51
|
Oleszycka E, McCluskey S, Sharp FA, Muñoz-Wolf N, Hams E, Gorman AL, Fallon PG, Lavelle EC. The vaccine adjuvant alum promotes IL-10 production that suppresses Th1 responses. Eur J Immunol 2018; 48:705-715. [PMID: 29349774 DOI: 10.1002/eji.201747150] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/17/2017] [Accepted: 01/11/2018] [Indexed: 02/01/2023]
Abstract
The effectiveness of many vaccines licensed for clinical use relates to the induction of neutralising antibodies, facilitated by the inclusion of vaccine adjuvants, particularly alum. However, the ability of alum to preferentially promote humoral rather than cellular, particularly Th1-type responses, is not well understood. We demonstrate that alum activates immunosuppressive mechanisms following vaccination, which limit its capacity to induce Th1 responses. One of the key cytokines limiting excessive immune responses is IL-10. Injection of alum primed draining lymph node cells for enhanced IL-10 secretion ex vivo. Moreover, at the site of injection, macrophages and dendritic cells were key sources of IL-10 expression. Alum strongly enhanced the transcription and secretion of IL-10 by macrophages and dendritic cells. The absence of IL-10 signalling did not compromise alum-induced cell infiltration into the site of injection, but resulted in enhanced antigen-specific Th1 responses after vaccination. In contrast to its decisive regulatory role in regulating Th1 responses, there was no significant change in antigen-specific IgG1 antibody production following vaccination with alum in IL-10-deficient mice. Overall, these findings indicate that injection of alum promotes IL-10, which can block Th1 responses and may explain the poor efficacy of alum as an adjuvant for inducing protective Th1 immunity.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sean McCluskey
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fiona A Sharp
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife L Gorman
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
52
|
Li Q, Han SM, Song WJ, Park SC, Ryu MO, Youn HY. Anti-inflammatory Effects of Oct4/Sox2-overexpressing Human Adipose Tissue-derived Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2018; 31:349-356. [PMID: 28438862 DOI: 10.21873/invivo.11066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM The transcription factors Oct4 and Sox2 enhance the proliferation and pluripotency of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs); however, the anti-inflammatory effects of Oct4- and Sox2-overexpressing hAT-MSCs (Oct4/Sox2-hAT-MSCs) are unclear. Here, we evaluated the anti-inflammatory effects of Oct4/Sox2-hAT-MSCs in vitro and in vivo. MATERIALS AND METHODS Supernatants from green-fluorescent protein (GFP)- and Oct4/Sox2-hAT-MSCs were used to treat lipopolysaccharide (LPS)-stimulated RAW264.7 cells and inflammatory cytokine expression was determined. In LPS-induced mice, GFP- and Oct4/Sox2-hAT-MSCs were injected intraperitoneally and survival rates, as well as sickness scores of mice, were monitored. RESULTS Decreased expression of pro-inflammatory cytokines was observed in Oct4/Sox2-hAT-MSC supernatant-exposed RAW264.7 cells compared to that in GFP-hAT-MSC supernatant-exposed RAW264.7 cells. The sickness score was reduced to 34.9% and the survival rate was increased by 11.1% in Oct4/Sox2-hAT-MSC-injected mice compared to that in GFP-hAT-MSC-injected mice. CONCLUSION Our findings provide important insights into the development of therapies utilizing Oct4/Sox2-hAT-MSCs in inflammatory diseases.
Collapse
Affiliation(s)
- Qiang Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sei-Myoung Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang-Chul Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min-Ok Ryu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
53
|
Network pharmacology exploration reveals endothelial inflammation as a common mechanism for stroke and coronary artery disease treatment of Danhong injection. Sci Rep 2017; 7:15427. [PMID: 29133791 PMCID: PMC5684234 DOI: 10.1038/s41598-017-14692-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022] Open
Abstract
Although Danhong injection (DHI) is the most widely prescribed Chinese medicine for both stroke and coronary artery disease (CAD), its underlying common molecular mechanisms remain unclear. An integrated network pharmacology and experimental verification approach was used to decipher common pharmacological mechanisms of DHI on stroke and CAD treatment. A compound-target-disease & function-pathway network was constructed and analyzed, indicating that 37 ingredients derived from DH (Salvia miltiorrhiza Bge., Flos Carthami tinctorii and DHI) modulated 68 common targets shared by stroke and CAD. In-depth network analysis results of the top diseases, functions, pathways and upstream regulators implied that a common underlying mechanism linking DHI’s role in stroke and CAD treatment was inflammatory response in the process of atherosclerosis. Experimentally, DHI exerted comprehensive anti-inflammatory effects on LPS, ox-LDL or cholesterol crystal-induced NF-κB, c-jun and p38 activation, as well as IL-1β, TNF-α, and IL-10 secretion in vascular endothelial cells. Ten of 14 predicted ingredients were verified to have significant anti-inflammatory activities on LPS-induced endothelial inflammation. DHI exerts pharmacological efficacies on both stroke and CAD through multi-ingredient, multi-target, multi-function and multi-pathway mode. Anti-endothelial inflammation therapy serves as a common underlying mechanism. This study provides a new understanding of DHI in clinical application on cardiovascular and cerebrovascular diseases.
