6778] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that regulate numerous target genes through a posttranscriptional mechanism and thus control major developmental pathways. The phylogenetically conserved let-7 miRNA regulates cell proliferation and differentiation, thus functioning as a key regulator of developmental timing in C. elegans and a tumor suppressor gene in humans. Using a reverse genetic screen, we have identified genetic interaction partners of C. elegans let-7, including known and novel potential target genes. Initial identification of several translation initiation factors as suppressors of a let-7 mutation led us to systematically examine genetic interaction between let-7 and the translational machinery, which we found to be widespread. In the presence of wild-type let-7, depletion of the translation initiation factor eIF3 resulted in precocious cell differentiation, suggesting that developmental timing is translationally regulated, possibly by let-7. As overexpression of eIF3 in humans promotes translation of mRNAs that are also targets of let-7-mediated repression, we suggest that eIF3 may directly or indirectly oppose let-7 activity. This might provide an explanation for the opposite functions of let-7 and eIF3 in regulating tumorigenesis.
Collapse
Affiliation(s)
- Xavier C. Ding
- Friedrich Miescher Institute for Biomedical Research (FMI); Basel, Switzerland
| | - Frank J. Slack
- Department of Molecular; Cellular and Developmental Biology; Yale University; New Haven, Connecticut USA
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI); Basel, Switzerland
| |
Collapse
|
72
|
Liu H, Liu Y, Zhang JT. A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther 2008; 7:263-70. [PMID: 18281512 DOI: 10.1158/1535-7163.mct-07-0445] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multidrug resistance is a major problem in successful cancer chemotherapy. Various mechanisms of resistance, such as ABC transporter-mediated drug efflux, have been discovered using established model cancer cell lines. While characterizing a drug-resistant breast cancer cell line, MCF7/AdVp3000, we found that fatty acid synthase (FASN) is overexpressed. In this study, we showed that ectopic overexpression of FASN indeed causes drug resistance and that reducing the FASN expression increased the drug sensitivity in breast cancer cell lines MCF7 and MDA-MB-468 but not in the normal mammary epithelial cell line MCF10A1. Use of FASN inhibitor, Orlistat, at low concentrations also sensitized cells with FASN overexpression to anticancer drugs. The FASN-mediated drug resistance appears to be due to a decrease in drug-induced apoptosis from an overproduction of palmitic acid by FASN. Together with previous findings of FASN as a poor prognosis marker for breast cancer patients, our results suggest that FASN overexpression is a new mechanism of drug resistance and may be an ideal target for chemosensitization in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
73
|
Fission yeast mitogen-activated protein kinase Sty1 interacts with translation factors. EUKARYOTIC CELL 2007; 7:328-38. [PMID: 18065650 DOI: 10.1128/ec.00358-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signaling by stress-activated mitogen-activated protein kinase (MAPK) pathways influences translation efficiency in mammalian cells and budding yeast. We have investigated the stress-activated MAPK from fission yeast, Sty1, and its downstream protein kinase, Mkp1/Srk1, for physically associated proteins using tandem affinity purification tagging. We find Sty1, but not Mkp1, to bind to the translation elongation factor eukaryotic elongation factor 2 (eEF2) and the translation initiation factor eukaryotic initiation factor 3a (eIF3a). The Sty1-eIF3a interaction is weakened under oxidative or hyperosmotic stress, whereas the Sty1-eEF2 interaction is stable. Nitrogen deprivation causes a transient strengthening of both the Sty1-eEF2 and the Sty1-Mkp1 interactions, overlapping with the time of maximal Sty1 activation. Analysis of polysome profiles from cells under oxidative stress, or after hyperosmotic shock or nitrogen deprivation, shows that translation in sty1 mutant cells recovers considerably less efficiently than that in the wild type. Cells lacking the Sty1-regulated transcription factor Atf1 are deficient in maintaining and recovering translational activity after hyperosmotic shock but not during oxidative stress or nitrogen starvation. In cells lacking Sty1, eIF3a levels are decreased, and phosphorylation of eIF3a is reduced. Taken together, our data point to a central role in translational adaptation for the stress-activated MAPK pathway in fission yeast similar to that in other investigated eukaryotes, with the exception that fission yeast MAPK-activated protein kinases seem not to be directly involved in this process.
