51
|
Linkage Map of Lissotriton Newts Provides Insight into the Genetic Basis of Reproductive Isolation. G3-GENES GENOMES GENETICS 2017; 7:2115-2124. [PMID: 28500054 PMCID: PMC5499121 DOI: 10.1534/g3.117.041178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Linkage maps are widely used to investigate structure, function, and evolution of genomes. In speciation research, maps facilitate the study of the genetic architecture of reproductive isolation by allowing identification of genomic regions underlying reduced fitness of hybrids. Here we present a linkage map for European newts of the Lissotriton vulgaris species complex, constructed using two families of F2 L. montandoni × L. vulgaris hybrids. The map consists of 1146 protein-coding genes on 12 linkage groups, equal to the haploid chromosome number, with a total length of 1484 cM (1.29 cM per marker). It is notably shorter than two other maps available for salamanders, but the differences in map length are consistent with cytogenetic estimates of the number of chiasmata per chromosomal arm. Thus, large salamander genomes do not necessarily translate into long linkage maps, as previously suggested. Consequently, salamanders are an excellent model to study evolutionary consequences of recombination rate variation in taxa with large genomes and a similar number of chromosomes. A complex pattern of transmission ratio distortion (TRD) was detected: TRD occurred mostly in one family, in one breeding season, and was clustered in two genomic segments. This is consistent with environment-dependent mortality of individuals carrying L. montandoni alleles in these two segments and suggests a role of TRD blocks in reproductive isolation. The reported linkage map will empower studies on the genomic architecture of divergence and interactions between the genomes of hybridizing newts.
Collapse
|
52
|
Abstract
Humans and other mammals are limited in their natural abilities to regenerate lost body parts. By contrast, many salamanders are highly regenerative and can spontaneously replace lost limbs even as adults. Because salamander limbs are anatomically similar to human limbs, knowing how they regenerate should provide important clues for regenerative medicine. Although interest in understanding the mechanics of this process has never wavered, until recently researchers have been vexed by seemingly impenetrable logistics of working with these creatures at a molecular level. Chief among the problems has been the very large size of salamander genomes, and not a single salamander genome has been fully sequenced to date. Recently the enormous gap in sequence information has been bridged by approaches that leverage mRNA as the starting point. Together with functional experimentation, these data are rapidly enabling researchers to finally uncover the molecular mechanisms underpinning the astonishing biological process of limb regeneration.
Collapse
Affiliation(s)
- Brian J Haas
- Broad Institute of Massachusetts Institute of Technology(MIT) and Harvard, Klarman Cell Observatory, 415 Main Street, Cambridge, MA 02142, USA.
| | - Jessica L Whited
- Harvard Medical School, Harvard Stem Cell Institute, and Brigham and Women's Hospital Department of Orthopedic Surgery, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
53
|
Harland RM, Gilchrist MJ. Editorial: The Xenopus laevis genome. Dev Biol 2017; 426:139-142. [PMID: 28457863 DOI: 10.1016/j.ydbio.2017.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Richard M Harland
- University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720-3200, United States
| | | |
Collapse
|
54
|
Burns JA, Zhang H, Hill E, Kim E, Kerney R. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. eLife 2017; 6:e22054. [PMID: 28462779 PMCID: PMC5413350 DOI: 10.7554/elife.22054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-κB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial.
Collapse
Affiliation(s)
- John A Burns
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Huanjia Zhang
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Elizabeth Hill
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, United States
| |
Collapse
|
55
|
Newman CE, Gregory TR, Austin CC. The dynamic evolutionary history of genome size in North American woodland salamanders. Genome 2017; 60:285-292. [DOI: 10.1139/gen-2016-0166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5–20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.
Collapse
Affiliation(s)
- Catherine E. Newman
- Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - T. Ryan Gregory
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Christopher C. Austin
- Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
56
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
57
|
Woodcock MR, Vaughn-Wolfe J, Elias A, Kump DK, Kendall KD, Timoshevskaya N, Timoshevskiy V, Perry DW, Smith JJ, Spiewak JE, Parichy DM, Voss SR. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum. Sci Rep 2017; 7:6. [PMID: 28127056 PMCID: PMC5428337 DOI: 10.1038/s41598-017-00059-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/19/2016] [Indexed: 01/04/2023] Open
Abstract
The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.
