51
|
González Blanco C, Mato Matute E, de Leiva Hidalgo A. Biomarcadores moleculares implicados en el proceso de desdiferenciación tumoral del carcinoma de tiroides de origen epitelial: perspectivas. ACTA ACUST UNITED AC 2012; 59:452-8. [DOI: 10.1016/j.endonu.2011.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/29/2011] [Accepted: 12/12/2011] [Indexed: 10/28/2022]
|
52
|
Evans JJ, Crist HS, Durvesh S, Bruggeman RD, Goldenberg D. A comparative study of cell cycle mediator protein expression patterns in anaplastic and papillary thyroid carcinoma. Cancer Biol Ther 2012; 13:776-81. [PMID: 22688732 DOI: 10.4161/cbt.20560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is an extremely aggressive and rapidly fatal neoplasm. The aim of this study was to identify a limited cell cycle associated protein expression pattern unique to ATC and to correlate that pattern with clinical outcome. This represents one of the largest tissue micro-array projects comparing the cell cycle protein expression data of ATC to other well-differentiated tumors in the literature. Tissue microarrays were created from 21 patients with ATC and an age and gender matched cohort of patients with papillary thyroid carcinoma (PTC). Expression of epidermal growth factor receptor, cyclin D1, cyclin E, p53, p21, p16, aurora kinase A, opioid growth factor (OGF), OGF-receptor, thyroglobulin and Ki-67 was evaluated in a semi-quantitative fashion. Differences in protein expression between the cohorts were evaluated using chi-square tests with Bonferroni adjustments. Survival time and presence of metastasis at presentation were collected. The ATC cohort showed a statistically significant decrease (p < 0.05) in thyroglobulin expression and statistically significant increases (p < 0.05) in Ki-67 and p53 expression as compared with the PTC cohort. A trend toward loss of p16 and p21 expression was noted in the ATC cohort. A trend toward decreased survival was noted with p21 expression. These data indicate disruption of the normal cell cycle with aberrant expression of multiple protein markers suggesting increased proliferative activity and loss of control of cell cycle progression to G₁ phase. These findings support the assertion that ATC may represent the furthest end of a continuum of thyroid carcinoma dedifferentiation.
Collapse
Affiliation(s)
- Juanita J Evans
- Department of Pathology, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
53
|
Ruiz-Llorente S, Carrillo Santa de Pau E, Sastre-Perona A, Montero-Conde C, Gómez-López G, Fagin JA, Valencia A, Pisano DG, Santisteban P. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions. BMC Genomics 2012; 13:147. [PMID: 22531031 PMCID: PMC3403905 DOI: 10.1186/1471-2164-13-147] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022] Open
Abstract
Background The transcription factor Pax8 is essential for the differentiation of thyroid cells. However, there are few data on genes transcriptionally regulated by Pax8 other than thyroid-related genes. To better understand the role of Pax8 in the biology of thyroid cells, we obtained transcriptional profiles of Pax8-silenced PCCl3 thyroid cells using whole genome expression arrays and integrated these signals with global cis-regulatory sequencing studies performed by ChIP-Seq analysis Results Exhaustive analysis of Pax8 immunoprecipitated peaks demonstrated preferential binding to intragenic regions and CpG-enriched islands, which suggests a role of Pax8 in transcriptional regulation of orphan CpG regions. In addition, ChIP-Seq allowed us to identify Pax8 partners, including proteins involved in tertiary DNA structure (CTCF) and chromatin remodeling (Sp1), and these direct transcriptional interactions were confirmed in vivo. Moreover, both factors modulate Pax8-dependent transcriptional activation of the sodium iodide symporter (Nis) gene promoter. We ultimately combined putative and novel Pax8 binding sites with actual target gene expression regulation to define Pax8-dependent genes. Functional classification suggests that Pax8-regulated genes may be directly involved in important processes of thyroid cell function such as cell proliferation and differentiation, apoptosis, cell polarity, motion and adhesion, and a plethora of DNA/protein-related processes. Conclusion Our study provides novel insights into the role of Pax8 in thyroid biology, exerted through transcriptional regulation of important genes involved in critical thyrocyte processes. In addition, we found new transcriptional partners of Pax8, which functionally cooperate with Pax8 in the regulation of thyroid gene transcription. Besides, our data demonstrate preferential location of Pax8 in non-promoter CpG regions. These data point to an orphan CpG island-mediated mechanism that represents a novel role of Pax8 in the transcriptional output of the thyrocyte.