Collapse
|
74
|
Bilanges B, Stokoe D. Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 2007; 26:5973-90. [PMID: 17404576 DOI: 10.1038/sj.onc.1210431] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Analysis of the recurrent genetic aberrations present in human tumors provides insight into how normal cells escape appropriate proliferation and survival cues. Commonly mutated genes encode proteins that monitor DNA damage (e.g., p53), proteins that regulate the cell cycle (such as Rb), and proteins that regulate signal transduction pathways (such as APC, PTEN and Ras). Analysis of the relevant targets and downstream events of these genes in normal and tumor cells will clearly highlight important pathways for tumorigenesis. However, more infrequent mutations are also informative in defining events critical for the process of tumorigenesis, and often delineate important pathways lying downstream of commonly mutated oncogenes and tumor suppressors. Together, these studies have led to the conclusion that deregulated protein synthesis plays an important role in human cancer. This review will discuss the evidence implicating mRNA translation as an important downstream consequence of signal transduction pathways initiated by mutated oncogenes and tumor suppressors, as well as additional genetic findings implicating the importance of global and specific translational control in human cancer. It will also discuss therapeutic strategies that take advantage of differences in translational regulation between normal and tumor cells.
Collapse
Affiliation(s)
- B Bilanges
- UCSF Cancer Research Institute, San Francisco, CA 94115, USA.
| | | |
Collapse
|
75
|
Liu Z, Dong Z, Yang Z, Chen Q, Pan Y, Yang Y, Cui P, Zhang X, Zhang JT. Role of eIF3a (eIF3 p170) in intestinal cell differentiation and its association with early development. Differentiation 2007; 75:652-61. [PMID: 17381544 DOI: 10.1111/j.1432-0436.2007.00165.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic initiation factor 3a (eIF3a) has been suggested to play a regulatory role in mRNA translation. Decreased eIF3a expression has been observed in differentiated cells while higher levels have been observed in cancer cells. However, whether eIF3a plays any role in differentiation and development is currently unknown. Here, we investigated eIF3a expression during mouse development and its role in differentiation of colon epithelial cells. We found that eIF3a expression was higher in fetal tissues compared with postnatal ones. Its expression in intestine, stomach, and lung abruptly stopped on the 18th day in gestation but persisted in liver, kidney, and heart throughout the postnatal stage at decreased levels. Similarly, eIF3a expression in colon cancer cell lines, HT-29 and Caco-2, drastically decreased prior to differentiation. Enforced eIF3a expression inhibited while knocking it down using small interference RNA promoted Caco-2 differentiation. Thus, eIF3a may play some roles in development and differentiation and that the decreased eIF3a expression may be a pre-requisite of intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Zhaoqian Liu
- Department of Pharmacology and Toxicology, Walther Oncology Center, Walther Cancer Institute, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Zhang L, Pan X, Hershey JWB. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J Biol Chem 2006; 282:5790-800. [PMID: 17170115 DOI: 10.1074/jbc.m606284200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transcriptional and post-transcriptional regulatory mechanisms are commonly accepted paradigms of tumorigenesis. The view is emerging that deregulation of translation contributes importantly to cancer development, a role not generally appreciated before. Eukaryotic initiation factor eIF3 contains at least thirteen non-identical subunits, named from eIF3a to eIF3m, and plays an essential role in the rate-limiting initiation phase of translation. Increased mRNA and protein levels of the eIF3a, -3b, -3c, -3h, and -3i subunits have been detected in a wide variety of human tumors and are frequently identified as prognostic biomarkers for poor clinical outcome. However, it remains to be established whether up-regulation of eIF3 subunits is a consequence or a cause of the malignant phenotypes. Here we report that ectopic expression of eIF3a, -3b, -3c, -3h, or -3i in stably transfected NIH3T3 cells leads to a number of oncogenic properties: decreased doubling times, increased clonogenicity and viability, facilitated S-phase entry, attenuation of apoptosis, formation of transformed foci, and anchorage-independent growth. Only overexpression of the transforming subunits results in a stimulation of initiation and global protein synthesis rates and enhanced translation of poorly translated mRNAs that encode growth-regulating proteins, including cyclinD1, c-Myc, fibroblast growth factor-2, and ornithine decarboxylase, which may be responsible for oncogenic malignancy in the transformed cell lines. Based on these results, we hypothesize that eIF3 contributes to hyperactivation of the translation initiation machinery and thereby may play an important role in neoplasia. Cancer cells appear to require an aberrantly activated translational state to survive, suggesting that the initiation factors may be promising therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
77
|
Hinnebusch AG. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 2006; 31:553-62. [PMID: 16920360 DOI: 10.1016/j.tibs.2006.08.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/17/2006] [Accepted: 08/03/2006] [Indexed: 12/26/2022]
