51
|
Roy B, Zhao J, Yang C, Luo W, Xiong T, Li Y, Fang X, Gao G, Singh CO, Madsen L, Zhou Y, Kristiansen K. CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities. Front Genet 2018; 9:240. [PMID: 30026755 PMCID: PMC6042012 DOI: 10.3389/fgene.2018.00240] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and Cascade 9 (also known as Cas9, CRISPR associated protein 9) confer protection against invading viruses or plasmids. The CRISPR/Cascade 9 system constitutes one of the most powerful genome technologies available to researchers today. So far, this technology has enabled efficient genome editing and modification in several model organisms and has successfully been used in biomedicine and biomedical engineering. However, challenges for efficient and safe genetic manipulation in several organisms persist. Here, we review functional approaches and future challenges associated with the use of the CRISPR/Cascade 9 genome editing system and discuss opportunities, ethical issues and future directions within this field.
Collapse
Affiliation(s)
| | - Jing Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Chao Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Wen Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Teng Xiong
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yong Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Guanjun Gao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chabungbam O Singh
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lise Madsen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Marine Research, Bergen, Norway
| | - Yong Zhou
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Karsten Kristiansen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
52
|
Sato M, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S, Gurumurthy CB. In vivo genome editing targeted towards the female reproductive system. Arch Pharm Res 2018; 41:898-910. [PMID: 29974342 DOI: 10.1007/s12272-018-1053-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022]
Abstract
The discovery of sequence specific nucleases such as ZFNs, TALENs, and CRISPR/Cas9 has revolutionized genome editing. The CRISPR/Cas9 system has particularly emerged as a highly simple and efficient approach towards generating genome-edited animal models of most of the experimental species. The limitation of these novel genome editing tools is that, till date, they depend on traditional pronuclear injection (PI)-based transgenic technologies developed over the last three decades. PI requires expensive micromanipulator systems and the equipment operators must possess a high level of skill. Therefore, since the establishment of PI-based transgenesis, various research groups worldwide have attempted to develop alternative and simple gene delivery methods. However, owing to the failure of chromosomal integration of the transgene, none of these methods gained the level of confidence as that by the PI method in order to be adapted as a routine approach. The recently developed genome editing systems do not require complicated techniques. Therefore, presently, attention is being focused on non-PI-based gene delivery into germ cells for simple and rapid production of genetically engineered animals. For example, a few reports during the previous 1-2 years demonstrated the use of electroporation (EP) in isolated zygotes that helped to overcome the absolute dependency on PI techniques. Recently, another breakthrough technology called genome editing via oviductal nucleic acids delivery (GONAD) that directly delivers nucleic acids into zygotes within the oviducts in situ was developed. This technology completely relieves the bottlenecks of animal transgenesis as it does not require PI and ex vivo handling of embryos. This review discusses in detail the in vivo gene delivery methods targeted towards female reproductive tissues as these methods that have been developed over the past 2-3 decades can now be re-evaluated for their suitability to deliver the CRISPR/Cas9 components to produce transgenic animals. This review also provides an overview of the latest advances in CRISPR-enabled delivery technologies that have caused paradigm shifts in animal transgenesis methodologies.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, 890-8544, Japan.
| | - Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa, 259-1193, Japan.,Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, 259-1193, Japan.,The Institute of Medical Sciences, Tokai University, Kanagawa, 259-1193, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama, 359-8513, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan.,Basic Research Division for Next-Generation Disease Models and Fundamental Technology, Research Center for Next Generation Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Satoshi Watanabe
- Animal Genome Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Developmental Neuroscience, Munro Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
53
|
Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA, Wang CH, Huang CW, Kang YN, Chang HY, Li LL, Chang KP, Shih YH, Lin CH, Kwan SY, Tsai JW. Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 2018; 9:2498. [PMID: 29950674 PMCID: PMC6021418 DOI: 10.1038/s41467-018-04880-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in genes involved in the production, migration, or differentiation of cortical neurons often lead to malformations of cortical development (MCDs). However, many genetic mutations involved in MCD pathogenesis remain unidentified. Here we developed a genetic screening paradigm based on transposon-mediated somatic mutagenesis by in utero electroporation and the inability of mutant neuronal precursors to migrate to the cortex and identified 33 candidate MCD genes. Consistent with the screen, several genes have already been implicated in neural development and disorders. Functional disruption of the candidate genes by RNAi or CRISPR/Cas9 causes altered neuronal distributions that resemble human cortical dysplasia. To verify potential clinical relevance of these candidate genes, we analyzed somatic mutations in brain tissue from patients with focal cortical dysplasia and found that mutations are enriched in these candidate genes. These results demonstrate that this approach is able to identify potential mouse genes involved in cortical development and MCD pathogenesis. Cortical malformations have a variety of causes. Here the authors use transposon mutagenesis to insert mutations into neural stem cells in the developing mouse cortex to screen for new candidate genes for cortical malformation, and validate some targets in human brain tissue.
Collapse
Affiliation(s)
- I-Ling Lu
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chien Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Hung Chen
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jia-Ping Pan
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan.,Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 112, Taiwan
| | - Jia-Shing Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-An Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chun-Hung Wang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-Ning Kang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Yun Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lei-Li Li
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Kai-Ping Chang
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Yang-Hsin Shih
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Chi-Hung Lin
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 112, Taiwan. .,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
54
|
Yamashita W, Takahashi M, Kikkawa T, Gotoh H, Osumi N, Ono K, Nomura T. Conserved and divergent functions of Pax6 underlie species-specific neurogenic patterns in the developing amniote brain. Development 2018; 145:145/8/dev159764. [PMID: 29661783 PMCID: PMC5964652 DOI: 10.1242/dev.159764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
The evolution of unique organ structures is associated with changes in conserved developmental programs. However, characterizing the functional conservation and variation of homologous transcription factors (TFs) that dictate species-specific cellular dynamics has remained elusive. Here, we dissect shared and divergent functions of Pax6 during amniote brain development. Comparative functional analyses revealed that the neurogenic function of Pax6 is highly conserved in the developing mouse and chick pallium, whereas stage-specific binary functions of Pax6 in neurogenesis are unique to mouse neuronal progenitors, consistent with Pax6-dependent temporal regulation of Notch signaling. Furthermore, we identified that Pax6-dependent enhancer activity of Dbx1 is extensively conserved between mammals and chick, although Dbx1 expression in the developing pallium is highly divergent in these species. Our results suggest that spatiotemporal changes in Pax6-dependent regulatory programs contributed to species-specific neurogenic patterns in mammalian and avian lineages, which underlie the morphological divergence of the amniote pallial architectures. Highlighted Article: Pax6 promotes neuronal differentiation in the developing chick and mouse telencephalon via Notch inhibition, whereas its stage-specific function in RGC maintenance in the VZ is unique to mammalian neocortical progenitors.
Collapse
Affiliation(s)
- Wataru Yamashita
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| | - Masanori Takahashi
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| |
Collapse
|
55
|
Abstract
Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site-specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research.
Collapse
Affiliation(s)
- Xun Ma
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Avery Sum-Yu Wong
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Hei-Yin Tam
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Samuel Yung-Kin Tsui
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Dittman Lai-Shun Chung
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Bo Feng
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Guangdong 510530, China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
56
|
Sarin S, Zuniga-Sanchez E, Kurmangaliyev YZ, Cousins H, Patel M, Hernandez J, Zhang KX, Samuel MA, Morey M, Sanes JR, Zipursky SL. Role for Wnt Signaling in Retinal Neuropil Development: Analysis via RNA-Seq and In Vivo Somatic CRISPR Mutagenesis. Neuron 2018; 98:109-126.e8. [PMID: 29576390 DOI: 10.1016/j.neuron.2018.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 12/22/2022]
Abstract
Screens for genes that orchestrate neural circuit formation in mammals have been hindered by practical constraints of germline mutagenesis. To overcome these limitations, we combined RNA-seq with somatic CRISPR mutagenesis to study synapse development in the mouse retina. Here synapses occur between cellular layers, forming two multilayered neuropils. The outer neuropil, the outer plexiform layer (OPL), contains synapses made by rod and cone photoreceptor axons on rod and cone bipolar dendrites, respectively. We used RNA-seq to identify selectively expressed genes encoding cell surface and secreted proteins and CRISPR-Cas9 electroporation with cell-specific promoters to assess their roles in OPL development. Among the genes identified in this way are Wnt5a and Wnt5b. They are produced by rod bipolars and activate a non-canonical signaling pathway in rods to regulate early OPL patterning. The approach we use here can be applied to other parts of the brain.