Collapse
Affiliation(s)
- Sergio Ruiz-Llorente
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-CSIC y Universidad Autónoma de Madrid-UAM, C/Arturo Duperier 4, Madrid 28029, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Rusinek D, Szpak-Ulczok S, Jarzab B. Gene expression profile of human thyroid cancer in relation to its mutational status. J Mol Endocrinol 2011; 47:R91-103. [PMID: 21798995 DOI: 10.1530/jme-11-0023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review describes the gene expression profile changes associated with the presence of different mutations that contribute to thyroid cell carcinogenesis. The results are discussed in the context of thyroid cancer biology and of the implications for disease prognosis, while the diagnostic aspect has been omitted. For papillary thyroid cancer (PTC), the most characteristic gene expression profile is associated with the presence of BRAF mutation. BRAF-associated PTC differ profoundly from RET/PTC or RAS-associated cancers. Simultaneously, they retain many characteristic gene expression features common for all PTCs, induced by the alternative mutations activating MAPK pathway. Although the difference between papillary and follicular thyroid cancer (FTC) is significant at the gene expression profile level, surprisingly, the RAS-related signature of FTC is not well specified. PAX8/peroxisome proliferator-activated receptor γ (PPARγ) rearrangements, which occur in FTC as an alternative to the RAS mutation, are associated with specific changes in gene expression. Furthermore, the difference between well-differentiated thyroid cancers and poorly differentiated and anaplastic thyroid cancers is mainly a reflection of tumor degree of differentiation and may not be attributed to the presence of characteristic mutations.
Collapse
Affiliation(s)
- Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland
| | | | | |
Collapse
|
55
|
|
56
|
Braun J, Hüttelmaier S. Pathogenic mechanisms of deregulated microRNA expression in thyroid carcinomas of follicular origin. Thyroid Res 2011; 4 Suppl 1:S1. [PMID: 21835047 PMCID: PMC3155107 DOI: 10.1186/1756-6614-4-s1-s1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer is one of the most common malignancies of the endocrine system with increasing incidence. The vast majority of thyroid carcinomas derive from thyroid hormone producing follicular cells. Carcinomas of follicular origin are classified as follicular (FTCs), papillary (PTCs), partially differentiated (PDTCs) or anaplastic (ATCs) thyroid carcinomas. While FTCs and PTCs can be managed effectively, ATCs are considered one of the most lethal human cancers. Despite the identification of various genetic alterations, pathogenic mechanisms promoting the progression of thyroid carcinomas are still largely elusive. Over the recent years, aberrant microRNA expression was revealed in all as yet analyzed human cancers, including thyroid carcinomas. In view of the rapidly evolving perception that deregulated microRNA expression serves a pivotal role in tumor progression, microRNAs provide powerful tools for the diagnosis of thyroid carcinomas as well as the identification of potential therapeutic targets. Here, we summarize recent findings on microRNA signatures in thyroid carcinomas of follicular origin and discuss how deregulated microRNA expression could promote cancer progression.
Collapse
Affiliation(s)
- Juliane Braun
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University of Halle-Wittenberg, ZAMED Heinrich-Damerow-Str,1, 06120 Halle, Germany.