Abstract
Translation initiation in eukaryotes depends on many eukaryotic initiation factors (eIFs) that stimulate both recruitment of the initiator tRNA, Met-tRNA(i)(Met), and mRNA to the 40S ribosomal subunit and subsequent scanning of the mRNA for the AUG start codon. The largest of these initiation factors, the eIF3 complex, organizes a web of interactions among several eIFs that assemble on the 40S subunit and participate in the different reactions involved in translation. Structural analysis suggests that eIF3 performs this scaffolding function by binding to the 40S subunit on its solvent-exposed surface rather than on its interface with the 60S subunit, where the decoding sites exist. This location of eIF3 seems ideally suited for its other proposed regulatory functions, including reinitiating translation on polycistronic mRNAs and acting as a receptor for protein kinases that control protein synthesis.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
78
|
Dong Z, Zhang JT. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol 2006; 59:169-80. [PMID: 16829125 DOI: 10.1016/j.critrevonc.2006.03.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 03/30/2006] [Accepted: 03/30/2006] [Indexed: 11/20/2022] Open
Abstract
One important regulation of gene expression in eukaryotes occurs at the level of mRNA translation, specifically at the step of translational initiation. Deregulation at this step will cause abnormal gene expression, leading to altered cell growth and possibly cancer. Translational initiation is controlled by multiple eIFs and one of these, eIF3, is the most complex and important factor for regulation of translation. Various subunits of eIF3 have recently been implicated to play important roles in regulating translation of specific mRNAs encoding proteins important for cell growth control. The expression of these eIF3 subunits has also been found altered in various human tumors and their altered expression may cause cancer and/or affect prognosis. Although the importance of translational regulation in cell growth control and oncogenesis is being slowly recognized, more vigorous studies on the role of eIFs in oncogenesis and cancer will likely benefit diagnosis, prognosis, and treatment of human cancers.
Collapse
Affiliation(s)
- Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University Cancer Center, Indianapolis, IN 46202, USA
| | | |
Collapse
|
79
|
LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA, Hershey JWB, Rhoads RE. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem 2006; 281:22917-32. [PMID: 16766523 PMCID: PMC1880881 DOI: 10.1074/jbc.m605418200] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
eIF3 in mammals is the largest translation initiation factor ( approximately 800 kDa) and is composed of 13 nonidentical subunits designated eIF3a-m. The role of mammalian eIF3 in assembly of the 48 S complex occurs through high affinity binding to eIF4G. Interactions of eIF4G with eIF4E, eIF4A, eIF3, poly(A)-binding protein, and Mnk1/2 have been mapped to discrete domains on eIF4G, and conversely, the eIF4G-binding sites on all but one of these ligands have been determined. The only eIF4G ligand for which this has not been determined is eIF3. In this study, we have sought to identify the mammalian eIF3 subunit(s) that directly interact(s) with eIF4G. Established procedures for detecting protein-protein interactions gave ambiguous results. However, binding of partially proteolyzed HeLa eIF3 to the eIF3-binding domain of human eIF4G-1, followed by high throughput analysis of mass spectrometric data with a novel peptide matching algorithm, identified a single subunit, eIF3e (p48/Int-6). In addition, recombinant FLAG-eIF3e specifically competed with HeLa eIF3 for binding to eIF4G in vitro. Adding FLAG-eIF3e to a cell-free translation system (i) inhibited protein synthesis, (ii) caused a shift of mRNA from heavy to light polysomes, (iii) inhibited cap-dependent translation more severely than translation dependent on the HCV or CSFV internal ribosome entry sites, which do not require eIF4G, and (iv) caused a dramatic loss of eIF4G and eIF2alpha from complexes sedimenting at approximately 40 S. These data suggest a specific, direct, and functional interaction of eIF3e with eIF4G during the process of cap-dependent translation initiation, although they do not rule out participation of other eIF3 subunits.
Collapse
Affiliation(s)
- Aaron K. LeFebvre
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Nadejda L. Korneeva
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Marjan Trutschl
- Department of Computer Science, Louisiana State University, Shreveport, Louisiana 71115
| | - Urska Cvek
- Department of Computer Science, Louisiana State University, Shreveport, Louisiana 71115
| | - Roy D. Duzan
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Christopher A. Bradley
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616
| | - John W. B. Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616
| | - Robert E. Rhoads
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Hwy., Shreveport, LA 71130-3932. Tel.: 318-675-5161; Fax: 318-675-5180; E-mail:
| |
Collapse
|
80
|
Chen Y, Zhang YZ, Zhou ZG, Wang G, Yi ZN. Identification of differently expressed genes in human colorectal adenocarcinoma. World J Gastroenterol 2006; 12:1025-32. [PMID: 16534841 PMCID: PMC4087892 DOI: 10.3748/wjg.v12.i7.1025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differently expressed genes in human colorectal adenocarcinoma.