Collapse
Affiliation(s)
- Sumeet Sarin
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Elizabeth Zuniga-Sanchez
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Henry Cousins
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Mili Patel
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Jeanette Hernandez
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelvin X Zhang
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melanie A Samuel
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Marta Morey
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA.
| | - S Lawrence Zipursky
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
57
|
Feng W, Liu HK, Kawauchi D. CRISPR-engineered genome editing for the next generation neurological disease modeling. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:459-467. [PMID: 28536069 DOI: 10.1016/j.pnpbp.2017.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/25/2017] [Accepted: 05/19/2017] [Indexed: 12/25/2022]
Abstract
Neurological disorders often occur because of failure of proper brain development and/or appropriate maintenance of neuronal circuits. In order to understand roles of causative factors (e.g. genes, cell types) in disease development, generation of solid animal models has been one of straight-forward approaches. Recent next generation sequencing studies on human patient-derived clinical samples have identified various types of recurrent mutations in individual neurological diseases. While these discoveries have prompted us to evaluate impact of mutated genes on these neurological diseases, a feasible but flexible genome editing tool had remained to be developed. An advance of genome editing technology using the clustered regularly interspaced short palindromic repeats (CRISPR) with the CRISPR-associated protein (Cas) offers us a tremendous potential to create a variety of mutations in the cell, leading to "next generation" disease models carrying disease-associated mutations. We will here review recent progress of CRISPR-based brain disease modeling studies and discuss future requirement to tackle current difficulties in usage of these technologies.
Collapse
Affiliation(s)
- Weijun Feng
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Daisuke Kawauchi
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
58
|
Wang Y, Ji T, Nelson AD, Glanowska K, Murphy GG, Jenkins PM, Parent JM. Critical roles of αII spectrin in brain development and epileptic encephalopathy. J Clin Invest 2018; 128:760-773. [PMID: 29337302 DOI: 10.1172/jci95743] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
The nonerythrocytic α-spectrin-1 (SPTAN1) gene encodes the cytoskeletal protein αII spectrin. Mutations in SPTAN1 cause early infantile epileptic encephalopathy type 5 (EIEE5); however, the role of αII spectrin in neurodevelopment and EIEE5 pathogenesis is unknown. Prior work suggests that αII spectrin is absent in the axon initial segment (AIS) and contributes to a diffusion barrier in the distal axon. Here, we have shown that αII spectrin is expressed ubiquitously in rodent and human somatodendritic and axonal domains. CRISPR-mediated deletion of Sptan1 in embryonic rat forebrain by in utero electroporation caused altered dendritic and axonal development, loss of the AIS, and decreased inhibitory innervation. Overexpression of human EIEE5 mutant SPTAN1 in embryonic rat forebrain and mouse hippocampal neurons led to similar developmental defects that were also observed in EIEE5 patient-derived neurons. Additionally, patient-derived neurons displayed aggregation of spectrin complexes. Taken together, these findings implicate αII spectrin in critical aspects of dendritic and axonal development and synaptogenesis, and support a dominant-negative mechanism of SPTAN1 mutations in EIEE5.