| | | |
Collapse
|
57
|
Knauf JA, Sartor MA, Medvedovic M, Lundsmith E, Ryder M, Salzano M, Nikiforov YE, Giordano TJ, Ghossein RA, Fagin JA. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene 2011; 30:3153-62. [PMID: 21383698 PMCID: PMC3136543 DOI: 10.1038/onc.2011.44] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 01/12/2011] [Accepted: 01/26/2011] [Indexed: 12/14/2022]
Abstract
Mice with thyroid-specific expression of oncogenic BRAF (Tg-Braf) develop papillary thyroid cancers (PTCs) that are locally invasive and have well-defined foci of poorly differentiated thyroid carcinoma (PDTC). To investigate the PTC-PDTC progression, we performed a microarray analysis using RNA from paired samples of PDTC and PTC collected from the same animals by laser capture microdissection. Analysis of eight paired samples revealed a profound deregulation of genes involved in cell adhesion and intracellular junctions, with changes consistent with an epithelial-mesenchymal transition (EMT). This was confirmed by immunohistochemistry, as vimentin expression was increased and E-cadherin lost in PDTC compared with adjacent PTC. Moreover, PDTC stained positively for phospho-Smad2, suggesting a role for transforming growth factor (TGF)β in mediating this process. Accordingly, TGFβ-induced EMT in primary cultures of thyroid cells from Tg-Braf mice, whereas wild-type thyroid cells retained their epithelial features. TGFβ-induced Smad2 phosphorylation, transcriptional activity and induction of EMT required mitogen-activated protein kinase (MAPK) pathway activation in Tg-Braf thyrocytes. Hence, tumor initiation by oncogenic BRAF renders thyroid cells susceptible to TGFβ-induced EMT, through a MAPK-dependent process.
Collapse
Affiliation(s)
- J A Knauf
- Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Konrády A. [Differentiated thyroid cancer -- 2009]. Orv Hetil 2011; 152:163-70. [PMID: 21247857 DOI: 10.1556/oh.2011.29028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three years ago continental guidelines were published referring management and follow-up of low risk thyroid cancer patients. The aim of this paper is to summarize the changes and new directions in this field. High risk patients require another protocol. Neck ultrasound plays important role in differential diagnosis and in detecting recurrences. Some new ultrasound techniques are discussed, too. FDG-PET can help to solve the problem of patients having negative scan and increased thyroglobulin level. In recent years there was an expansion of our knowledge about the pathomechanism of thyroid cancer. It appears that genetic alterations frequently play a key role in carcinogenesis. There are molecular methods that allow the detection of these genetic events in thyroid fine needle aspirations samples providing important information for diagnosis, management and prognosis. Instead of diagnostic whole body scanning the posttherapeutic scan became preferable but in high risk cases the diagnostic whole body scintigrams serve useful data. Primary therapy of thyroid cancer is an adequate surgery: total thyreoidectomy and, if necessary, lymph node dissection or limited surgery in selected cases. Nowadays radioguided surgery can help to improve the results. Radioiodine therapy (e.g. rest ablation) proved to be a safe and effective method to complete surgery. It can prevent relapses and results in longer survival. Thyroid hormone withdrawal or recombinant human thyrotropin stimulation can increase thyrotropin level before radioiodine treatment. These two methods have similar success rate of rest ablation but irradiation burden of blood is lower in the case of exogenous stimulation which avoids hypothyroid state and preserves quality of life. Since tumor cells fail to maintain the ability to perform physiological functions they undergo dedifferentiation. Therefore, an important aim is to reactivate some function of differentiated cells, e.g. iodine uptake, production of thyroperoxydase and thyroglobulin. Opportunities for this therapeutic effort are also mentioned. Restoration of iodine uptake enables radioisotope treatment. Until now there has been little interest in the development of new drugs for the treatment of thyroid cancer. However, advances in our understanding of tumor cell biology will lead to a paradigm shift in the therapy that is likely to benefit patients who have high risk disease and who do not almost have any therapeutic option. There are new drugs in clinical trials that appear to be more effective than earlier cytotoxic agents. Probably modern chemotherapy of advanced thyroid cancer will have significant results in the near future.
Collapse
Affiliation(s)
- András Konrády
- Jávorszky Ödön Kórház Izotóprészleg Vác Argenti Döme tér 1-3. 2600.