METHODS: The integrated approach for gene expression profiling that couples suppression subtractive hybridization, high-throughput cDNA array, sequencing, bioinformatics analysis, and reverse transcriptase real-time quantitative polymerase chain reaction (PCR) was carried out. A set of cDNA clones including 1260 SSH inserts amplified by PCR was arrayed using robotic printing. The cDNA arrays were hybridized with florescent-labeled probes prepared from RNA of human colorectal adenocarcinoma (HCRAC) and normal colorectal tissues.
RESULTS: A total of 86 genes were identified, 16 unknown genes and 70 known genes. The transcription factor Sox9 influencing cell differentiation was downregulated. At the same time, Heat shock protein 10 KDis downregulated and Calmoulin is up-regulated.
CONCLUSION: Downregulation of heat shock protein 10 KD lost its inhibition of Ras, and then attenuated the Ras GTPase signaling pathway, increased cell proliferation and inhibited cell apoptosis. Down-regulated transcription factor So x 9 influences cell differentiation and cell-specific gene expression. Down-regulated So x 9 also decreases its binding to calmodulin, accumulates calmodulin as receptor-activated kinase and phosphorylase kinase due to the activation of PhK.
Collapse
Affiliation(s)
- Yao Chen
- Department of Anatomy, Basic and Legal Medical Institute, West China Medical Center, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | |
Collapse
|
81
|
Zhang Z, An X, Yang K, Perlstein DL, Hicks L, Kelleher N, Stubbe J, Huang M. Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein. Proc Natl Acad Sci U S A 2006; 103:1422-7. [PMID: 16432237 PMCID: PMC1360584 DOI: 10.1073/pnas.0510516103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides and is an essential enzyme for DNA replication and repair. Cells have evolved intricate mechanisms to regulate RNR activity to ensure high fidelity of DNA replication during normal cell-cycle progression and of DNA repair upon genotoxic stress. The RNR holoenzyme is composed of a large subunit R1 (alpha, oligomeric state unknown) and a small subunit R2 (beta(2)). R1 binds substrates and allosteric effectors; R2 contains a diferric-tyrosyl radical [(Fe)(2)-Y.] cofactor that is required for catalysis. In Saccharomyces cerevisiae, R1 is predominantly localized in the cytoplasm, whereas R2, which is a heterodimer (betabeta'), is predominantly in the nucleus. When cells encounter DNA damage or stress during replication, betabeta' is redistributed from the nucleus to the cytoplasm in a checkpoint-dependent manner, resulting in the colocalization of R1 and R2. We have identified two proteins that have an important role in betabeta' nuclear localization: the importin beta homolog Kap122 and the WD40 repeat protein Wtm1. Deletion of either WTM1 or KAP122 leads to loss of betabeta' nuclear localization. Wtm1 and its paralog Wtm2 are both nuclear proteins that are in the same protein complex with betabeta'. Wtm1 also interacts with Kap122 in vivo and requires Kap122 for its nuclear localization. Our results suggest that Wtm1 acts either as an adaptor to facilitate nuclear import of betabeta' by Kap122 or as an anchor to retain betabeta' in the nucleus.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Hackl H, Burkard TR, Sturn A, Rubio R, Schleiffer A, Tian S, Quackenbush J, Eisenhaber F, Trajanoski Z. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol 2005; 6:R108. [PMID: 16420668 PMCID: PMC1414107 DOI: 10.1186/gb-2005-6-13-r108] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 08/23/2005] [Accepted: 11/08/2005] [Indexed: 12/31/2022] Open
Abstract
In-depth bioinformatics analyses of expressed sequence tags found to be differentially expressed during differentiation of 3T3-L1 pre-adipocyte cells were combined with de novo functional annotation and mapping onto known pathways to generate a molecular atlas of fat-cell development. Background Large-scale transcription profiling of cell models and model organisms can identify novel molecular components involved in fat cell development. Detailed characterization of the sequences of identified gene products has not been done and global mechanisms have not been investigated. We evaluated the extent to which molecular processes can be revealed by expression profiling and functional annotation of genes that are differentially expressed during fat cell development. Results Mouse microarrays with more than 27,000 elements were developed, and transcriptional profiles of 3T3-L1 cells (pre-adipocyte cells) were monitored during differentiation. In total, 780 differentially expressed expressed sequence tags (ESTs) were subjected to in-depth bioinformatics analyses. The analysis of 3'-untranslated region sequences from 395 ESTs showed that 71% of the differentially expressed genes could be regulated by microRNAs. A molecular atlas of fat cell development was then constructed by de novo functional annotation on a sequence segment/domain-wise basis of 659 protein sequences, and subsequent mapping onto known pathways, possible cellular roles, and subcellular localizations. Key enzymes in 27 out of 36 investigated metabolic pathways were regulated at the transcriptional level, typically at the rate-limiting steps in these pathways. Also, coexpressed genes rarely shared consensus transcription-factor binding sites, and were typically not clustered in adjacent chromosomal regions, but were instead widely dispersed throughout the genome. Conclusions Large-scale transcription profiling in conjunction with sophisticated bioinformatics analyses can provide not only a list of novel players in a particular setting but also a global view on biological processes and molecular networks.