Collapse
Affiliation(s)
| | | | | | | | - Geoffrey G Murphy
- Molecular and Behavioral Neuroscience Institute.,Department of Molecular and Integrative Physiology, and
| | - Paul M Jenkins
- Department of Pharmacology.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jack M Parent
- Department of Neurology.,Ann Arbor VA Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
59
|
Affiliation(s)
- Huntington Potter
- Rocky Mountain Alzheimer's Disease Center, Anschutz Medical Campus, University of Colorado Aurora Colorado
| | - Richard Heller
- Medical Diagnostics and Translational Sciences, Old Dominion University Norfolk Virginia
- Frank Reidy Research Center for Bioelectrics, Old Dominion University Norfolk Virginia
| |
Collapse
|
60
|
Shinmyo Y, Terashita Y, Dinh Duong TA, Horiike T, Kawasumi M, Hosomichi K, Tajima A, Kawasaki H. Folding of the Cerebral Cortex Requires Cdk5 in Upper-Layer Neurons in Gyrencephalic Mammals. Cell Rep 2017; 20:2131-2143. [DOI: 10.1016/j.celrep.2017.08.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
|
61
|
Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 2017; 8:15464. [PMID: 28561021 PMCID: PMC5460021 DOI: 10.1038/ncomms15464] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
Although CRISPR/Cas9 genome editing has provided numerous opportunities to interrogate the functional significance of any given genomic site, there is a paucity of data on the extent of molecular scars inflicted on the mouse genome. Here we interrogate the molecular consequences of CRISPR/Cas9-mediated deletions at 17 sites in four loci of the mouse genome. We sequence targeted sites in 632 founder mice and analyse 54 established lines. While the median deletion size using single sgRNAs is 9 bp, we also obtain large deletions of up to 600 bp. Furthermore, we show unreported asymmetric deletions and large insertions of middle repetitive sequences. Simultaneous targeting of distant loci results in the removal of the intervening sequences. Reliable deletion of juxtaposed sites is only achieved through two-step targeting. Our findings also demonstrate that an extended analysis of F1 genotypes is required to obtain conclusive information on the exact molecular consequences of targeting events.
Collapse
Affiliation(s)
- Ha Youn Shin
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Cell and Developmental Biology & Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | - Kyung Hyun Yoo
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Xianke Zeng
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyler Kuhns
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chul Min Yang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Teresa Mohr
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
62
|
Powell SK, Gregory J, Akbarian S, Brennand KJ. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Mol Cell Neurosci 2017; 82:157-166. [PMID: 28549865 DOI: 10.1016/j.mcn.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
CRISPR/Cas9 technology has transformed our ability to manipulate the genome and epigenome, from efficient genomic editing to targeted localization of effectors to specific loci. Through the manipulation of DNA- and histone-modifying enzyme activities, activation or repression of gene expression, and targeting of transcriptional regulators, the role of gene-regulatory and epigenetic pathways in basic biology and disease processes can be directly queried. Here, we discuss emerging CRISPR-based methodologies, with specific consideration of neurobiological applications of human induced pluripotent stem cell (hiPSC)-based models.
Collapse
Affiliation(s)
- S K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - J Gregory
- Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - S Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - K J Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
63
|
Genetic and Molecular Approaches to Study Neuronal Migration in the Developing Cerebral Cortex. Brain Sci 2017; 7:brainsci7050053. [PMID: 28475113 PMCID: PMC5447935 DOI: 10.3390/brainsci7050053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/17/2022] Open
Abstract
The migration of neuronal cells in the developing cerebral cortex is essential for proper development of the brain and brain networks. Disturbances in this process, due to genetic abnormalities or exogenous factors, leads to aberrant brain formation, brain network formation, and brain function. In the last decade, there has been extensive research in the field of neuronal migration. In this review, we describe different methods and approaches to assess and study neuronal migration in the developing cerebral cortex. First, we discuss several genetic methods, techniques and genetic models that have been used to study neuronal migration in the developing cortex. Second, we describe several molecular approaches to study aberrant neuronal migration in the cortex which can be used to elucidate the underlying mechanisms of neuronal migration. Finally, we describe model systems to investigate and assess the potential toxicity effect of prenatal exposure to environmental chemicals on proper brain formation and neuronal migration.