| |
Collapse
|
60
|
Yamazaki T, Fujiwara N, Yukinaga H, Ebisuya M, Shiki T, Kurihara T, Kioka N, Kambe T, Nagao M, Nishida E, Masuda S. The closely related RNA helicases, UAP56 and URH49, preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression. Mol Biol Cell 2010; 21:2953-65. [PMID: 20573985 PMCID: PMC2921121 DOI: 10.1091/mbc.e09-10-0913] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 06/03/2010] [Accepted: 06/15/2010] [Indexed: 11/23/2022] Open
Abstract
Nuclear export of mRNA is an essential process for eukaryotic gene expression. The TREX complex couples gene expression from transcription and splicing to mRNA export. Sub2, a core component of the TREX complex in yeast, has diversified in humans to two closely related RNA helicases, UAP56 and URH49. Here, we show that URH49 forms a novel URH49-CIP29 complex, termed the AREX (alternative mRNA export) complex, whereas UAP56 forms the human TREX complex. The mRNAs regulated by these helicases are different at the genome-wide level. The two sets of target mRNAs contain distinct subsets of key mitotic regulators. Consistent with their target mRNAs, depletion of UAP56 causes mitotic delay and sister chromatid cohesion defects, whereas depletion of URH49 causes chromosome arm resolution defects and failure of cytokinesis. In addition, depletion of the other human TREX components or CIP29 causes mitotic defects similar to those observed in UAP56- or URH49-depleted cells, respectively. Taken together, the two closely related RNA helicases have evolved to form distinct mRNA export machineries, which regulate mitosis at different steps.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Naoko Fujiwara
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Hiroko Yukinaga
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Miki Ebisuya
- *Division of Integrated Life Science, Graduate School of Biostudies, and
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Shiki
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Tomoya Kurihara
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; and
| | - Taiho Kambe
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Masaya Nagao
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Eisuke Nishida
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| | - Seiji Masuda
- *Division of Integrated Life Science, Graduate School of Biostudies, and
| |
Collapse
|
61
|
Smallridge RC, Copland JA. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol) 2010; 22:486-97. [PMID: 20418080 PMCID: PMC3905320 DOI: 10.1016/j.clon.2010.03.013] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/04/2010] [Accepted: 03/23/2010] [Indexed: 01/12/2023]
Abstract
Anaplastic thyroid carcinoma ranges from 1.3 to 9.8% of all thyroid cancers globally. Mutations, amplifications, activation of oncogenes and silencing of tumour suppressor genes contribute to its aggressive behaviour, and recent studies (e.g. microarrays, microRNAs) have provided further insights into its complex molecular dysregulation. Preclinical studies have identified numerous proteins over- or underexpressed that affect critical cellular processes, including transcription, signalling, mitosis, proliferation, cell cycle, apoptosis and adhesion, and a variety of agents that effectively inhibit these processes and tumour growth. In clinical studies of 1771 patients, 64% were women, the median survival was 5 months, and 1-year survival was 20%. The variables associated with survival in some series included age, tumour size, extent of surgery, higher dose radiotherapy, absence of distant metastases at presentation, co-existence of differentiated thyroid cancer and multimodality therapy. However, considerable bias exists in these non-randomised studies. Although more aggressive radiotherapy has reduced locoregional recurrences, the median overall survival has not improved in over 50 years. Newer systemic therapies are being tried, and more effective combinations are needed to improve patient outcomes.
Collapse
Affiliation(s)
- R C Smallridge
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA.
| | | |
Collapse
|
62
|
Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ, Gerald D, Benjamin LE, Priolo C, Puxeddu E, Finn S, Jarzab B, Hodin RA, Pontecorvi A, Nose V, Lawler J, Parangi S. B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci U S A 2010; 107:10649-54. [PMID: 20498063 PMCID: PMC2890809 DOI: 10.1073/pnas.1004934107] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although B-Raf(V600E) is the most common somatic mutation in papillary thyroid carcinoma (PTC), how it induces tumor aggressiveness is not fully understood. Using gene set enrichment analysis and in vitro and in vivo functional studies, we identified and validated a B-Raf(V600E) gene set signature associated with tumor progression in PTCs. An independent cohort of B-Raf(V600E)-positive PTCs showed significantly higher expression levels of many extracellular matrix genes compared with controls. We performed extensive in vitro and in vivo validations on thrombospondin-1 (TSP-1), because it has been previously shown to be important in the regulation of tumor angiogenesis and metastasis and is present in abundance in tumor stroma. Knockdown of B-Raf(V600E) resulted in TSP-1 down-regulation and a reduction of adhesion and migration/invasion of human thyroid cancer cells. Knockdown of TSP-1 resulted in a similar phenotype. B-Raf(V600E) cells in which either B-Raf(V600E) or TSP-1 were knocked down were implanted orthotopically into the thyroids of immunocompromised mice, resulting in significant reduction in tumor size and fewer pulmonary metastases from the primary carcinoma as compared with the control cells. Treatment of orthotopic thyroid tumors, initiated 1 week after tumor cell implantation with PLX4720, an orally available selective inhibitor of B-Raf(V600E), caused a significant tumor growth delay and decreased distant metastases, without evidence of toxicity. In conclusion, B-Raf(V600E) plays an important role in PTC progression through genes (i.e., TSP-1) important in tumor invasion and metastasis. Testing of a patient's thyroid cancer for B-Raf(V600E) will yield important information about potential tumor aggressiveness and also allow for future use of targeted therapies with selective B-Raf(V600E) inhibitors, such as PLX4720.
