51
|
Houri-Zeevi L, Rechavi O. A Matter of Time: Small RNAs Regulate the Duration of Epigenetic Inheritance. Trends Genet 2017; 33:46-57. [DOI: 10.1016/j.tig.2016.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022]
|
52
|
Taning CNT, Andrade EC, Hunter WB, Christiaens O, Smagghe G. Asian Citrus Psyllid RNAi Pathway - RNAi evidence. Sci Rep 2016; 6:38082. [PMID: 27901078 PMCID: PMC5128860 DOI: 10.1038/srep38082] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Abstract
Diaphorina citri, known as the Asian citrus psyllid, is an important pest of citrus because it transmits a phloem-limited bacteria strongly implicated in huanglongbing (citrus greening disease). Emerging biotechnologies, such as RNA interference, could provide a new sustainable and environmentally friendly strategy for the management of this pest. In this study, genome and functional analysis were performed to verify whether the RNAi core genes are present in the Asian psyllid genome and if the RNAi machinery could be exploited to develop a management strategy for this pest. Analyses of RNAi-related genes in the Asian citrus psyllid genome showed an absence of sequences encoding R2D2, a dsRNA-binding protein that functions as a cofactor of Dicer-2 in Drosophila. Nevertheless, bioassays using an in Planta System showed that the Asian citrus psyllid was very sensitive to ingested dsRNA, demonstrating a strong RNAi response. A small dose of dsRNA administered through a citrus flush was enough to trigger the RNAi mechanism, causing significant suppression of the targeted transcript, and increased psyllid mortality. This study provides evidence of a functional RNAi machinery, which could be further exploited to develop RNAi based management strategies for the control of the Asian citrus psyllid.
Collapse
Affiliation(s)
- Clauvis N. T. Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Eduardo C. Andrade
- EMBRAPA Cassava and Fruits, Rua Embrapa, s/n, Cruz das Almas, Bahia, Cep 44380-000, Brazil
| | - Wayne B. Hunter
- U.S. Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
53
|
Miska EA, Ferguson-Smith AC. Transgenerational inheritance: Models and mechanisms of non-DNA sequence-based inheritance. Science 2016; 354:59-63. [PMID: 27846492 DOI: 10.1126/science.aaf4945] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heritability has traditionally been thought to be a characteristic feature of the genetic material of an organism-notably, its DNA. However, it is now clear that inheritance not based on DNA sequence exists in multiple organisms, with examples found in microbes, plants, and invertebrate and vertebrate animals. In mammals, the molecular mechanisms have been challenging to elucidate, in part due to difficulties in designing robust models and approaches. Here we review some of the evidence, concepts, and potential mechanisms of non-DNA sequence-based transgenerational inheritance. We highlight model systems and discuss whether phenotypes are replicated or reconstructed over successive generations, as well as whether mechanisms operate at transcriptional and/or posttranscriptional levels. Finally, we explore the short- and long-term implications of non-DNA sequence-based inheritance. Understanding the effects of non-DNA sequence-based mechanisms is key to a full appreciation of heritability in health and disease.
Collapse
Affiliation(s)
- Eric A Miska
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| |
Collapse
|
54
|
Houri-Ze'evi L, Rechavi O. Plastic germline reprogramming of heritable small RNAs enables maintenance or erasure of epigenetic memories. RNA Biol 2016; 13:1212-1217. [PMID: 27592591 PMCID: PMC5207387 DOI: 10.1080/15476286.2016.1229732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Caenorhabditis elegans small RNAs can regulate genes across generations. The mysterious tendency of heritable RNA interference (RNAi) responses to terminate after 3–5 generations has been referred to as “the bottleneck to RNAi inheritance.” We have recently shown that the re-setting of epigenetic inheritance after 3–5 generations is not due to passive dilution of the original RNA trigger, but instead results from an active, multigenerational, and small RNA-mediated regulatory pathway. In this “Point of View” manuscript we suggest that the process that leads to the erasure of the ancestral small RNA-encoded memory is a specialized type of germline reprogramming mechanism, analogous to the processes that robustly remove parental DNA methylation and histone modifications early in development in different organisms. Traditionally, germline reprogramming mechanisms that re-set chromatin are thought to stand in the way of inheritance of memories of parental experiences. We found that reprogramming of heritable small RNAs takes multiple generations to complete, enabling long-term inheritance of small RNA responses. Moreover, the duration of this reprogramming process can be prolonged significantly if new heritable RNAi responses are provoked. A dedicated signaling pathway that is responsive to environmental cues can tune the epigenetic state of the RNAi inheritance system, so that inheritance of particular small RNA species can be extended.