Collapse
Affiliation(s)
- M. Ryan Woodcock
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | | | | | - D. Kevin Kump
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | - Katharina Denise Kendall
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
- School of Integrative Biology, University of Illinois, Urbana-Champaign, Urbana IL 61801 USA
| | | | | | - Dustin W. Perry
- Transposagen Biopharmaceuticals, 535 W 2nd Suite l0, Lexington, KY 40508 USA
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | | | - David M. Parichy
- Department of Biology, University of Washington, Seattle, WA 98195 USA
- Department of Biology, University of Virginia, Charlottesville, VA 22903 USA
| | - S. Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| |
Collapse
|
58
|
Nunziata SO, Lance SL, Scott DE, Lemmon EM, Weisrock DW. Genomic data detect corresponding signatures of population size change on an ecological time scale in two salamander species. Mol Ecol 2017; 26:1060-1074. [PMID: 28026889 DOI: 10.1111/mec.13988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
Abstract
Understanding the demography of species over recent history (e.g. <100 years) is critical in studies of ecology and evolution, but records of population history are rarely available. Surveying genetic variation is a potential alternative to census-based estimates of population size, and can yield insight into the demography of a population. However, to assess the performance of genetic methods, it is important to compare their estimates of population history to known demography. Here, we leveraged the exceptional resources from a wetland with 37 years of amphibian mark-recapture data to study the utility of genetically based demographic inference on salamander species with documented population declines (Ambystoma talpoideum) and expansions (A. opacum), patterns that have been shown to be correlated with changes in wetland hydroperiod. We generated ddRAD data from two temporally sampled populations of A. opacum (1993, 2013) and A. talpoideum (1984, 2011) and used coalescent-based demographic inference to compare alternate evolutionary models. For both species, demographic model inference supported population size changes that corroborated mark-recapture data. Parameter estimation in A. talpoideum was robust to our variations in analytical approach, while estimates for A. opacum were highly inconsistent, tempering our confidence in detecting a demographic trend in this species. Overall, our robust results in A. talpoideum suggest that genome-based demographic inference has utility on an ecological scale, but researchers should also be cognizant that these methods may not work in all systems and evolutionary scenarios. Demographic inference may be an important tool for population monitoring and conservation management planning.
Collapse
Affiliation(s)
- Schyler O Nunziata
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, P O Drawer E, Aiken, SC, 29802, USA
| | - David E Scott
- Savannah River Ecology Laboratory, University of Georgia, P O Drawer E, Aiken, SC, 29802, USA
| | | | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
59
|
Kwon T. AmphiBase: A new genomic resource for non-model amphibian species. Genesis 2017; 55. [PMID: 28095648 DOI: 10.1002/dvg.23010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 11/11/2022]
Abstract
More than five thousand genes annotated in the recently published Xenopus laevis and Xenopus tropicalis genomes do not have a candidate orthologous counterpart in other vertebrate species. To determine whether these sequences represent genuine amphibian-specific genes or annotation errors, it is necessary to analyze them alongside sequences from other amphibian species. However, due to large genome sizes and an abundance of repeat sequences, there are limited numbers of gene sequences available from amphibian species other than Xenopus. AmphiBase is a new genomic resource covering non-model amphibian species, based on public domain transcriptome data and computational methods developed during the X. laevis genome project. Here, I review the current status of AmphiBase, including amphibian species with available transcriptome data or biological samples, and describe the challenges of building a comprehensive amphibian genomic resource in the absence of genomes. This mini-review will be informative for researchers interested in functional genomic experiments using amphibian model organisms, such as Xenopus and axolotl, and will assist in interpretation of results implicating "orphan genes." Additionally, this study highlights an opportunity for researchers working on non-model amphibian species to collaborate in their future efforts and develop amphibian genomic resources as a community.