Collapse
Affiliation(s)
- Carmelo Nucera
- Thyroid Cancer Research Laboratory, Endocrine Surgery Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02214, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Caracciolo V, D'Agostino L, Dráberová E, Sládková V, Crozier-Fitzgerald C, Agamanolis DP, de Chadarévian JP, Legido A, Giordano A, Dráber P, Katsetos CD. Differential expression and cellular distribution of gamma-tubulin and betaIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J Cell Physiol 2010; 223:519-29. [PMID: 20162618 DOI: 10.1002/jcp.22077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In previous studies, we have shown overexpression and ectopic subcellular distribution of gamma-tubulin and betaIII-tubulin in human glioblastomas and glioblastoma cell lines (Katsetos et al., 2006, J Neuropathol Exp Neurol 65:455-467; Katsetos et al., 2007, Neurochem Res 32:1387-1398). Here we determined the expression of gamma-tubulin in surgically excised medulloblastomas (n = 20) and in the human medulloblastoma cell lines D283 Med and DAOY. In clinical tissue samples, the immunohistochemical distribution of gamma-tubulin labeling was pervasive and inversely related to neuritogenesis. Overexpression of gamma-tubulin was widespread in poorly differentiated, proliferating tumor cells but was significantly diminished in quiescent differentiating tumor cells undergoing neuritogenesis, highlighted by betaIII-tubulin immunolabeling. By quantitative real-time PCR, gamma-tubulin transcripts for TUBG1, TUBG2, and TUBB3 genes were detected in both cell lines but expression was less prominent when compared with the human glioblastoma cell lines. Immunoblotting revealed comparable amounts of gamma-tubulin and betaIII-tubulin in different phases of cell cycle; however, a larger amount of gamma-tubulin was detected in D283 Med when compared with DAOY cells. Interphase D283 Med cells exhibited predominantly diffuse cytoplasmic gamma-tubulin localization, in addition to the expected centrosome-associated distribution. Robust betaIII-tubulin immunoreactivity was detected in mitotic spindles of DAOY cells. Our data indicate that overexpression of gamma-tubulin may be linked to phenotypic dedifferentiation (anaplasia) and tumor progression in medulloblastomas and may potentially serve as a promising tumor marker.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Volante M, Rapa I, Gandhi M, Bussolati G, Giachino D, Papotti M, Nikiforov YE. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 2009; 94:4735-41. [PMID: 19837916 DOI: 10.1210/jc.2009-1233] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
CONTEXT Poorly differentiated carcinomas represent an aggressive group of thyroid tumors with controversial classification placement and poorly understood pathogenesis. Molecular data in this group of tumors are extremely heterogeneous, possibly reflecting different inclusion criteria. Recently homogeneous diagnostic criteria have been proposed by our group (Turin proposal) that need to be complemented by detailed molecular characterization. OBJECTIVE The objective of the study was to define a comprehensive molecular typing of poorly differentiated thyroid carcinomas classified following homogeneous diagnostic criteria. DESIGN Sixty-five cases of poorly differentiated carcinoma selected following the Turin proposal have been screened for N-, K-, H-RAS, BRAF, RET/PTC1 and 3, and PAX8/PPARgamma mutations-rearrangements using alternative techniques and in two different laboratories. Molecular data were compared with clinical pathological parameters and survival by univariate and multivariate analysis. RESULTS RAS mutations in codon 61 were by far the most common genetic alteration in poorly differentiated carcinomas (23% of cases), with all mutation in NRAS except one in the HRAS gene. A single BRAF mutation was found in a poorly differentiated carcinoma with a residual component of a tall cell variant of papillary carcinoma. No KRAS, RET/PTC, or PAX8/PPARgamma genetic alteration was detected. In this series, the presence of RAS mutations was a unique negative prognostic parameter at multivariate analysis. CONCLUSIONS The present study demonstrates that strictly classified poorly differentiated carcinomas are genetically homogeneous, RAS mutations being the almost exclusive genetic event. Moreover, the detection of RAS mutations might be clinically relevant for the prognostic stratification of these tumors.
