51
|
Avgousti DC, Herrmann C, Kulej K, Pancholi NJ, Sekulic N, Petrescu J, Molden RC, Blumenthal D, Paris AJ, Reyes ED, Ostapchuk P, Hearing P, Seeholzer SH, Worthen GS, Black BE, Garcia BA, Weitzman MD. A core viral protein binds host nucleosomes to sequester immune danger signals. Nature 2016; 535:173-7. [PMID: 27362237 PMCID: PMC4950998 DOI: 10.1038/nature18317] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 01/06/2023]
Abstract
Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.
Collapse
Affiliation(s)
- Daphne C. Avgousti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Christin Herrmann
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Katarzyna Kulej
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Neha J. Pancholi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Nikolina Sekulic
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Currently: Biotechnology Centre of Oslo and Department of Chemistry, University of Oslo, Oslo, Norway
| | - Joana Petrescu
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
- Villanova University, Villanova, PA USA
| | - Rosalynn C. Molden
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Daniel Blumenthal
- Division of Cell Pathology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Andrew J. Paris
- Division of Pulmonary, Allergy, and Critical Care Medicine, Hospital of the University of Pennsylvania, and the Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emigdio D. Reyes
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York USA
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York USA
| | - Steven H. Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - G. Scott Worthen
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Matthew D. Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA USA
| |
Collapse
|
52
|
Fang H, Wei S, Lee TH, Hayes JJ. Chromatin structure-dependent conformations of the H1 CTD. Nucleic Acids Res 2016; 44:9131-9141. [PMID: 27365050 PMCID: PMC5100576 DOI: 10.1093/nar/gkw586] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Linker histones are an integral component of chromatin but how these proteins promote assembly of chromatin fibers and higher order structures and regulate gene expression remains an open question. Using Förster resonance energy transfer (FRET) approaches we find that association of a linker histone with oligonucleosomal arrays induces condensation of the intrinsically disordered H1 CTD in a manner consistent with adoption of a defined fold or ensemble of folds in the bound state. However, H1 CTD structure when bound to nucleosomes in arrays is distinct from that induced upon H1 association with mononucleosomes or bare double stranded DNA. Moreover, the H1 CTD becomes more condensed upon condensation of extended nucleosome arrays to the contacting zig-zag form found in moderate salts, but does not detectably change during folding to fully compacted chromatin fibers. We provide evidence that linker DNA conformation is a key determinant of H1 CTD structure and that constraints imposed by neighboring nucleosomes cause linker DNAs to adopt distinct trajectories in oligonucleosomes compared to H1-bound mononucleosomes. Finally, inter-molecular FRET between H1s within fully condensed nucleosome arrays suggests a regular spatial arrangement for the H1 CTD within the 30 nm chromatin fiber.
Collapse
Affiliation(s)
- He Fang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sijie Wei
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
53
|
Muthurajan U, Mattiroli F, Bergeron S, Zhou K, Gu Y, Chakravarthy S, Dyer P, Irving T, Luger K. In Vitro Chromatin Assembly: Strategies and Quality Control. Methods Enzymol 2016; 573:3-41. [PMID: 27372747 DOI: 10.1016/bs.mie.2016.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin accessibility is modulated by structural transitions that provide timely access to the genetic and epigenetic information during many essential nuclear processes. These transitions are orchestrated by regulatory proteins that coordinate intricate structural modifications and signaling pathways. In vitro reconstituted chromatin samples from defined components are instrumental in defining the mechanistic details of such processes. The bottleneck to appropriate in vitro analysis is the production of high quality, and quality-controlled, chromatin substrates. In this chapter, we describe methods for in vitro chromatin reconstitution and quality control. We highlight the strengths and weaknesses of various approaches and emphasize quality control steps that ensure reconstitution of a bona fide homogenous chromatin preparation. This is essential for optimal reproducibility and reliability of ensuing experiments using chromatin substrates.
Collapse
Affiliation(s)
- U Muthurajan
- University of Colorado at Boulder, Boulder, CO, United States
| | - F Mattiroli
- University of Colorado at Boulder, Boulder, CO, United States
| | - S Bergeron
- University of Colorado at Boulder, Boulder, CO, United States
| | - K Zhou
- University of Colorado at Boulder, Boulder, CO, United States; Colorado State University, Fort Collins, CO, United States
| | - Y Gu
- University of Colorado at Boulder, Boulder, CO, United States; Colorado State University, Fort Collins, CO, United States
| | - S Chakravarthy
- Illinois Institute of Technology, Chicago, IL, United States
| | - P Dyer
- University of Colorado at Boulder, Boulder, CO, United States
| | - T Irving
- Illinois Institute of Technology, Chicago, IL, United States
| | - K Luger
- University of Colorado at Boulder, Boulder, CO, United States; Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, United States; Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|