Collapse
Affiliation(s)
- Taejoon Kwon
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
60
|
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 2017; 9:161-177. [PMID: 28158585 PMCID: PMC5381603 DOI: 10.1093/gbe/evw264] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
Collapse
Affiliation(s)
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
61
|
Fijarczyk A, Dudek K, Babik W. Selective Landscapes in newt Immune Genes Inferred from Patterns of Nucleotide Variation. Genome Biol Evol 2016; 8:3417-3432. [PMID: 27702815 PMCID: PMC5203778 DOI: 10.1093/gbe/evw236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Host–pathogen interactions may result in either directional selection or in pressure for the maintenance of polymorphism at the molecular level. Hence signatures of both positive and balancing selection are expected in immune genes. Because both overall selective pressure and specific targets may differ between species, large-scale population genomic studies are useful in detecting functionally important immune genes and comparing selective landscapes between taxa. Such studies are of particular interest in amphibians, a group threatened worldwide by emerging infectious diseases. Here, we present an analysis of polymorphism and divergence of 634 immune genes in two lineages of Lissotriton newts: L. montandoni and L. vulgaris graecus. Variation in newt immune genes has been shaped predominantly by widespread purifying selection and strong evolutionary constraint, implying long-term importance of these genes for functioning of the immune system. The two evolutionary lineages differ in the overall strength of purifying selection which can partially be explained by demographic history but may also signal differences in long-term pathogen pressure. The prevalent constraint notwithstanding, 23 putative targets of positive selection and 11 putative targets of balancing selection were identified. The latter were detected by composite tests involving the demographic model and further validated in independent population samples. Putative targets of balancing selection encode proteins which may interact closely with pathogens but include also regulators of immune response. The identified candidates will be useful for testing whether genes affected by balancing selection are more prone to interspecific introgression than other genes in the genome.
Collapse
Affiliation(s)
- Anna Fijarczyk
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Wieslaw Babik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
62
|
Newman CE, Austin CC. Sequence capture and next‐generation sequencing of ultraconserved elements in a large‐genome salamander. Mol Ecol 2016; 25:6162-6174. [DOI: 10.1111/mec.13909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Catherine E. Newman
- Museum of Natural Science Louisiana State University 119 Foster Hall Baton Rouge LA 70803 USA
- Department of Biological Sciences Louisiana State University 202 Life Sciences Building Baton Rouge LA 70803 USA
| | - Christopher C. Austin
- Museum of Natural Science Louisiana State University 119 Foster Hall Baton Rouge LA 70803 USA
- Department of Biological Sciences Louisiana State University 202 Life Sciences Building Baton Rouge LA 70803 USA
| |
Collapse
|
63
|
Mohlhenrich ER, Mueller RL. Genetic drift and mutational hazard in the evolution of salamander genomic gigantism. Evolution 2016; 70:2865-2878. [DOI: 10.1111/evo.13084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/25/2022]
|
64
|
Small RNAs from a Big Genome: The piRNA Pathway and Transposable Elements in the Salamander Species Desmognathus fuscus. J Mol Evol 2016; 83:126-136. [PMID: 27743003 DOI: 10.1007/s00239-016-9759-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/06/2016] [Indexed: 01/26/2023]
Abstract
Most of the largest vertebrate genomes are found in salamanders, a clade of amphibians that includes 686 species. Salamander genomes range in size from 14 to 120 Gb, reflecting the accumulation of large numbers of transposable element (TE) sequences from all three TE classes. Although DNA loss rates are slow in salamanders relative to other vertebrates, high levels of TE insertion are also likely required to explain such high TE loads. Across the Tree of Life, novel TE insertions are suppressed by several pathways involving small RNA molecules. In most known animals, TE activity in the germline is primarily regulated by the Piwi-interacting RNA (piRNA) pathway. In this study, we test the hypothesis that salamanders' unusually high TE loads reflect the loss of the ancestral piRNA-mediated TE-silencing machinery. We characterized the small RNA pool in the female and male adult gonads, testing for the presence of small RNA molecules that bear the characteristics of TE-targeting piRNAs. We also analyzed the amino acid sequences of piRNA pathway proteins from salamanders and other vertebrates, testing whether the overall patterns of sequence divergence are consistent with conserved pathway function across the vertebrate clade. Our results do not support the hypothesis of piRNA pathway loss; instead, they suggest that the piRNA pathway is expressed in salamanders. Given these results, we propose hypotheses to explain how the extraordinary TE loads in salamander genomes could have accumulated, despite the expression of TE-silencing machinery.