Collapse
|
64
|
CRISPR/Cas9-mediated correction of human genetic disease. SCIENCE CHINA-LIFE SCIENCES 2017; 60:447-457. [PMID: 28534256 DOI: 10.1007/s11427-017-9032-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/05/2017] [Indexed: 12/21/2022]
|
65
|
Shinmyo Y, Kawasaki H. CRISPR/Cas9-Mediated Gene Knockout in the Mouse Brain Using In Utero Electroporation. CURRENT PROTOCOLS IN NEUROSCIENCE 2017; 79:3.32.1-3.32.11. [PMID: 28398645 DOI: 10.1002/cpns.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This unit describes a highly efficient and rapid procedure for brain-specific disruption of genes in the developing mouse brain using pX330 plasmids expressing humanized Cas9 and single-guide RNAs (sgRNAs) against target genes. The pX330 plasmids are delivered into the rodent brain using in utero electroporation. Focusing on the Satb2 gene, which encodes an AT-rich DNA-binding transcription factor, we found that the introduction of pX330-Satb2 induced insertion/deletion (indel) mutations near the predicted cleavage site in the Satb2 gene, resulting in a dramatic reduction of Satb2 expression in post-mitotic neurons. Moreover, introduction of pX330-Satb2 induced abnormalities in axonal projection patterns, which was consistent with the phenotypes observed in Satb2 mutant mice. Thus, the procedure described here, combining the CRISPR/Cas9 system and in utero electroporation, is useful for knocking out genes of interest in the living rodent brain. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
- Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
66
|
Machitani M, Sakurai F, Wakabayashi K, Nakatani K, Takayama K, Tachibana M, Mizuguchi H. Inhibition of CRISPR/Cas9-Mediated Genome Engineering by a Type I Interferon-Induced Reduction in Guide RNA Expression. Biol Pharm Bull 2017; 40:272-277. [PMID: 28250269 DOI: 10.1248/bpb.b16-00700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome engineering technology is a powerful tool for generation of cells and animals with engineered mutations in their genomes. In order to introduce the CRISPR/Cas9 system into target cells, nonviral and viral vectors are often used; however, such vectors trigger innate immune responses associated with production of type I interferons (IFNs). We have recently demonstrated that type I IFNs inhibit short-hairpin RNA-mediated gene silencing, which led us to hypothesize that type I IFNs may also inhibit CRISPR/Cas9-mediated genome mutagenesis. Here we investigated this hypothesis. A single-strand annealing assay using a reporter plasmid demonstrated that CRISPR/Cas9-mediated cleavage efficiencies of the target double-stranded DNA were significantly reduced by IFNα. A mismatch recognition nuclease-dependent genotyping assay also demonstrated that IFNα reduced insertion or deletion (indel) mutation levels by approximately half. Treatment with IFNα did not alter Cas9 protein expression levels, whereas the copy numbers of guide RNA (gRNA) were significantly reduced by IFNα stimulation. These results indicate that type I IFNs significantly reduce gRNA expression levels following introduction of the CRISPR/Cas9 system in the cells, leading to a reduction in the efficiencies of CRISPR/Cas9-mediated genome mutagenesis. Our findings provide important clues for the achievement of efficient genome engineering using the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | | | | | | | | | |
Collapse
|
67
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [PMID: 27865852 DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
68
|
Uemura T, Mori T, Kurihara T, Kawase S, Koike R, Satoga M, Cao X, Li X, Yanagawa T, Sakurai T, Shindo T, Tabuchi K. Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques. Sci Rep 2016; 6:35861. [PMID: 27782168 PMCID: PMC5080626 DOI: 10.1038/srep35861] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/05/2016] [Indexed: 12/23/2022] Open
Abstract
Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous β-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-β-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons.
Collapse
Affiliation(s)
- Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan
- CREST, JST, Saitama 332-0012, Japan
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Taiga Kurihara
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Shiori Kawase
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
- CREST, JST, Saitama 332-0012, Japan
| | - Rie Koike
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
- CREST, JST, Saitama 332-0012, Japan
| | - Michiru Satoga
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Xueshan Cao
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Xue Li
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan
- PRESTO, JST, Saitama 332-0012, Japan
| |
Collapse
|
69
|
Luo W, Mizuno H, Iwata R, Nakazawa S, Yasuda K, Itohara S, Iwasato T. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo. Sci Rep 2016; 6:35747. [PMID: 27775045 PMCID: PMC5075795 DOI: 10.1038/srep35747] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
Here we describe “Supernova” series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain.