Collapse
Affiliation(s)
- Hubert Hackl
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Thomas Rainer Burkard
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Sturn
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Renee Rubio
- Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, 44 Binney Street, Boston, MA 02115
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | - Sun Tian
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | - John Quackenbush
- Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, 44 Binney Street, Boston, MA 02115
| | - Frank Eisenhaber
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
83
|
Dong Z, Arnold RJ, Yang Y, Park MH, Hrncirova P, Mechref Y, Novotny MV, Zhang JT. Modulation of differentiation-related gene 1 expression by cell cycle blocker mimosine, revealed by proteomic analysis. Mol Cell Proteomics 2005; 4:993-1001. [PMID: 15855174 DOI: 10.1074/mcp.m500044-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-mimosine, a plant amino acid, can reversibly block mammalian cells at late G1 phase and has been found to affect translation of mRNAs of the cyclin-dependent kinase inhibitor p27, eIF3a (eIF3 p170), and ribonucleotide reductase M2. The effect of mimosine on the expression of these genes may be essential for the G1 phase arrest. To determine additional genes that may be early respondents to the mimosine treatment, we performed two-dimensional gel electrophoretic analysis of [35S]methionine-labeled cell lysates followed by identification of the altered protein spots by LC-tandem mass spectrometry. In this study, the synthesis of two protein spots (MIP42 and MIP17) was found to be enhanced by mimosine, whereas the formation of another protein spot (MSP17) was severely blocked following mimosine treatment. These protein spots, MIP42, MIP17, and MSP17, were identified to be differentiation-related gene 1 (Drg-1; also called RTP, cap43, rit42, Ndrg-1, and PROXY-1), deoxyhypusine-containing eIF5A intermediate, and mature hypusine-containing eIF5A, respectively. The effect of mimosine on eIF5A maturation was due to inhibition of deoxyhypusine hydroxylase, the enzyme catalyzing the final step of hypusine biosynthesis in eIF5A. The mimosine-induced expression of Drg-1 was mainly attributable to increased transcription likely by the c-Jun/AP-1 transcription factor. Because induction of Drg-1 is an early event after mimosine treatment and is observed before a notable reduction in the steady-state level of mature eIF5A, eIF5A does not appear to be involved in the modulation of Drg-1 expression.
Collapse
Affiliation(s)
- Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University Cancer Center and Walther Oncology Center/Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Miyamoto S, Patel P, Hershey JWB. Changes in ribosomal binding activity of eIF3 correlate with increased translation rates during activation of T lymphocytes. J Biol Chem 2005; 280:28251-64. [PMID: 15946946 DOI: 10.1074/jbc.m414129200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate of protein synthesis in quiescent peripheral blood T lymphocytes increases dramatically following mitogenic activation. The stimulation of translation is due to an increase in the rate of initiation caused by the regulation of initiation factor activities. Here, we focus on eIF3, a large multiprotein complex that plays a central role in the formation of the 40 S initiation complex. Using sucrose density gradient centrifugation to analyze ribosome complexes, we find that most eIF3 is not bound to 40 S ribosomal subunits in unactivated T lymphocytes but becomes ribosome-bound following activation. Immunoblot analyses of sucrose gradient fractions for individual eIF3 subunits show that the small eIF3j subunit is unassociated with the eIF3 complex in quiescent T lymphocytes, but upon activation joins the other eIF3 subunits and binds 40 S ribosomal subunits. Because eIF3j has been shown to be required for eIF3 binding to 40 S ribosomes in vitro, the results suggest that mitogenic stimulation of T lymphocytes leads to an activation of eIF3j, thereby enabling eIF3 to bind to the larger ribosome-free eIF3 subunit complex, and then to the 40 S ribosomes. The association of eIF3j with the other eIF3 subunits appears to be inhibited by rapamycin, suggesting a mechanism that lies downstream from the mammalian target of rapamycin kinase. This association requires ionomycin together with a phorbol ester, which also suggests that calcium signaling is involved. We conclude that the complex formation of eIF3 and its association with the ribosomes might contribute to increased translation rates during T lymphocyte activation.