Collapse
Affiliation(s)
- Leah Houri-Ze'evi
- a Department of Neurobiology , Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University , Tel Aviv , Israel
| | - Oded Rechavi
- a Department of Neurobiology , Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
55
|
Houri-Ze’evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L, Degani L, Alon U, Rechavi O. A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance in C. elegans. Cell 2016; 165:88-99. [DOI: 10.1016/j.cell.2016.02.057] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 01/13/2023]
|
56
|
Dey S, Proulx SR, Teotónio H. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects. PLoS Biol 2016; 14:e1002388. [PMID: 26910440 PMCID: PMC4766184 DOI: 10.1371/journal.pbio.1002388] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 01/27/2023] Open
Abstract
All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than randomizing maternal effects.
Collapse
Affiliation(s)
- Snigdhadip Dey
- Institut de Biologie de l´École Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
| | - Stephen R. Proulx
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
| |
Collapse
|
57
|
Klosin A, Lehner B. Mechanisms, timescales and principles of trans-generational epigenetic inheritance in animals. Curr Opin Genet Dev 2016; 36:41-9. [DOI: 10.1016/j.gde.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
|
58
|
O’Dea RE, Noble DWA, Johnson SL, Hesselson D, Nakagawa S. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv014. [PMID: 29492283 PMCID: PMC5804513 DOI: 10.1093/eep/dvv014] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 05/17/2023]
Abstract
Rapid environmental change is predicted to compromise population survival, and the resulting strong selective pressure can erode genetic variation, making evolutionary rescue unlikely. Non-genetic inheritance may provide a solution to this problem and help explain the current lack of fit between purely genetic evolutionary models and empirical data. We hypothesize that epigenetic modifications can facilitate evolutionary rescue through 'epigenetic buffering'. By facilitating the inheritance of novel phenotypic variants that are generated by environmental change-a strategy we call 'heritable bet hedging'-epigenetic modifications could maintain and increase the evolutionary potential of a population. This process may facilitate genetic adaptation by preserving existing genetic variation, releasing cryptic genetic variation and/or facilitating mutations in functional loci. Although we show that examples of non-genetic inheritance are often maladaptive in the short term, accounting for phenotypic variance and non-adaptive plasticity may reveal important evolutionary implications over longer time scales. We also discuss the possibility that maladaptive epigenetic responses may be due to 'epigenetic traps', whereby evolutionarily novel factors (e.g. endocrine disruptors) hack into the existing epigenetic machinery. We stress that more ecologically relevant work on transgenerational epigenetic inheritance is required. Researchers conducting studies on transgenerational environmental effects should report measures of phenotypic variance, so that the possibility of both bet hedging and heritable bet hedging can be assessed. Future empirical and theoretical work is required to assess the relative importance of genetic and epigenetic variation, and their interaction, for evolutionary rescue.
Collapse
Affiliation(s)
- Rose E. O’Dea
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daniel W. A. Noble
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sheri L. Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, UNSW, Australia, Sydney, NSW, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence address. School of BEES, UNSW, Sydney, NSW 2052, Australia, Tel:
+61-2-9385-8084
; Fax:
+61-2-9385-9138
; E-mail:
| |
Collapse
|
59
|
Gouvêa DY, Aprison EZ, Ruvinsky I. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS One 2015; 10:e0145925. [PMID: 26713620 PMCID: PMC4699941 DOI: 10.1371/journal.pone.0145925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022] Open
Abstract
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments.