Collapse
Affiliation(s)
- Wenshu Luo
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Hidenobu Mizuno
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Ryohei Iwata
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Shingo Nakazawa
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Kosuke Yasuda
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| |
Collapse
|
70
|
Arras SDM, Chua SMH, Wizrah MSI, Faint JA, Yap AS, Fraser JA. Targeted Genome Editing via CRISPR in the Pathogen Cryptococcus neoformans. PLoS One 2016; 11:e0164322. [PMID: 27711143 PMCID: PMC5053423 DOI: 10.1371/journal.pone.0164322] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Low rates of homologous integration have hindered molecular genetic studies in Cryptococcus neoformans over the past 20 years, and new tools that facilitate genome manipulation in this important pathogen are greatly needed. To this end, we have investigated the use of a Class 2 CRISPR system in C. neoformans (formerly C. neoformans var. grubii). We first expressed a derivative of the Streptococcus pyogenes Cas9 nuclease in C. neoformans, and showed that it has no effect on growth, production of virulence factors in vitro, or virulence in a murine inhalation model. In proof of principle experiments, we tested the CAS9 construct in combination with multiple self-cleaving guide RNAs targeting the well-characterized phosphoribosylaminoamidazole carboxylase-encoding ADE2 gene. Utilizing combinations of transient and stable expression of our constructs, we revealed that functionality of our CRISPR constructs in C. neoformans is dependent upon the CAS9 construct being stably integrated into the genome, whilst transient expression of the guide RNA is sufficient to enhance rates of homologous recombination in the CAS9 genetic background. Given that the presence of the CRISPR nuclease does not influence virulence in a murine inhalation model, we have successfully demonstrated that this system is compatible with studies of C. neoformans pathogenesis and represents a powerful tool that can be exploited by researchers in the field.
Collapse
Affiliation(s)
- Samantha D. M. Arras
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Sheena M. H. Chua
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Maha S. I. Wizrah
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Joshua A. Faint
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Amy S. Yap
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
71
|
Mao XY, Dai JX, Zhou HH, Liu ZQ, Jin WL. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future. Oncotarget 2016; 7:33461-71. [PMID: 26993776 PMCID: PMC5078110 DOI: 10.18632/oncotarget.8075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/29/2016] [Indexed: 12/26/2022] Open
Abstract
Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Jin-Xiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
72
|
Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered 2016; 7:166-74. [PMID: 27340770 PMCID: PMC4927198 DOI: 10.1080/21655979.2016.1189039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
CRISPR (Clustered Regularly-Interspaced Short Palindromic Repeats)-Cas9 (CRISPR associated protein 9) has rapidly become the most promising genome editing tool with great potential to revolutionize medicine. Through guidance of a 20 nucleotide RNA (gRNA), CRISPR-Cas9 finds and cuts target protospacer DNA precisely 3 base pairs upstream of a PAM (Protospacer Adjacent Motif). The broken DNA ends are repaired by either NHEJ (Non-Homologous End Joining) resulting in small indels, or by HDR (Homology Directed Repair) for precise gene or nucleotide replacement. Theoretically, CRISPR-Cas9 could be used to modify any genomic sequences, thereby providing a simple, easy, and cost effective means of genome wide gene editing. However, the off-target activity of CRISPR-Cas9 that cuts DNA sites with imperfect matches with gRNA have been of significant concern because clinical applications require 100% accuracy. Additionally, CRISPR-Cas9 has unpredictable efficiency among different DNA target sites and the PAM requirements greatly restrict its genome editing frequency. A large number of efforts have been made to address these impeding issues, but much more is needed to fully realize the medical potential of CRISPR-Cas9. In this article, we summarize the existing problems and current advances of the CRISPR-Cas9 technology and provide perspectives for the ultimate perfection of Cas9-mediated genome editing.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorni Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Allison Genis
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|