Collapse
|
54
|
Yuan YP, Ma ZG, Zhang X, Xu SC, Zeng XF, Yang Z, Deng W, Tang QZ. CTRP3 protected against doxorubicin-induced cardiac dysfunction, inflammation and cell death via activation of Sirt1. J Mol Cell Cardiol 2017; 114:38-47. [PMID: 29061338 DOI: 10.1016/j.yjmcc.2017.10.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammation and myocytes apoptosis play critical roles in the development of doxorubicin (DOX)-induced cardiotoxicity. Our previous study found that C1q/tumour necrosis factor-related protein-3 (CTRP3) could inhibit cardiac inflammation and apoptosis of myocytes but its role in DOX-induced heart injury remains largely unknown. Our study aimed to investigate whether CTRP3 protected against DOX-induced heart injury and the underlying mechanism. METHODS We overexpressed CTRP3 in the hearts using an adeno-associated virus system. The mice were subjected to a single intraperitoneal injection of DOX (15mg/kg) to induce short-term model for cardiomyopathy. The morphological examination and biochemical analysis were used to evaluate the effects of CTRP3. H9C2 cells were used to verify the protective role of CTRP3 in vitro. RESULTS Myocardial CTRP3 protein levels were reduced in DOX-treated mice. Cardiac specific-overexpression of CTRP3 preserved heart dysfunction, and attenuated cardiac inflammation and cell loss induced by DOX in vivo and in vitro. CTRP3 could activate silent information regulator 1 (Sirt1) in vivo and in vitro. Moreover, specific inhibitor of Sirt1 and the silence of Sirt1 could abolish the protective effects of CTRP3 against DOX-induced inflammation and apoptosis. CONCLUSION CTRP3 protected against DOX-induced heart injury via activation of Sirt1. CTRP3 has therapeutic potential for the treatment of DOX cardiotoxicity.
Collapse
Affiliation(s)
- Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xiao-Feng Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
55
|
Apigenin Attenuates Adriamycin-Induced Cardiomyocyte Apoptosis via the PI3K/AKT/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2590676. [PMID: 28684964 PMCID: PMC5480054 DOI: 10.1155/2017/2590676] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/10/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
Abstract
Treatment with Adriamycin (ADR) is one of the major causes of chemotherapy-induced cardiotoxicity and therefore is the principal limiting factor in the effectiveness of chemotherapy for cancer patients. Apigenin (API) has been shown to play a cardioprotective role. The present study examined the effect of API on ADR-induced cardiotoxicity in mice. Sixty male Kunming mice were randomly divided into 4 groups: a control group, ADR model group, low-dose API treatment group (125 mg·kg−1), and high-dose API treatment group (250 mg·kg−1). Blood samples were taken to evaluate a spectrum of myocardial enzymes. Cardiomyocyte apoptosis was measured using a TUNEL assay, and cardiomyocyte autophagy was observed using electron microscopy. Moreover, apoptosis-related proteins, such as Bax and Bcl-2, autophagy-related proteins, including Beclin1 and LC3B, and PI3K/AKT/mTOR pathway-related proteins were examined with western blot. Our results demonstrate that ADR caused an increase in the serum levels of cardiac injury markers and enhanced cardiomyocyte apoptosis and autophagy. API administration prevented the effects associated with ADR-induced cardiotoxicity in mice and inhibited ADR-induced apoptosis and autophagy. API also promoted PI3K/AKT/mTOR pathway activity in ADR-treated mice. In conclusion, API may have a protective effect against ADR-induced cardiotoxicity by inhibiting apoptosis and autophagy via activation of the PI3K/AKT/mTOR pathway.