Collapse
Affiliation(s)
- Suzanne Miyamoto
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
85
|
Zhou C, Arslan F, Wee S, Krishnan S, Ivanov AR, Oliva A, Leatherwood J, Wolf DA. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol 2005; 3:14. [PMID: 15904532 PMCID: PMC1173091 DOI: 10.1186/1741-7007-3-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 05/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PCI/MPN domain protein complexes comprise the 19S proteasome lid, the COP9 signalosome (CSN), and eukaryotic translation initiation factor 3 (eIF3). The eIF3 complex is thought to be composed of essential core subunits required for global protein synthesis and non-essential subunits that may modulate mRNA specificity. Interactions of unclear significance were reported between eIF3 subunits and PCI proteins contained in the CSN. RESULTS Here, we report the unexpected finding that fission yeast has two distinct eIF3 complexes sharing common core subunits, but distinguished by the PCI proteins eIF3e and the novel eIF3m, which was previously annotated as a putative CSN subunit. Whereas neither eIF3e nor eIF3m contribute to the non-essential activities of CSN in cullin-RING ubiquitin ligase control, eif3m, unlike eif3e, is an essential gene required for global cellular protein synthesis and polysome formation. Using a ribonomic approach, this phenotypic distinction was correlated with a different set of mRNAs associated with the eIF3e and eIF3m complexes. Whereas the eIF3m complex appears to associate with the bulk of cellular mRNAs, the eIF3e complex associates with a far more restricted set. The microarray findings were independently corroborated for a random set of 14 mRNAs by RT-PCR analysis. CONCLUSION We propose that the PCI proteins eIF3e and eIF3m define distinct eIF3 complexes that may assist in the translation of different sets of mRNAs.
Collapse
Affiliation(s)
- Chunshui Zhou
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, 02115, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fatih Arslan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Susan Wee
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | | | - Alexander R Ivanov
- Harvard NIEHS Center Proteomics Facility, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Anna Oliva
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, New York, USA
| | - Janet Leatherwood
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, New York, USA
| | - Dieter A Wolf
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, 02115, USA
- Harvard NIEHS Center Proteomics Facility, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
86
|
Dong Z, Liu Y, Zhang JT. Regulation of ribonucleotide reductase M2 expression by the upstream AUGs. Nucleic Acids Res 2005; 33:2715-25. [PMID: 15888728 PMCID: PMC1097769 DOI: 10.1093/nar/gki569] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ribonucleotide reductase catalyzes a rate-limiting reaction in DNA synthesis by converting ribonucleotides to deoxyribonucleotides. It consists of two subunits and the small one, M2 (or R2), plays an essential role in regulating the enzyme activity and its expression is finely controlled. Changes in the M2 level influence the dNTP pool and, thus, DNA synthesis and cell proliferation. M2 gene has two promoters which produce two major mRNAs with 5′-untranslated regions (5′-UTRs) of different lengths. In this study, we found that the M2 mRNAs with the short (63 nt) 5′-UTR can be translated with high efficiency whereas the mRNAs with the long (222 nt) one cannot. Examination of the long 5′-UTR revealed four upstream AUGs, which are in the same reading frame as the unique physiological translation initiation codon. Further analysis demonstrated that these upstream AUGs act as negative cis elements for initiation at the downstream translation initiation codon and their inhibitory effect on M2 translation is eIF4G dependent. Based on the findings of this study, we conclude that the expression of M2 is likely regulated by fine tuning the translation from the mRNA with a long 5′-UTR during viral infection and during the DNA replication phase of cell proliferation.
Collapse
Affiliation(s)
| | | | - Jian-Ting Zhang
- To whom correspondence should be addressed. Tel: +1 317 278 4503; Fax: +1 317 274 8046;
| |
Collapse
|