Collapse
Affiliation(s)
- Devin Y. Gouvêa
- Committee on Conceptual and Historical Studies of Science, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
60
|
Hermant C, Boivin A, Teysset L, Delmarre V, Asif-Laidin A, van den Beek M, Antoniewski C, Ronsseray S. Paramutation in Drosophila Requires Both Nuclear and Cytoplasmic Actors of the piRNA Pathway and Induces Cis-spreading of piRNA Production. Genetics 2015; 201:1381-96. [PMID: 26482790 PMCID: PMC4676525 DOI: 10.1534/genetics.115.180307] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
Transposable element activity is repressed in the germline in animals by PIWI-interacting RNAs (piRNAs), a class of small RNAs produced by genomic loci mostly composed of TE sequences. The mechanism of induction of piRNA production by these loci is still enigmatic. We have shown that, in Drosophila melanogaster, a cluster of tandemly repeated P-lacZ-white transgenes can be activated for piRNA production by maternal inheritance of a cytoplasm containing homologous piRNAs. This activated state is stably transmitted over generations and allows trans-silencing of a homologous transgenic target in the female germline. Such an epigenetic conversion displays the functional characteristics of a paramutation, i.e., a heritable epigenetic modification of one allele by the other. We report here that piRNA production and trans-silencing capacities of the paramutated cluster depend on the function of the rhino, cutoff, and zucchini genes involved in primary piRNA biogenesis in the germline, as well as on that of the aubergine gene implicated in the ping-pong piRNA amplification step. The 21-nt RNAs, which are produced by the paramutated cluster, in addition to 23- to 28-nt piRNAs are not necessary for paramutation to occur. Production of these 21-nt RNAs requires Dicer-2 but also all the piRNA genes tested. Moreover, cytoplasmic transmission of piRNAs homologous to only a subregion of the transgenic locus can generate a strong paramutated locus that produces piRNAs along the whole length of the transgenes. Finally, we observed that maternally inherited transgenic small RNAs can also impact transgene expression in the soma. In conclusion, paramutation involves both nuclear (Rhino, Cutoff) and cytoplasmic (Aubergine, Zucchini) actors of the piRNA pathway. In addition, since it is observed between nonfully homologous loci located on different chromosomes, paramutation may play a crucial role in epigenome shaping in Drosophila natural populations.
Collapse
Affiliation(s)
- Catherine Hermant
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Antoine Boivin
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Laure Teysset
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Valérie Delmarre
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Amna Asif-Laidin
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| | - Marius van den Beek
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Drosophila Genetics and Epigenetics," F-75005, Paris, France CNRS, FR3631, Institut de Biologie Paris-Seine, ARTbio Bioinformatics Analysis Facility, F-75005, Paris, France
| | - Christophe Antoniewski
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Drosophila Genetics and Epigenetics," F-75005, Paris, France CNRS, FR3631, Institut de Biologie Paris-Seine, ARTbio Bioinformatics Analysis Facility, F-75005, Paris, France
| | - Stéphane Ronsseray
- Sorbonne Universités, UPMC University of Paris 06, Institut de Biologie Paris-Seine, UMR7622, Laboratoire Biologie du Développement, F-75005, Paris, France CNRS, UMR7622, "Epigenetic Repression and Mobile DNA," F-75005, Paris, France
| |
Collapse
|
61
|
Jobson MA, Jordan JM, Sandrof MA, Hibshman JD, Lennox AL, Baugh LR. Transgenerational Effects of Early Life Starvation on Growth, Reproduction, and Stress Resistance in Caenorhabditis elegans. Genetics 2015; 201:201-12. [PMID: 26187123 PMCID: PMC4566263 DOI: 10.1534/genetics.115.178699] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/15/2015] [Indexed: 11/18/2022] Open
Abstract
Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching ("L1 arrest"). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive.
Collapse
Affiliation(s)
- Meghan A Jobson
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - James M Jordan
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Moses A Sandrof
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | - Ashley L Lennox
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
62
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
63
|
Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink JL, McCouch SR. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 2015. [PMID: 25689273 DOI: 10.5061/dryad.7369p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.
Collapse
Affiliation(s)
- Jennifer Spindel
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Hasina Begum
- International Rice Research Institute, Los Baños, Philippines
| | - Deniz Akdemir
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Parminder Virk
- International Center for Tropical Agriculture, Cali, Colombia
| | | | | | - Gary Atlin
- Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Jean-Luc Jannink
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America; US Department of Agriculture-Agricultural Research Service (USDA-ARS), Ithaca, New York, United States of America
| | - Susan R McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|