Collapse
|
56
|
Daley D, Mani VR, Mohan N, Akkad N, Pandian GSDB, Savadkar S, Lee KB, Torres-Hernandez A, Aykut B, Diskin B, Wang W, Farooq MS, Mahmud AI, Werba G, Morales EJ, Lall S, Wadowski BJ, Rubin AG, Berman ME, Narayanan R, Hundeyin M, Miller G. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med 2017; 214:1711-1724. [PMID: 28442553 PMCID: PMC5461004 DOI: 10.1084/jem.20161707] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance, which enables disease to progress unabated by adaptive immunity. However, the drivers of this tolerogenic program are incompletely defined. In this study, we found that NLRP3 promotes expansion of immune-suppressive macrophages in PDA. NLRP3 signaling in macrophages drives the differentiation of CD4+ T cells into tumor-promoting T helper type 2 cell (Th2 cell), Th17 cell, and regulatory T cell populations while suppressing Th1 cell polarization and cytotoxic CD8+ T cell activation. The suppressive effects of NLRP3 signaling were IL-10 dependent. Pharmacological inhibition or deletion of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD complex), or caspase-1 protected against PDA and was associated with immunogenic reprogramming of innate and adaptive immunity within the TME. Similarly, transfer of PDA-entrained macrophages or T cells from NLRP3-/- hosts was protective. These data suggest that targeting NLRP3 holds the promise for the immunotherapy of PDA.
Collapse
Affiliation(s)
- Donnele Daley
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Vishnu R Mani
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Navyatha Mohan
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Neha Akkad
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | | | - Shivraj Savadkar
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Ki Buom Lee
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Alejandro Torres-Hernandez
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Berk Aykut
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Brian Diskin
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Wei Wang
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Mohammad S Farooq
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Arif I Mahmud
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Gregor Werba
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Eduardo J Morales
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Sarah Lall
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Benjamin J Wadowski
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Amanda G Rubin
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Matthew E Berman
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Rajkishen Narayanan
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Mautin Hundeyin
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - George Miller
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
57
|
Kobayashi M, Usui-Kawanishi F, Karasawa T, Kimura H, Watanabe S, Mise N, Kayama F, Kasahara T, Hasebe N, Takahashi M. The cardiac glycoside ouabain activates NLRP3 inflammasomes and promotes cardiac inflammation and dysfunction. PLoS One 2017; 12:e0176676. [PMID: 28493895 PMCID: PMC5426608 DOI: 10.1371/journal.pone.0176676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cardiac glycosides such as digoxin are Na+/K+-ATPase inhibitors that are widely used for the treatment of chronic heart failure and cardiac arrhythmias; however, recent epidemiological studies have suggested a relationship between digoxin treatment and increased mortality. We previously showed that nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes, which regulate caspase-1-dependent interleukin (IL)-1β release, mediate the sterile cardiovascular inflammation. Because the Na+/K+–ATPase is involved in inflammatory responses, we investigated the role of NLRP3 inflammasomes in the pathophysiology of cardiac glycoside-induced cardiac inflammation and dysfunction. The cardiac glycoside ouabain induced cardiac dysfunction and injury in wild-type mice primed with a low dose of lipopolysaccharide (LPS), although no cardiac dysfunction was observed in mice treated with either ouabain or LPS alone. Ouabain also induced cardiac inflammatory responses, such as macrophage infiltration and IL-1β release, when mice were primed with LPS. These cardiac manifestations were all significantly attenuated in mice deficient in IL-1β. Furthermore, deficiency of NLRP3 inflammasome components, NLRP3 and caspase-1, also attenuated ouabain-induced cardiac dysfunction and inflammation. In vitro experiments revealed that ouabain induced NLRP3 inflammasome activation as well as subsequent IL-1β release from macrophages, and this activation was mediated by K+ efflux. Our findings demonstrate that cardiac glycosides promote cardiac inflammation and dysfunction through NLRP3 inflammasomes and provide new insights into the mechanisms underlying the adverse effects of cardiac glycosides.
Collapse
Affiliation(s)
- Motoi Kobayashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Fumitake Usui-Kawanishi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, Tochigi, Japan
| | - Fujio Kayama
- Department of Environmental and Preventive Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoyuki Hasebe
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Hokkaido, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- * E-mail:
| |
Collapse
|
58
|
Abstract
Macrophages regulate tissue regeneration following injury. They can worsen tissue injury by producing reactive oxygen species and other toxic mediators that disrupt cell metabolism, induce apoptosis, and exacerbate ischemic injury. However, they also produce a variety of growth factors, such as IGF-1, VEGF-α, TGF-β, and Wnt proteins that regulate epithelial and endothelial cell proliferation, myofibroblast activation, stem and tissue progenitor cell differentiation, and angiogenesis. Proresolving macrophages in turn restore tissue homeostasis by functioning as anti-inflammatory cells, and macrophage-derived matrix metalloproteinases regulate fibrin and collagen turnover. However, dysregulated macrophage function impairs wound healing and contributes to the development of fibrosis. Consequently, the mechanisms that regulate these different macrophage activation states have become active areas of research. In this review, we discuss the common and unique mechanisms by which macrophages instruct tissue repair in the liver, nervous system, heart, lung, skeletal muscle, and intestine and illustrate how macrophages might be exploited therapeutically.
Collapse
Affiliation(s)
- Kevin M Vannella
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| |
Collapse
|