Collapse
|
65
|
Pan Y, Wang X, Liu L, Wang H, Luo M. Whole Genome Mapping with Feature Sets from High-Throughput Sequencing Data. PLoS One 2016; 11:e0161583. [PMID: 27611682 PMCID: PMC5017645 DOI: 10.1371/journal.pone.0161583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
A good physical map is essential to guide sequence assembly in de novo whole genome sequencing, especially when sequences are produced by high-throughput sequencing such as next-generation-sequencing (NGS) technology. We here present a novel method, Feature sets-based Genome Mapping (FGM). With FGM, physical map and draft whole genome sequences can be generated, anchored and integrated using the same data set of NGS sequences, independent of restriction digestion. Method model was created and parameters were inspected by simulations using the Arabidopsis genome sequence. In the simulations, when ~4.8X genome BAC library including 4,096 clones was used to sequence the whole genome, ~90% of clones were successfully connected to physical contigs, and 91.58% of genome sequences were mapped and connected to chromosomes. This method was experimentally verified using the existing physical map and genome sequence of rice. Of 4,064 clones covering 115 Mb sequence selected from ~3 tiles of 3 chromosomes of a rice draft physical map, 3,364 clones were reconstructed into physical contigs and 98 Mb sequences were integrated into the 3 chromosomes. The physical map-integrated draft genome sequences can provide permanent frameworks for eventually obtaining high-quality reference sequences by targeted sequencing, gap filling and combining other sequences.
Collapse
Affiliation(s)
- Yonglong Pan
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoming Wang
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Liu
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meizhong Luo
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- * E-mail:
| |
Collapse
|
66
|
Jiang P, Nelson JD, Leng N, Collins M, Swanson S, Dewey CN, Thomson JA, Stewart R. Analysis of embryonic development in the unsequenced axolotl: Waves of transcriptomic upheaval and stability. Dev Biol 2016; 426:143-154. [PMID: 27475628 DOI: 10.1016/j.ydbio.2016.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022]
Abstract
The axolotl (Ambystoma mexicanum) has long been the subject of biological research, primarily owing to its outstanding regenerative capabilities. However, the gene expression programs governing its embryonic development are particularly underexplored, especially when compared to other amphibian model species. Therefore, we performed whole transcriptome polyA+ RNA sequencing experiments on 17 stages of embryonic development. As the axolotl genome is unsequenced and its gene annotation is incomplete, we built de novo transcriptome assemblies for each stage and garnered functional annotation by comparing expressed contigs with known genes in other organisms. In evaluating the number of differentially expressed genes over time, we identify three waves of substantial transcriptome upheaval each followed by a period of relative transcriptome stability. The first wave of upheaval is between the one and two cell stage. We show that the number of differentially expressed genes per unit time is higher between the one and two cell stage than it is across the mid-blastula transition (MBT), the period of zygotic genome activation. We use total RNA sequencing to demonstrate that the vast majority of genes with increasing polyA+ signal between the one and two cell stage result from polyadenylation rather than de novo transcription. The first stable phase begins after the two cell stage and continues until the mid-blastula transition, corresponding with the pre-MBT phase of transcriptional quiescence in amphibian development. Following this is a peak of differential gene expression corresponding with the activation of the zygotic genome and a phase of transcriptomic stability from stages 9-11. We observe a third wave of transcriptomic change between stages 11 and 14, followed by a final stable period. The last two stable phases have not been documented in amphibians previously and correspond to times of major morphogenic change in the axolotl embryo: gastrulation and neurulation. These results yield new insights into global gene expression during early stages of amphibian embryogenesis and will help to further develop the axolotl as a model species for developmental and regenerative biology.