Collapse
Affiliation(s)
- Marco Volante
- Department of Clinical and Biological Sciences, San Luigi Hospital, 10043 Orbassano, Italy.
| | | | | | | | | | | | | |
Collapse
|
65
|
Pita JM, Banito A, Cavaco BM, Leite V. Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer 2009; 101:1782-91. [PMID: 19809427 PMCID: PMC2778548 DOI: 10.1038/sj.bjc.6605340] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Poorly differentiated thyroid carcinomas (PDTC) represent a heterogeneous, aggressive entity, presenting features that suggest a progression from well-differentiated carcinomas. To elucidate the mechanisms underlying such progression and identify novel therapeutic targets, we assessed the genome-wide expression in normal and tumour thyroid tissues. METHODS Microarray analyses of 24 thyroid carcinomas - 7 classic papillary, 8 follicular variants of papillary (fvPTC), 4 follicular (FTC) and 5 PDTC - were performed and correlated with RAS, BRAF, RET/PTC and PAX8-PPARG alterations. Selected genes were validated by quantitative RT-PCR in an independent set of 28 thyroid tumours. RESULTS Unsupervised analyses showed that gene expression similarity was higher between PDTC and fvPTC, particularly for tumours harbouring RAS mutations. Poorly differentiated thyroid carcinomas presented molecular signatures related to cell proliferation, poor prognosis, spindle assembly checkpoint and cell adhesion. Compared with normal tissues, PTC had 307 out of 494 (60%) genes over-expressed, FTC had 137 out of 171 (80%) genes under-expressed, whereas PDTC had 92 out of 107 (86%) genes under-expressed, suggesting that gene downregulation is involved in tumour dedifferentiation. Significant UHRF1 and ITIH5 deregulated gene expression in PDTC, relatively to normal tissues, was confirmed by quantitative RT-PCR. CONCLUSION Our findings suggest that fvPTC are possible precursors of PDTC. Furthermore, UHRF1 and ITIH5 have a potential therapeutic/prognostic value for aggressive thyroid tumours.
Collapse
Affiliation(s)
- J M Pita
- Centro de Investigação de Patobiologia Molecular (CIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa 1099-023, Portugal
| | | | | | | |
Collapse
|
66
|
Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Pérez L, Schiavi F, Leskelä S, Pita G, Milne R, Maravall J, Ramos I, Andía V, Rodríguez-Poyo P, Jara-Albarrán A, Meoro A, del Peso C, Arribas L, Iglesias P, Caballero J, Serrano J, Picó A, Pomares F, Giménez G, López-Mondéjar P, Castello R, Merante-Boschin I, Pelizzo MR, Mauricio D, Opocher G, Rodríguez-Antona C, González-Neira A, Matías-Guiu X, Santisteban P, Robledo M. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet 2009; 5:e1000637. [PMID: 19730683 PMCID: PMC2727793 DOI: 10.1371/journal.pgen.1000637] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/07/2009] [Indexed: 01/18/2023] Open
Abstract
In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. Although follicular cell-derived thyroid cancer has an important genetic component, efforts in identifying major susceptibility genes have not been successful. Probably this is due to the complex nature of this disease that involves both genetic and environmental factors, as well as the interaction between them, which could be ultimately modulating the individual susceptibility. In this study, focused on genes carefully selected by their biological relation with the disease, and using more than 1,000 cases and 1,000 representative controls from two independent Caucasian populations, we demonstrate that FOXE1 is associated with Papillary Thyroid Cancer susceptibility. Functional assays prove that rs1867277 behaves as a genetic causal variant that regulates FOXE1 expression through a complex transcription factor network. This approach constitutes a successful approximation to define thyroid cancer risk genes related to individual susceptibility, and identifies FOXE1 as a key factor for its development.
Collapse
Affiliation(s)
- Iñigo Landa
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Ruiz-Llorente
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Lucía Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Francesca Schiavi
- Familial Cancer Clinic, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Susanna Leskelä
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Pita
- Genotyping Unit-CEGEN, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Roger Milne
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Maravall
- Hospital Universitario Arnau de Vilanova-IRB Lleida, Lleida, Spain
| | | | - Víctor Andía
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - Amparo Meoro
- Hospital Universitario Reina Sofía, Murcia, Spain
| | | | | | | | | | | | - Antonio Picó
- Hospital General Universitario de Alicante, Alicante, Spain
| | | | | | | | | | - Isabella Merante-Boschin
- Surgical Pathology, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Maria-Rosa Pelizzo
- Surgical Pathology, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Didac Mauricio
- Hospital Universitario Arnau de Vilanova-IRB Lleida, Lleida, Spain
| | - Giuseppe Opocher
- Familial Cancer Clinic, Veneto Institute of Oncology IRCCS, Padova, Italy
- Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Anna González-Neira
- Genotyping Unit-CEGEN, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- * E-mail: (PS); (MR)
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
- * E-mail: (PS); (MR)
| |
Collapse
|
67
|
Abstract
The term poorly differentiated thyroid carcinoma (PDTC) was first proposed in the 1980s, but it was not definitively recognized as a distinct pathologic entity until the most recent classification of endocrine tumors by the World Health Organization in 2004. More recently, as a result of discussions in Turin, Italy, in 2006, diagnostic criteria were made more specific by a consensus of expert thyroid pathologists. The histologic and cytologic aspects are detailed with particular attention to key features helpful in the diagnosis of PDTC, both in surgical pathology and in cytology-based studies. Histologically, insular, solid, and/or trabecular architecture, along with at least one of the following: convoluted nuclei, mitotic activity (>3/10 HPF), or tumor necrosis, are required for a diagnosis of PDTC. Cytologically, the combination of insular, solid, or trabecular cytoarchitectural pattern, single cells, high nuclear to cytoplasmic (N/C) ratio, and severe crowding are highly suggestive of PDTC. Most PDTCs are immunohistochemically positive for thyroglobulin and thyroid transcription factor 1 (TTF-1), and a subset is also positive for p53. On the molecular level, ras mutations are the most common finding. PDTCs are managed aggressively by total thyroidectomy, I, and in some cases, external beam radiotherapy.
Collapse
|
68
|
Katsetos CD, Dráberová E, Legido A, Dráber P. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. γ-tubulin. J Cell Physiol 2009; 221:514-20. [DOI: 10.1002/jcp.21884] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
69
|
Azuaje F, Devaux Y, Wagner D. Computational biology for cardiovascular biomarker discovery. Brief Bioinform 2009; 10:367-77. [PMID: 19276200 DOI: 10.1093/bib/bbp008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Computational biology is essential in the process of translating biological knowledge into clinical practice, as well as in the understanding of biological phenomena based on the resources and technologies originating from the clinical environment. One such key contribution of computational biology is the discovery of biomarkers for predicting clinical outcomes using 'omic' information. This process involves the predictive modelling and integration of different types of data and knowledge for screening, diagnostic or prognostic purposes. Moreover, this requires the design and combination of different methodologies based on statistical analysis and machine learning. This article introduces key computational approaches and applications to biomarker discovery based on different types of 'omic' data. Although we emphasize applications in cardiovascular research, the computational requirements and advances discussed here are also relevant to other domains. We will start by introducing some of the contributions of computational biology to translational research, followed by an overview of methods and technologies used for the identification of biomarkers with predictive or classification value. The main types of 'omic' approaches to biomarker discovery will be presented with specific examples from cardiovascular research. This will include a review of computational methodologies for single-source and integrative data applications. Major computational methods for model evaluation will be described together with recommendations for reporting models and results. We will present recent advances in cardiovascular biomarker discovery based on the combination of gene expression and functional network analyses. The review will conclude with a discussion of key challenges for computational biology, including perspectives from the biosciences and clinical areas.