Collapse
Affiliation(s)
- Peng Jiang
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Jeffrey D Nelson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Ning Leng
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Michael Collins
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Scott Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, United States
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States; Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, United States.
| |
Collapse
|
67
|
McCartney-Melstad E, Mount GG, Shaffer HB. Exon capture optimization in amphibians with large genomes. Mol Ecol Resour 2016; 16:1084-94. [DOI: 10.1111/1755-0998.12538] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/13/2016] [Accepted: 05/06/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Evan McCartney-Melstad
- Department of Ecology and Evolutionary Biology; La Kretz Center for California Conservation Science; Institute of the Environment and Sustainability; University of California; Los Angeles CA 90095 USA
| | - Genevieve G. Mount
- Department of Ecology and Evolutionary Biology; La Kretz Center for California Conservation Science; Institute of the Environment and Sustainability; University of California; Los Angeles CA 90095 USA
- Museum of Natural Science; Louisiana State University; Baton Rouge LA 70803 USA
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 USA
| | - H. Bradley Shaffer
- Department of Ecology and Evolutionary Biology; La Kretz Center for California Conservation Science; Institute of the Environment and Sustainability; University of California; Los Angeles CA 90095 USA
| |
Collapse
|
68
|
Keinath MC, Voss SR, Tsonis PA, Smith JJ. A linkage map for the Newt Notophthalmus viridescens: Insights in vertebrate genome and chromosome evolution. Dev Biol 2016; 426:211-218. [PMID: 27265323 DOI: 10.1016/j.ydbio.2016.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Genetic linkage maps are fundamental resources that enable diverse genetic and genomic approaches, including quantitative trait locus (QTL) analyses and comparative studies of genome evolution. It is straightforward to build linkage maps for species that are amenable to laboratory culture and genetic crossing designs, and that have relatively small genomes and few chromosomes. It is more difficult to generate linkage maps for species that do not meet these criteria. Here, we introduce a method to rapidly build linkage maps for salamanders, which are known for their enormous genome sizes. As proof of principle, we developed a linkage map with thousands of molecular markers (N=2349) for the Eastern newt (Notophthalmus viridescens). The map contains 12 linkage groups (152.3-934.7cM), only one more than the number of chromosome pairs. Importantly, this map was generated using RNA isolated from a single wild caught female and her 28 offspring. We used the map to reveal chromosome-scale conservation of synteny among N. viridescens, A. mexicanum (Urodela), and chicken (Amniota), and to identify large conserved segments between N. viridescens and Xenopus tropicalis (Anura). We also show that met1, a major effect QTL that regulates the expression of alternate metamorphic and paedomorphic modes of development in Ambystoma, associates with a chromosomal fusion that is not found in the N. viridescens map. Our results shed new light on the ancestral amphibian karyotype and reveal specific fusion and translocation events that shaped the genomes of three amphibian model taxa. The ability to rapidly build linkage maps for large salamander genomes will enable genetic and genomic analyses within this important vertebrate group, and more generally, empower comparative studies of vertebrate biology and evolution.
Collapse
Affiliation(s)
- Melissa C Keinath
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - S Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain and Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | | | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
69
|
Tomaszkiewicz M, Rangavittal S, Cechova M, Campos Sanchez R, Fescemyer HW, Harris R, Ye D, O'Brien PCM, Chikhi R, Ryder OA, Ferguson-Smith MA, Medvedev P, Makova KD. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y. Genome Res 2016; 26:530-40. [PMID: 26934921 PMCID: PMC4817776 DOI: 10.1101/gr.199448.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/21/2016] [Indexed: 01/25/2023]
Abstract
The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.
Collapse
Affiliation(s)
- Marta Tomaszkiewicz
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Samarth Rangavittal
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Monika Cechova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rebeca Campos Sanchez
- Genetics Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Howard W Fescemyer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Robert Harris
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Danling Ye
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Patricia C M O'Brien
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Rayan Chikhi
- University of Lille 1/CNRS 59655 Villeneuve d'Ascq, France; Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Sciences Institute of the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, California 92027, USA
| | | | - Paul Medvedev
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Sciences Institute of the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|