Collapse
Affiliation(s)
- Francisco Azuaje
- Laboratory of Cardiovascular Research, Centre de Recherche Public - Santé, Luxembourg.
| | | | | |
Collapse
|
70
|
Abstract
Anaplastic thyroid cancer (ATC) is a rare malignancy. While external beam radiation therapy has improved locoregional control, the median survival of approximately 4 months has not changed in more than half a century due to uncontrolled systemic metastases. The objective of this study was to review the literature in order to identify potential new strategies for treating this highly lethal cancer. PubMed searches were the principal source of articles reviewed. The molecular pathogenesis of ATC includes mutations in BRAF, RAS, catenin (cadherin-associated protein), beta 1, PIK3CA, TP53, AXIN1, PTEN, and APC genes, and chromosomal abnormalities are common. Several microarray studies have identified genes and pathways preferentially affected, and dysregulated microRNA profiles differ from differentiated thyroid cancers. Numerous proteins involving transcription factors, signaling pathways, mitosis, proliferation, cell cycle, apoptosis, adhesion, migration, epigenetics, and protein degradation are affected. A variety of agents have been successful in controlling ATC cell growth both in vitro and in nude mice xenografts. While many of these new compounds are in cancer clinical trials, there are few studies being conducted in ATC. With the recent increased knowledge of the many critical genes and proteins affected in ATC, and the extensive array of targeted therapies being developed for cancer patients, there are new opportunities to design clinical trials based upon tumor molecular profiling and preclinical studies of potentially synergistic combinatorial novel therapies.
Collapse
Affiliation(s)
- Robert C Smallridge
- Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA.
| | | | | |
Collapse
|
71
|
[Association between ion channel subtype and its gene co-expression]. YI CHUAN = HEREDITAS 2008; 30:1157-62. [PMID: 18779173 DOI: 10.3724/sp.j.1005.2008.01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Association between ion channel functional subtype and its genes expression is important for exploring function of ion channel, annotating function of an unknown subtype and probing into molecular mechanism of ion channel diseases. In this study, we began with noise reduction by standardizing original micro-array data, which consisted of human and mouse gene expression profiles, and then we employed principle component analysis (PCA) together with fuzzy C-mean clustering algorithm to analyze the pre-processed gene expression profiles. PCA is applied to rebuild the feature space of human gene in 21 dimensions as well as the feature space of mouse gene in 26 dimensions. Using this method we largely reduced computational complexity without losing much information involved in the original data. Subsequently, fuzzy C-mean clustering was used to classify the ion channel genes of human and mouse in their reduced feature space. In the end, four ion channel functional subtypes, such as potassium ion channels, calcium ion channel, chloride ion channel, and receptor-mediated ion channel were clustered in both human and mouse gene feature space. We applied two statistic ways to conduct significance test of the findings. In one way, we randomly sampled the data for each functional subtype of the ion channel genes and recorded the true positive rate. As a result, in both human and mouse gene feature spaces, genes that belong to one functional subtype were more likely to be clustered together than expected by chance. In the other way, we performed Kappa test and used the functional subtypes as gold standard. The result showed that consistency between the ion channel gene clusters and the ion channel gene subtypes was significantly high for both human and mouse. These results indicate that ion channel genes within the same functional subtype tend to be co-expressed at least at the mRNA-level.
Collapse
|
72
|
García-Jiménez C, Santisteban P. Thyroid-stimulating hormone/cAMP-mediated proliferation in thyrocytes. Expert Rev Endocrinol Metab 2008; 3:473-491. [PMID: 30290436 DOI: 10.1586/17446651.3.4.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current research on thyrotropin-activated proliferation in the thyrocyte needs to be aimed at a better understanding of crosstalk and negative-feedback mechanisms with other proliferative pathways, especially the insulin/IGF-1-induced phosphoinositol-3 kinase pathway and the serum-induced MAPK or Wnt pathways. Convergence of proliferative pathways in mTOR is a hotspot of current research, and combined treatment using double class inhibitors for thyroid cancer may bring some success. New thyroid-stimulating hormone receptor (TSHR)-interacting proteins, a better picture of cAMP targets, a deeper knowledge of the action of the protein kinase A regulatory subunits, especially their interactions with the replication machinery, and a further understanding of mechanisms that lead to cell cycle progression through G1/S and G2/M checkpoints are areas that need further elucidation. Finally, massive information coming from microarray data analysis will prompt our understanding of thyroid-stimulating hormone-promoted thyrocyte proliferation in health and disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- a Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | - Pilar Santisteban
- b Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC, C/Arturo Duperier, 4, 28932 Madrid, Spain.
| |
Collapse
|